-
1
-
-
70449375094
-
Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
-
Aijo, T. and Lahdesmaki, H. (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 25, 2937-33.
-
(2009)
Bioinformatics
, vol.25
, pp. 2937-2943
-
-
Aijo, T.1
Lahdesmaki, H.2
-
2
-
-
77956528469
-
Dynamic deterministic effects propagation networks: Learning signalling pathways from longitudinal protein array data
-
Bender, C. et al. (2010) Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data. Bioinformatics, 26, i596-i602.
-
(2010)
Bioinformatics
, vol.26
-
-
Bender, C.1
-
3
-
-
63049128934
-
A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
-
Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137, 172-33.
-
(2009)
Cell
, vol.137
, pp. 172-233
-
-
Cantone, I.1
-
4
-
-
68649116029
-
Consistency of Bayesian procedures for variable selection
-
Casella, G. et al. (2009) Consistency of Bayesian procedures for variable selection. Ann. Stat., 37, 1207-33.
-
(2009)
Ann. Stat.
, vol.37
, pp. 1207-1233
-
-
Casella, G.1
-
5
-
-
77449126570
-
Systems analysis of EGF receptor signaling dynamics with microwestern arrays
-
Ciaccio, M.F. et al. (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat. Methods, 7, 148-33.
-
(2010)
Nat. Methods
, vol.7
, pp. 148-233
-
-
Ciaccio, M.F.1
-
9
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N. et al. (2000) Using Bayesian networks to analyze expression data. J. Comp. Biol., 7, 601-33.
-
(2000)
J. Comp. Biol.
, vol.7
, pp. 601-633
-
-
Friedman, N.1
-
10
-
-
0000034390
-
Learning Gaussian networks
-
San Francisco, CA, Morgan Kaufmann
-
Geiger, D. and Heckerman, D. (1994) Learning Gaussian networks. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI). San Francisco, CA, Morgan Kaufmann, pp. 235-33.
-
(1994)
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 235-333
-
-
Geiger, D.1
Heckerman, D.2
-
11
-
-
79958861169
-
Non-homogeneous dynamic Bayesian networks for continuous data
-
Grzegorczyk, M. and Husmeier, D. (2011) Non-homogeneous dynamic Bayesian networks for continuous data. Mach. Learn., 83, 355-33.
-
(2011)
Mach. Learn.
, vol.83
, pp. 355-433
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
13
-
-
84860811237
-
Integrating biological knowledge into variable selection: An empirical Bayes approach with an application in cancer biology
-
Hill, S.M. et al. (2012) Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology. BMC Bioinformatics, 13, 94.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 94
-
-
Hill, S.M.1
-
14
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-33.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-3243
-
-
Husmeier, D.1
-
15
-
-
84857233123
-
Nonparametric Bayesian sparse factor models with application to gene expression modelling
-
Knowles, D.A. and Ghahramani, Z. (2011) Nonparametric Bayesian sparse factor models with application to gene expression modelling. Ann. Appl. Stat., 5, 1534-33.
-
(2011)
Ann. Appl. Stat.
, vol.5
, pp. 1534-1543
-
-
Knowles, D.A.1
Ghahramani, Z.2
-
16
-
-
0010081155
-
Nonparametric regression using linear combinations of basis functions
-
Kohn, R. et al. (2001) Nonparametric regression using linear combinations of basis functions. Stat. Comput., 11, 313-33.
-
(2001)
Stat. Comput.
, vol.11
, pp. 313-333
-
-
Kohn, R.1
-
17
-
-
84866934189
-
Inferring dynamic genetic networks with low order independencies
-
Lebre, S. (2009) Inferring dynamic genetic networks with low order independencies. Stat. Appl. Genet. Mol. Biol., 8, 9.
-
(2009)
Stat. Appl. Genet. Mol. Biol.
, vol.8
, pp. 9
-
-
Lebre, S.1
-
18
-
-
84860851412
-
Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks
-
Lee, M.J. et al. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149, 780-33.
-
(2012)
Cell
, vol.149
, pp. 780-833
-
-
Lee, M.J.1
-
19
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan, D. et al. (1995) Bayesian graphical models for discrete data. Int. Stat. Rev., 63, 215-33.
-
(1995)
Int. Stat. Rev.
, vol.63
, pp. 215-233
-
-
Madigan, D.1
-
20
-
-
33747163541
-
High dimensional graphs and variable selection with the Lasso
-
Meinshausen, N. and Buhlmann, P. (2006) High dimensional graphs and variable selection with the Lasso. Ann. Stat., 34, 1436-33.
-
(2006)
Ann. Stat.
