메뉴 건너뛰기




Volumn 9, Issue 5, 2014, Pages

Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL EXPERIMENT; ARTICLE; GENE CLUSTER; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENE IDENTIFICATION; GENE REGULATORY NETWORK; GENETIC ENGINEERING; GENETIC MODEL; GENOME ANALYSIS; IMMUNE RESPONSE; INFLUENZA; LUNG INFECTION; MATHEMATICAL COMPUTING; MOUSE; NONHUMAN; ORDINARY DIFFERENTIAL EQUATION; PROCESS OPTIMIZATION; STRUCTURE ANALYSIS; ALGORITHM; ANIMAL; BIOLOGICAL MODEL; GENETICS; GENOME; LUNG; METABOLISM; ORTHOMYXOVIRUS INFECTION; VIROLOGY;

EID: 84900423203     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0095276     Document Type: Article
Times cited : (25)

References (82)
  • 1
    • 80052320333 scopus 로고    scopus 로고
    • Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection
    • Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, et al. (2011) Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genetics 7: e1002234.
    • (2011) PLoS Genetics , vol.7
    • Huang, Y.1    Zaas, A.K.2    Rao, A.3    Dobigeon, N.4    Woolf, P.J.5
  • 2
    • 84864011948 scopus 로고    scopus 로고
    • Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses
    • Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, et al. (2012) Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 7: e41169.
    • (2012) PLoS One , vol.7
    • Pommerenke, C.1    Wilk, E.2    Srivastava, B.3    Schulze, A.4    Novoselova, N.5
  • 3
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18: S231-S240. (Pubitemid 41073239)
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 4
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • DOI 10.1126/science.1087447
    • Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249-255. (Pubitemid 37248749)
    • (2003) Science , vol.302 , Issue.5643 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 5
    • 33947305781 scopus 로고    scopus 로고
    • Aracne: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinfomatics 7: S7.
    • (2006) BMC Bioinfomatics , vol.7
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5
  • 6
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • Thomas R (1973) Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42: 563-585.
    • (1973) Journal of Theoretical Biology , vol.42 , pp. 563-585
    • Thomas, R.1
  • 7
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16: 727-734.
    • (2000) Bioinformatics , vol.16 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 8
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18: 261-274. (Pubitemid 34183104)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 9
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: Prospects and limitations
    • Bornholdt S (2008) Boolean network models of cellular regulation: prospects and limitations. Journal of The Royal Society Interface 5: S85-S94.
    • (2008) Journal of the Royal Society Interface , vol.5
    • Bornholdt, S.1
  • 12
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic bayesian networks
    • Kim S, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic bayesian networks. Brief Bioinform 4: 228-235.
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 14
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • DOI 10.1093/bioinformatics/bth941
    • Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20 (Suppl. 1): i248-256. (Pubitemid 41296696)
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 15
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic bayesian network approach for identifying gene regulatory networks from time course microarray data
    • Zou M, Conzen S (2005) A new dynamic bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21: 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.2
  • 17
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • DOI 10.1093/bioinformatics/btm639
    • Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, et al. (2008) Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24: 932-942. (Pubitemid 351448027)
    • (2008) Bioinformatics , vol.24 , Issue.7 , pp. 932-942
    • Hirose, O.1    Yoshida, R.2    Imoto, S.3    Yamaguchi, R.4    Higuchi, T.5    Charnock-Jones, D.S.6    Print, C.7    Miyano, S.8
  • 18
    • 66749164082 scopus 로고    scopus 로고
    • Recursive regularization for inferring gene networks from time-course gene expression profiles
    • Shimamura T, Imoto S, Yamaguchi R, Fujita A, Nagasaki M, et al. (2009) Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology 3: 41-54.
    • (2009) BMC Systems Biology , vol.3 , pp. 41-54
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Fujita, A.4    Nagasaki, M.5
  • 19
    • 77954653646 scopus 로고    scopus 로고
    • A state space representation of var models with sparse learning for dynamic gene networks
    • Kojima K, Yamaguchi R, Imoto S, Yamauchi M, Nagasaki M, et al. (2009) A state space representation of var models with sparse learning for dynamic gene networks. Genome Informatics 22: 56-68.
