메뉴 건너뛰기




Volumn 28, Issue 21, 2012, Pages 2804-2810

Bayesian Inference of Signaling Network Topology in a Cancer Cell Line

Author keywords

[No Author keywords available]

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; BAYES THEOREM; BREAST TUMOR; CELL COMMUNICATION; CHEMICAL STRUCTURE; COMPUTER SIMULATION; FEMALE; HUMAN; METABOLISM; PATHOLOGY; PROBABILITY; SIGNAL TRANSDUCTION; STATISTICAL MODEL; TUMOR CELL LINE; VALIDATION STUDY;

EID: 84868020742     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts514     Document Type: Article
Times cited : (85)

References (34)
  • 1
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • Aijo, T. and Lahdesmaki, H. (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 25, 2937-33.
    • (2009) Bioinformatics , vol.25 , pp. 2937-2943
    • Aijo, T.1    Lahdesmaki, H.2
  • 2
    • 77956528469 scopus 로고    scopus 로고
    • Dynamic deterministic effects propagation networks: Learning signalling pathways from longitudinal protein array data
    • Bender, C. et al. (2010) Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data. Bioinformatics, 26, i596-i602.
    • (2010) Bioinformatics , vol.26
    • Bender, C.1
  • 3
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137, 172-33.
    • (2009) Cell , vol.137 , pp. 172-233
    • Cantone, I.1
  • 4
    • 68649116029 scopus 로고    scopus 로고
    • Consistency of Bayesian procedures for variable selection
    • Casella, G. et al. (2009) Consistency of Bayesian procedures for variable selection. Ann. Stat., 37, 1207-33.
    • (2009) Ann. Stat. , vol.37 , pp. 1207-1233
    • Casella, G.1
  • 5
    • 77449126570 scopus 로고    scopus 로고
    • Systems analysis of EGF receptor signaling dynamics with microwestern arrays
    • Ciaccio, M.F. et al. (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat. Methods, 7, 148-33.
    • (2010) Nat. Methods , vol.7 , pp. 148-233
    • Ciaccio, M.F.1
  • 9
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman, N. et al. (2000) Using Bayesian networks to analyze expression data. J. Comp. Biol., 7, 601-33.
    • (2000) J. Comp. Biol. , vol.7 , pp. 601-633
    • Friedman, N.1
  • 11
    • 79958861169 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks for continuous data
    • Grzegorczyk, M. and Husmeier, D. (2011) Non-homogeneous dynamic Bayesian networks for continuous data. Mach. Learn., 83, 355-33.
    • (2011) Mach. Learn. , vol.83 , pp. 355-433
    • Grzegorczyk, M.1    Husmeier, D.2
  • 13
    • 84860811237 scopus 로고    scopus 로고
    • Integrating biological knowledge into variable selection: An empirical Bayes approach with an application in cancer biology
    • Hill, S.M. et al. (2012) Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology. BMC Bioinformatics, 13, 94.
    • (2012) BMC Bioinformatics , vol.13 , pp. 94
    • Hill, S.M.1
  • 14
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-33.
    • (2003) Bioinformatics , vol.19 , pp. 2271-3243
    • Husmeier, D.1
  • 15
    • 84857233123 scopus 로고    scopus 로고
    • Nonparametric Bayesian sparse factor models with application to gene expression modelling
    • Knowles, D.A. and Ghahramani, Z. (2011) Nonparametric Bayesian sparse factor models with application to gene expression modelling. Ann. Appl. Stat., 5, 1534-33.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1534-1543
    • Knowles, D.A.1    Ghahramani, Z.2
  • 16
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Kohn, R. et al. (2001) Nonparametric regression using linear combinations of basis functions. Stat. Comput., 11, 313-33.
    • (2001) Stat. Comput. , vol.11 , pp. 313-333
    • Kohn, R.1
  • 17
    • 84866934189 scopus 로고    scopus 로고
    • Inferring dynamic genetic networks with low order independencies
    • Lebre, S. (2009) Inferring dynamic genetic networks with low order independencies. Stat. Appl. Genet. Mol. Biol., 8, 9.
    • (2009) Stat. Appl. Genet. Mol. Biol. , vol.8 , pp. 9
    • Lebre, S.1
  • 18
    • 84860851412 scopus 로고    scopus 로고
    • Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks
    • Lee, M.J. et al. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149, 780-33.
    • (2012) Cell , vol.149 , pp. 780-833
    • Lee, M.J.1
  • 19
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D. et al. (1995) Bayesian graphical models for discrete data. Int. Stat. Rev., 63, 215-33.
    • (1995) Int. Stat. Rev. , vol.63 , pp. 215-233
    • Madigan, D.1
  • 20
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • Meinshausen, N. and Buhlmann, P. (2006) High dimensional graphs and variable selection with the Lasso. Ann. Stat., 34, 1436-33.