, vol.34
, pp. 1436-1443
-
-
Meinshausen, N.1
Buhlmann, P.2
-
21
-
-
55749093996
-
Network inference using informative priors
-
Mukherjee, S. and Speed, T.P. (2008) Network inference using informative priors. Proc. Natl Acad. Sci. USA, 105, 14313-33.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 14313-14333
-
-
Mukherjee, S.1
Speed, T.P.2
-
22
-
-
0013288412
-
-
PhD thesis, Computer Science, University of California, Berkeley, CA
-
Murphy, K.P. (2002) Dynamic Bayesian networks: representation, inference and learning. PhD thesis, Computer Science, University of California, Berkeley, CA.
-
(2002)
Dynamic Bayesian Networks: Representation, Inference and Learning
-
-
Murphy, K.P.1
-
23
-
-
33845209913
-
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
-
Neve, R.M. et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10, 515-33.
-
(2006)
Cancer Cell
, vol.10
, pp. 515-533
-
-
Neve, R.M.1
-
24
-
-
34848842860
-
Using regularized dynamic correlation to infer gene dependency networks from time-series microarray data
-
Tampere Finland Tampere University of Technology
-
Opgen-Rhein, R. and Strimmer, K. (2006) Using regularized dynamic correlation to infer gene dependency networks from time-series microarray data.In Proceedings of the Fourth International Workshop on Computational Systems Biology, WCSB 2006. pp. 73-76. Tampere, Finland. Tampere University of Technology.
-
(2006)
Proceedings of the Fourth International Workshop on Computational Systems Biology, WCSB 2006.
, pp. 73-76
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
25
-
-
33847285870
-
Oncogenic re-wiring of cellular signaling pathways
-
Pawson, T. and Warner, N. (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene, 26, 1268-33.
-
(2007)
Oncogene
, vol.26
, pp. 1268-2243
-
-
Pawson, T.1
Warner, N.2
-
26
-
-
77649166995
-
An empirical Bayesian method for estimating biological networks from temporal microarray data
-
Article 9
-
Rau, A. et al. (2010) An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol., 9, Article 9.
-
(2010)
Stat. Appl. Genet. Mol. Biol.
, pp. 9
-
-
Rau, A.1
-
27
-
-
79551497706
-
Learning non-stationary dynamic Bayesian networks
-
Robinson, J.W. and Hartemink, A.J. (2010) Learning non-stationary dynamic Bayesian networks. J. Mach. Learn. Res., 11, 3647-33.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3647-4643
-
-
Robinson, J.W.1
Hartemink, A.J.2
-
28
-
-
17644427718
-
Causal protein-signaling networks derived from multipara-meter single-cell data
-
Sachs, K. et al. (2005) Causal protein-signaling networks derived from multipara-meter single-cell data. Science, 308, 523-33.
-
(2005)
Science
, vol.308
, pp. 523-533
-
-
Sachs, K.1
-
29
-
-
33750456480
-
Reverse phase protein array: Validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hemato-poietic stem cells
-
Tibes, R. et al. (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hemato-poietic stem cells. Mol. Cancer Ther., 5, 2512-33.
-
(2006)
Mol. Cancer Ther.
, vol.5
, pp. 2512-2533
-
-
Tibes, R.1
-
30
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267-33.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-333
-
-
Tibshirani, R.1
-
31
-
-
46049101810
-
Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions
-
Werhli, A. and Husmeier, D. (2008) Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. J. Bioinf. Comput. Biol., 6, 543-33.
-
(2008)
J. Bioinf. Comput. Biol.
, vol.6
, pp. 543-633
-
-
Werhli, A.1
Husmeier, D.2
-
32
-
-
34249774309
-
Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
-
Werhli, A.V. and Husmeier, D. (2007) Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol., 6, 15.
-
(2007)
Stat. Appl. Genet. Mol. Biol.
, vol.6
, pp. 15
-
-
Werhli, A.V.1
Husmeier, D.2
-
33
-
-
77956634296
-
Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species
-
Xu, T.-R. et al. (2010) Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal., 3, ra20.
-
(2010)
Sci. Signal.
, vol.3
-
-
Xu, T.-R.1
-
34
-
-
0002817906
-
On assessing prior distributions and Bayesian regression analysis with g-prior distributions
-
Goel, P.K. and Zellner, A. (eds.) North-Holland, Amsterdam
-
Zellner, A. (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Goel, P.K. and Zellner, A. (eds.) Bayesian Inference and Decision Techniques\Essays in Honor of Bruno de Finetti. North-Holland, Amsterdam, pp. 233-33.
-
(1986)
Bayesian Inference and Decision Techniques\Essays in Honor of Bruno de Finetti
, pp. 233-333
-
-
Zellner, A.1
|