메뉴 건너뛰기




Volumn 25, Issue 2, 2009, Pages 286-287

BNFinder: Exact and efficient method for learning Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYESIAN LEARNING; BIOINFORMATICS; COMPUTER NETWORK; COMPUTER PROGRAM; INFORMATION PROCESSING; LEARNING ALGORITHM; MATHEMATICAL ANALYSIS; MOLECULAR DYNAMICS; PRIORITY JOURNAL;

EID: 58349093534     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn505     Document Type: Article
Times cited : (78)

References (15)
  • 1
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • Beer,M.A. and Tavazoie,S. (2004) Predicting gene expression from sequence. Cell, 117, 185-198.
    • (2004) Cell , vol.117 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 3
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • Chickering,D.M. et al. (2004) Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res., 5, 1287-1330.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1
  • 4
    • 33750057957 scopus 로고    scopus 로고
    • Learning Bayesian networks does not have to be NP-hard
    • Královic,R. and Urzyczyn,P, eds, Proceedings of Mathematical Foundations of Computer Science 2006, Springer-Verlag, pp
    • Dojer,N. (2006) Learning Bayesian networks does not have to be NP-hard. In Královic,R. and Urzyczyn,P. (eds), Proceedings of Mathematical Foundations of Computer Science 2006, LNCS 4162, Springer-Verlag, pp. 305-314.
    • (2006) LNCS , vol.4162 , pp. 305-314
    • Dojer, N.1
  • 5
    • 33746353952 scopus 로고    scopus 로고
    • Applying dynamic Bayesian networks to perturbed gene expression data
    • Dojer,N. et al. (2006) Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics, 7, 249.
    • (2006) BMC Bioinformatics , vol.7 , pp. 249
    • Dojer, N.1
  • 6
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. a bayesian approach to structure discovery in bayesian networks
    • Friedman,N. and Koller,D. (2003) Being Bayesian about network structure. a bayesian approach to structure discovery in bayesian networks. Mach. Learn., 50, 95-125.
    • (2003) Mach. Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 7
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 8
    • 1142266735 scopus 로고    scopus 로고
    • Finding a path is harder than finding a tree
    • Meek,C. (2001) Finding a path is harder than finding a tree. J. Artif. Intell. Res., 15, 383-389.
    • (2001) J. Artif. Intell. Res , vol.15 , pp. 383-389
    • Meek, C.1
  • 9
    • 62249132926 scopus 로고    scopus 로고
    • Software packages for graphical models - Bayesian networks
    • Murphy,K. (2007) Software packages for graphical models - Bayesian networks. Bull. Int. Soc. Bayesian Anal., 14.
    • (2007) Bull. Int. Soc. Bayesian Anal , vol.14
    • Murphy, K.1
  • 10
    • 0345707911 scopus 로고    scopus 로고
    • Bayes Net Toolbox.
    • Technical report. MIT Artificial Intelligence Laboratory
    • Murphy,K.P. (2002) Bayes Net Toolbox. Technical report. MIT Artificial Intelligence Laboratory.
    • (2002)
    • Murphy, K.P.1
  • 11
    • 34548459831 scopus 로고    scopus 로고
    • Aprimer on learning in Bayesian networks for computational biology
    • Needham,C.J. et al. (2007)Aprimer on learning in Bayesian networks for computational biology. PLoS Comput. Biol., 3, e129.
    • (2007) PLoS Comput. Biol , vol.3
    • Needham, C.J.1
  • 12
    • 2442703194 scopus 로고    scopus 로고
    • Finding optimal models for small gene networks
    • Ott,S. et al. (2004) Finding optimal models for small gene networks. Pac. Symp. Biocomput., 557-567.
    • (2004) Pac. Symp. Biocomput , pp. 557-567
    • Ott, S.1
  • 13
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
    • Segal,E. et al. (2003) Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 19 (Suppl. 1), 273-282.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1 , pp. 273-282
    • Segal, E.1
  • 14
    • 33751407959 scopus 로고    scopus 로고
    • Computational inference of neural information flow networks
    • Smith,V.A. et al. (2006) Computational inference of neural information flow networks. PLoS Comput. Biol., 2, e161.
    • (2006) PLoS Comput. Biol , vol.2
    • Smith, V.A.1
  • 15
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada,Y. et al. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19 (Suppl. 2), ii227-ii236.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Tamada, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.