    • (2009) Genome Informatics , vol.22 , pp. 56-68
    • Kojima, K.1    Yamaguchi, R.2    Imoto, S.3    Yamauchi, M.4    Nagasaki, M.5
  • 24
    • 0043130707 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations
    • de Hoon M, Imoto S, Kobayashi K, Ogasawara N, Miyano S (2003) Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations. Pac Symp Biocomput: 17-28.
    • (2003) Pac Symp Biocomput , pp. 17-28
    • De Hoon, M.1    Imoto, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 25
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301: 102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 27
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M, Gatta GD, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22: 815-822.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Gatta, G.D.2    Di Bernardo, D.3
  • 28
    • 84862970480 scopus 로고    scopus 로고
    • High dimensional odes coupled with mixedeffects modeling techniques for dynamic gene regulatory network identification
    • Lu T, Liang H, Li H, Wu H (2011) High dimensional odes coupled with mixedeffects modeling techniques for dynamic gene regulatory network identification. Journal of the American Statistical Association 106: 1242-1258.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 1242-1258
    • Lu, T.1    Liang, H.2    Li, H.3    Wu, H.4
  • 29
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9: 67-103.
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • De Jong, H.1
  • 30
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • Hecker M, Lambecka S, Toepferb S, Somerenc E, Guthke R (2009) Gene regulatory network inference: Data integration in dynamic models-a review. BioSystems 96: 86-103.
    • (2009) BioSystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambecka, S.2    Toepferb, S.3    Somerenc, E.4    Guthke, R.5
  • 32
    • 77953301486 scopus 로고    scopus 로고
    • Parameter estimation for differential equation models using a framework of measurement error in regression models
    • Liang H, Wu H (2008) Parameter estimation for differential equation models using a framework of measurement error in regression models. Journal of the American Statistical Association 103: 1570-1583.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1570-1583
    • Liang, H.1    Wu, H.2
  • 33
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • DOI 10.1093/bioinformatics/btg014
    • Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19: 474-482. (Pubitemid 36336513)
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 34
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma P, Castillo-Davis C, Zhong W, Liu J (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Research 34: 1261-1269.
    • (2006) Nucleic Acids Research , vol.34 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.2    Zhong, W.3    Liu, J.4
  • 35
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 37
  • 38
    • 79954602638 scopus 로고    scopus 로고
    • On identifiability of nonlinear ode models and applications in viral dynamics
    • Miao H, Xia X, Perelson AS, Wu H (2011) On identifiability of nonlinear ode models and applications in viral dynamics. SIAM Review 53: 3-39.
    • (2011) SIAM Review , vol.53 , pp. 3-39
    • Miao, H.1    Xia, X.2    Perelson, A.S.3    Wu, H.4
  • 40
  • 41
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using david bioinformatics resources
    • Huang D, Sherman B, Lempicki R (2009) Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nature Protocols 4: 44-57.
    • (2009) Nature Protocols , vol.4 , pp. 44-57
    • Huang, D.1    Sherman, B.2    Lempicki, R.3
  • 43
    • 35549003579 scopus 로고    scopus 로고
    • Regulation of Interferon-gamma During Innate and Adaptive Immune Responses
    • DOI 10.1016/S0065-2776(07)96002-2, PII S0065277607960022
    • Schoenborn J, Wilson C (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology 96: 41-101. (Pubitemid 350018717)
    • (2007) Advances in Immunology , vol.96 , pp. 41-101
    • Schoenborn, J.R.1    Wilson, C.B.2
  • 46
    • 55449123999 scopus 로고    scopus 로고
    • FADD and the NFkappab family member bcl-3 regulate complementary pathways to control t-cell survival and proliferation
    • Rangelova S, Kirschnek S, Strasser A, Häcker G (2008) FADD and the NFkappab family member bcl-3 regulate complementary pathways to control t-cell survival and proliferation. Immunology 125: 549-557.
    • (2008) Immunology , vol.125 , pp. 549-557
    • Rangelova, S.1    Kirschnek, S.2    Strasser, A.3    Häcker, G.4
  • 50
    • 79951822440 scopus 로고    scopus 로고
    • Role of CD27/CD70 pathway of activation in immunity and tolerance
    • Denoeud J, Moser M (2011) Role of CD27/CD70 pathway of activation in immunity and tolerance. Journal of Leukocyte Biology 89: 195-203.
