메뉴 건너뛰기




Volumn 29, Issue 8, 2013, Pages 1060-1067

Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIA (MICROORGANISMS);

EID: 84876207916     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt099     Document Type: Article
Times cited : (109)

References (36)
  • 1
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph, Z. et al. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552-564.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1
  • 2
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networksfromsystems-biology datasetsdenovo
    • Bonneau, R. et al. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networksfromsystems-biology datasetsdenovo. GenomeBiol., 7, R36.
    • (2006) GenomeBiol. , vol.7
    • Bonneau, R.1
  • 3
    • 37349099750 scopus 로고    scopus 로고
    • A predictive model for transcriptional control of physiology in a free living cell
    • Bonneau, R. et al. (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell, 131, 1354-1365.
    • (2007) Cell , vol.131 , pp. 1354-1365
    • Bonneau, R.1
  • 4
    • 75149195336 scopus 로고    scopus 로고
    • The transcriptional network for mesenchymal transform- ation of brain tumours
    • Carro, M.S. et al. (2010) The transcriptional network for mesenchymal transform- ation of brain tumours. Nature, 463, 318-325.
    • (2010) Nature , vol.463 , pp. 318-325
    • Carro, M.S.1
  • 5
    • 84867581744 scopus 로고    scopus 로고
    • A validated regulatory network for Th17 cell specification
    • Ciofani, M. et al. (2012) A validated regulatory network for Th17 cell specification. Cell, 151, 289-303.
    • (2012) Cell , vol.151 , pp. 289-303
    • Ciofani, M.1
  • 6
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium.
    • ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 7
    • 41849115550 scopus 로고    scopus 로고
    • A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
    • Ernst, J. et al. (2008) A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput. Biol., 4, e1000044.
    • (2008) PLoS Comput. Biol. , vol.4
    • Ernst, J.1
  • 8
    • 84908087962 scopus 로고    scopus 로고
    • A community-curated consensual annotation that is continuously updated: The Bacillus Subtilis centred wiki subtiwiki
    • Florez, L.A. et al. (2009) A community-curated consensual annotation that is continuously updated: the Bacillus Subtilis centred wiki subtiwiki. Database, 2009, bap012.
    • (2009) Database , vol.2009
    • Florez, L.A.1
  • 9
    • 79958293069 scopus 로고    scopus 로고
    • Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities
    • Fu, Y. et al. (2011) Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinformatics, 12, 233.
    • (2011) BMC Bioinformatics , vol.12 , pp. 233
    • Fu, Y.1
  • 10
    • 78651335916 scopus 로고    scopus 로고
    • Redfly v3.0: Toward a comprehensive database oftranscrip- tional regulatory elements in Drosophila
    • Gallo, S.M. et al. (2010) Redfly v3.0: toward a comprehensive database oftranscrip- tional regulatory elements in Drosophila. Nucleic Acids Res., 39, D118-D123.
    • (2010) Nucleic Acids Res. , vol.39
    • Gallo, S.M.1
  • 11
    • 78651299341 scopus 로고    scopus 로고
    • Regulondb version 7.0: Transcriptional regulation of Escherichia Coli k-12 integrated within genetic sensory response units (gensor units)
    • Gama-Castro, S. et al. (2011) Regulondb version 7.0: transcriptional regulation of Escherichia Coli k-12 integrated within genetic sensory response units (gensor units). Nucleic Acids Res., 39, D98-D105.
    • (2011) Nucleic Acids Res. , vol.39
    • Gama-Castro, S.1
  • 12
    • 78149421254 scopus 로고    scopus 로고
    • Dream4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • Greenfield, A. et al. (2010) Dream4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One, 5, e13397.
    • (2010) PLoS One , vol.5
    • Greenfield, A.1
  • 13
    • 77949535261 scopus 로고    scopus 로고
    • Gene expression prediction by soft integration and the elastic netbest performance of the dream3 gene expression challenge
    • Gustafsson, M. and Hornquist, M. (2010) Gene expression prediction by soft integration and the elastic netbest performance of the dream3 gene expression challenge. PLoS One, 5, e9134.
    • (2010) PLoS One , vol.5
    • Gustafsson, M.1    Hornquist, M.2
  • 14
    • 0042330135 scopus 로고    scopus 로고
    • Genome-wide survey of mRNA half-lives in Bacillus Subtilis identifies extremely stable mRNAs
    • Hambraeus, G. et al. (2003) Genome-wide survey of mRNA half-lives in Bacillus Subtilis identifies extremely stable mRNAs. Mol. Genet. Genomics, 269, 706-714.
    • (2003) Mol. Genet. Genomics , vol.269 , pp. 706-714
    • Hambraeus, G.1
  • 15
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • Hecker, M. et al. (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems, 96, 86-103.
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1
  • 16
    • 38449110386 scopus 로고    scopus 로고
    • Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks
    • Husmeier, D. and Werhli, A.V. (2007) Bayesian integration of biological prior knowledge into the reconstruction of gene regulatory networks with Bayesian networks. Comput. Syst. Bioinformatics Conf., 6, 85-95.
    • (2007) Comput. Syst. Bioinformatics Conf. , vol.6 , pp. 85-95
    • Husmeier, D.1    Werhli, A.V.2