    • (2006) Ann. Stat. , vol.34 , pp. 1436-1443
    • Meinshausen, N.1    Buhlmann, P.2
  • 21
    • 55749093996 scopus 로고    scopus 로고
    • Network inference using informative priors
    • Mukherjee, S. and Speed, T.P. (2008) Network inference using informative priors. Proc. Natl Acad. Sci. USA, 105, 14313-33.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 14313-14333
    • Mukherjee, S.1    Speed, T.P.2
  • 23
    • 33845209913 scopus 로고    scopus 로고
    • A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
    • Neve, R.M. et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10, 515-33.
    • (2006) Cancer Cell , vol.10 , pp. 515-533
    • Neve, R.M.1
  • 24
    • 34848842860 scopus 로고    scopus 로고
    • Using regularized dynamic correlation to infer gene dependency networks from time-series microarray data
    • Tampere Finland Tampere University of Technology
    • Opgen-Rhein, R. and Strimmer, K. (2006) Using regularized dynamic correlation to infer gene dependency networks from time-series microarray data.In Proceedings of the Fourth International Workshop on Computational Systems Biology, WCSB 2006. pp. 73-76. Tampere, Finland. Tampere University of Technology.
    • (2006) Proceedings of the Fourth International Workshop on Computational Systems Biology, WCSB 2006. , pp. 73-76
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 25
    • 33847285870 scopus 로고    scopus 로고
    • Oncogenic re-wiring of cellular signaling pathways
    • Pawson, T. and Warner, N. (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene, 26, 1268-33.
    • (2007) Oncogene , vol.26 , pp. 1268-2243
    • Pawson, T.1    Warner, N.2
  • 26
    • 77649166995 scopus 로고    scopus 로고
    • An empirical Bayesian method for estimating biological networks from temporal microarray data
    • Article 9
    • Rau, A. et al. (2010) An empirical Bayesian method for estimating biological networks from temporal microarray data. Stat. Appl. Genet. Mol. Biol., 9, Article 9.
    • (2010) Stat. Appl. Genet. Mol. Biol. , pp. 9
    • Rau, A.1
  • 27
    • 79551497706 scopus 로고    scopus 로고
    • Learning non-stationary dynamic Bayesian networks
    • Robinson, J.W. and Hartemink, A.J. (2010) Learning non-stationary dynamic Bayesian networks. J. Mach. Learn. Res., 11, 3647-33.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3647-4643
    • Robinson, J.W.1    Hartemink, A.J.2
  • 28
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multipara-meter single-cell data
    • Sachs, K. et al. (2005) Causal protein-signaling networks derived from multipara-meter single-cell data. Science, 308, 523-33.
    • (2005) Science , vol.308 , pp. 523-533
    • Sachs, K.1
  • 29
    • 33750456480 scopus 로고    scopus 로고
    • Reverse phase protein array: Validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hemato-poietic stem cells
    • Tibes, R. et al. (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hemato-poietic stem cells. Mol. Cancer Ther., 5, 2512-33.
    • (2006) Mol. Cancer Ther. , vol.5 , pp. 2512-2533
    • Tibes, R.1
  • 30
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267-33.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-333
    • Tibshirani, R.1
  • 31
    • 46049101810 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions
    • Werhli, A. and Husmeier, D. (2008) Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. J. Bioinf. Comput. Biol., 6, 543-33.
    • (2008) J. Bioinf. Comput. Biol. , vol.6 , pp. 543-633
    • Werhli, A.1    Husmeier, D.2
  • 32
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • Werhli, A.V. and Husmeier, D. (2007) Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol., 6, 15.
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , pp. 15
    • Werhli, A.V.1    Husmeier, D.2
  • 33
    • 77956634296 scopus 로고    scopus 로고
    • Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species
    • Xu, T.-R. et al. (2010) Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal., 3, ra20.
    • (2010) Sci. Signal. , vol.3
    • Xu, T.-R.1
  • 34
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • Goel, P.K. and Zellner, A. (eds.) North-Holland, Amsterdam
    • Zellner, A. (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Goel, P.K. and Zellner, A. (eds.) Bayesian Inference and Decision Techniques\Essays in Honor of Bruno de Finetti. North-Holland, Amsterdam, pp. 233-33.
    • (1986) Bayesian Inference and Decision Techniques\Essays in Honor of Bruno de Finetti , pp. 233-333
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.