    • (2011) Journal of Leukocyte Biology , vol.89 , pp. 195-203
    • Denoeud, J.1    Moser, M.2
  • 51
    • 79955459012 scopus 로고    scopus 로고
    • Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures
    • Alberts R, Lu L, Williams RW, Schughart K (2011) Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures. Respiratory Research 12: 61.
    • (2011) Respiratory Research , vol.12 , pp. 61
    • Alberts, R.1    Lu, L.2    Williams, R.W.3    Schughart, K.4
  • 53
    • 0038491296 scopus 로고    scopus 로고
    • Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation
    • DOI 10.1084/jem.20021542
    • Delamarre L, Holcombe H, Mellman I (2003) Presentation of exogenous antigens on major histocompatibility complex (MHC) class i and MHC class ii molecules is differentially regulated during dendritic cell maturation. The Journal of Experimental Medicine 198: 111-122. (Pubitemid 36870191)
    • (2003) Journal of Experimental Medicine , vol.198 , Issue.1 , pp. 111-122
    • Delamarre, L.1    Holcombe, H.2    Mellman, I.3
  • 54
    • 0031050034 scopus 로고    scopus 로고
    • Innate immunity: Impact on the adaptive immune response
    • DOI 10.1016/S0952-7915(97)80152-5
    • Medzhitov R, Janeway CJ (1997) Innate immunity: impact on the adaptive immune response. Current Opinion in Immunology 9: 4-9. (Pubitemid 27095892)
    • (1997) Current Opinion in Immunology , vol.9 , Issue.1 , pp. 4-9
    • Medzhitov, R.1    Janeway, J.C.A.2
  • 55
    • 74549167783 scopus 로고    scopus 로고
    • Regulation of adaptive immunity by the innate immune system
    • Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327: 291-295.
    • (2010) Science , vol.327 , pp. 291-295
    • Iwasaki, A.1    Medzhitov, R.2
  • 56
    • 77953566560 scopus 로고    scopus 로고
    • Innate instruction of adaptive immunity revisited: The inflammasome
    • Eisenbarth S, Flavell R (2009) Innate instruction of adaptive immunity revisited: the inflammasome. EMBO Molecular Medicin 1: 92-98.
    • (2009) EMBO Molecular Medicin , vol.1 , pp. 92-98
    • Eisenbarth, S.1    Flavell, R.2
  • 58
    • 77649299348 scopus 로고    scopus 로고
    • An atlas of combinatorial transcriptional regulation in mouse and man
    • Ravasi T, Suzuki H, Cannistraci C, Katayama S, Bajic V, et al. (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140: 744-752.
    • (2010) Cell , vol.140 , pp. 744-752
    • Ravasi, T.1    Suzuki, H.2    Cannistraci, C.3    Katayama, S.4    Bajic, V.5
  • 59
    • 78651319979 scopus 로고    scopus 로고
    • Ongoing and future developments at the universal protein resource
    • UniProt Consortium
    • UniProt Consortium (2011) Ongoing and future developments at the universal protein resource. Nucleic Acids Research 39: 214-219.
    • (2011) Nucleic Acids Research , vol.39 , pp. 214-219
  • 60
    • 42649114059 scopus 로고    scopus 로고
    • The IRF family transcription factors in immunity and oncogenesis
    • DOI 10.1146/annurev.immunol.26.021607.090400
    • Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annual Review of Immunology 26: 535-584. (Pubitemid 351600385)
    • (2008) Annual Review of Immunology , vol.26 , pp. 535-584
    • Tamura, T.1    Yanai, H.2    Savitsky, D.3    Taniguchi, T.4
  • 63
    • 80053926066 scopus 로고    scopus 로고
    • Shared and distinct functions of the transcription factors irf4 and irf8 in myeloid cell development
    • Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, et al. (2011) Shared and distinct functions of the transcription factors irf4 and irf8 in myeloid cell development. PLoS One 6: e25812.
    • (2011) PLoS One , vol.6
    • Yamamoto, M.1    Kato, T.2    Hotta, C.3    Nishiyama, A.4    Kurotaki, D.5
  • 64
    • 84872794099 scopus 로고    scopus 로고
    • The transcription factor stat-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response
    • Blanc M, Hsieh W, Robertson K, Kropp K, Forster T, et al. (2013) The transcription factor stat-1 couples macrophage synthesis of 25- hydroxycholesterol to the interferon antiviral response. Immunity 38: 106-118.