  • 17
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • Imoto, S. et al. (2003) Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Proc. IEEE Comput. Soc. Bioinform. Conf., 2, 104-13.
    • (2003) Proc. IEEE Comput. Soc. Bioinform. Conf. , vol.2 , pp. 104-113
    • Imoto, S.1
  • 18
    • 77749280244 scopus 로고    scopus 로고
    • Connecting parts with processes: Subtiwiki and Subtipathways integrate gene and pathway annotation for Bacillus subtilis
    • Lammers, C.R. et al. (2010) Connecting parts with processes: Subtiwiki and Subtipathways integrate gene and pathway annotation for Bacillus subtilis. Microbiology, 156, 849-859.
    • (2010) Microbiology , vol.156 , pp. 849-859
    • Lammers, C.R.1
  • 19
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis ofgenomic data
    • Li, C. and Li, H. (2008) Network-constrained regularization and variable selection for analysis ofgenomic data. Bioinformatics, 24, 1175-1182.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 20
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe, N.M. et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431, 308-312.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1
  • 21
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: Network inference using dynamic context likeli- hood ofrelatedness and the inferelator
    • Madar, A. et al. (2010) DREAM3: network inference using dynamic context likeli- hood ofrelatedness and the inferelator. PloS One, 5, e9803.
    • (2010) PloS One , vol.5
    • Madar, A.1
  • 22
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses ofmethods for gene network inference
    • Marbach, D. et al. (2010) Revealing strengths and weaknesses ofmethods for gene network inference. Proc. Natl Acad. Sci. USA, 107, 6286-6291.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 23
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach, D. et al. (2012) Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796-804.
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 24
    • 84857683425 scopus 로고    scopus 로고
    • Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis
    • Nicolas, P. et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science, 335, 1103-1106.
    • (2012) Science , vol.335 , pp. 1103-1106
    • Nicolas, P.1
  • 25
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment ofsystems biology models: The DREAM3 challenges
    • Prill, RJ. et al. (2010) Towards a rigorous assessment ofsystems biology models: the DREAM3 challenges. PLoS ONE, 5, e9202.
    • (2010) PLoS ONE , vol.5
    • Prill, R.J.1
  • 26
    • 84864921682 scopus 로고    scopus 로고
    • DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data
    • Schulz, M.H. et al. (2012) DREM 2.0: improved reconstruction of dynamic regulatory networks from time-series expression data. BMCSyst. Biol., 6, 104.
    • (2012) BMCSyst. Biol. , vol.6 , pp. 104
    • Schulz, M.H.1
  • 27
    • 0037315564 scopus 로고    scopus 로고
    • Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation
    • Selinger, D. et al. (2003) Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res., 13, 216-223.
    • (2003) Genome Res. , vol.13 , pp. 216-223
    • Selinger, D.1
  • 28
    • 69249220402 scopus 로고    scopus 로고
    • A dynamic network of transcription in LPS-treated human subjects
    • Seok, J. et al. (2009) A dynamic network of transcription in LPS-treated human subjects. BMC Syst. Biol., 3, 78.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 78
    • Seok, J.1
  • 29
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference
    • Stolovitzky, G. et al. (2007) Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann. NY Acad. Sci., 1115, 1-22.
    • (2007) Ann. NY Acad. Sci. , vol.1115 , pp. 1-22
    • Stolovitzky, G.1
  • 30
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM2 challenges
    • Stolovitzky, G. et al. (2009) Lessons from the DREAM2 challenges. Ann. NYAcad. Sci., 1158, 159-195.
    • (2009) Ann. NYAcad. Sci. , vol.1158 , pp. 159-195
    • Stolovitzky, G.1
  • 31
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada, Y. et al. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19 (Suppl. 2), ii227-ii236.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Tamada, Y.1
  • 32
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • Article15
    • Werhli, A.V. and Husmeier, D. (2007) Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol., 6. Article15.
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6
    • Werhli, A.V.1    Husmeier, D.2
  • 34
    • 0012134507 scopus 로고
    • Applications of Bayesian analysis in econometrics
    • Zellner, A (1983) Applications of Bayesian analysis in econometrics. Statistician, 32, 23.
    • (1983) Statistician , vol.32 , pp. 23
    • Zellner, A.1
  • 35
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. B Stat. Methodol., 67, 301-320.
    • (2005) J. R. Stat. Soc. B Stat. Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 36
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elasticnet with a diverging number ofparameters
    • Zou, H. and Zhang, H.H. (2009) On the adaptive elasticnet with a diverging number ofparameters. Ann. Stat., 37, 1733-1751.
    • (2009) Ann. Stat. , vol.37 , pp. 1733-1751
    • Zou, H.1    Zhang, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.