    • (2013) Immunity , vol.38 , pp. 106-118
    • Blanc, M.1    Hsieh, W.2    Robertson, K.3    Kropp, K.4    Forster, T.5
  • 65
    • 84864146433 scopus 로고    scopus 로고
    • Aiolos promotes th17 differentiation by directly silencing il2 expression
    • Quintana F, Jin H, Burns E, Nadeau M, Yeste A, et al. (2012) Aiolos promotes th17 differentiation by directly silencing il2 expression. Nature Immunology 13: 770-777.
    • (2012) Nature Immunology , vol.13 , pp. 770-777
    • Quintana, F.1    Jin, H.2    Burns, E.3    Nadeau, M.4    Yeste, A.5
  • 66
    • 84875538701 scopus 로고    scopus 로고
    • The actin and tetraspanin networks organize receptor nanoclusters to regulate b cell receptor-mediated signaling
    • Mattila P, Feest C, Depoil D, Treanor B, Montaner B, et al. (2013) The actin and tetraspanin networks organize receptor nanoclusters to regulate b cell receptor-mediated signaling. Immunity 38: 461-474.
    • (2013) Immunity , vol.38 , pp. 461-474
    • Mattila, P.1    Feest, C.2    Depoil, D.3    Treanor, B.4    Montaner, B.5
  • 67
    • 0942301281 scopus 로고    scopus 로고
    • p63 is the molecular switch for initiation of an epithelial stratification program
    • DOI 10.1101/gad.1165104
    • Koster M, Kim S, Mills A, DeMayo F, Roop D (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes & Development 18: 126-131. (Pubitemid 38141780)
    • (2004) Genes and Development , vol.18 , Issue.2 , pp. 126-131
    • Koster, M.I.1    Kim, S.2    Mills, A.A.3    DeMayo, F.J.4    Roop, D.R.5
  • 68
    • 77955160687 scopus 로고    scopus 로고
    • Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error
    • Xue H, Miao H, Wu H (2010) Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error. The Annals of Statistics 38: 2351-2387.
    • (2010) The Annals of Statistics , vol.38 , pp. 2351-2387
    • Xue, H.1    Miao, H.2    Wu, H.3
  • 69
    • 84859854037 scopus 로고    scopus 로고
    • Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations
    • Cao J, Huang J, Wu H (2012) Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations. Journal of computational and graphical statistics 21: 42:56.
    • (2012) Journal of Computational and Graphical Statistics , vol.21 , pp. 42-56
    • Cao, J.1    Huang, J.2    Wu, H.3
  • 70
    • 4444339832 scopus 로고    scopus 로고
    • Quantitative characterization of the trancriptional regulatory network in the yeast cell cycle
    • Chen HC, Lee HC, Lin TY, Li WH, Chen BS (2004) Quantitative characterization of the trancriptional regulatory network in the yeast cell cycle. Bioinformatics 20: 1914-1927.
    • (2004) Bioinformatics , vol.20 , pp. 1914-1927
    • Chen, H.C.1    Lee, H.C.2    Lin, T.Y.3    Li, W.H.4    Chen, B.S.5
  • 72
    • 84872170913 scopus 로고    scopus 로고
    • More powerful significant testing for time course gene expression data using functional principal component analysis approaches
    • Wu S, Wu H (2013) More powerful significant testing for time course gene expression data using functional principal component analysis approaches. BMC Bioinformatics 14: 6.
    • (2013) BMC Bioinformatics , vol.14 , pp. 6
    • Wu, S.1    Wu, H.2
  • 78
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96: 1348-1360. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 80
    • 13444305306 scopus 로고    scopus 로고
    • TRED: A Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies
    • DOI 10.1093/nar/gki004
    • Zhao F, Xuan Z, Liu L, Zhang M (2005) TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies. Nucleic Acids Research 33: D103-107. (Pubitemid 40207839)
    • (2005) Nucleic Acids Research , vol.33 , Issue.DATABASE ISS.
    • Zhao, F.1    Xuan, Z.2    Liu, L.3    Zhang, M.Q.4
  • 81
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28: 27-30. (Pubitemid 30047706)
    • (2000) Nucleic Acids Research , vol.28 , Issue.1 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.