메뉴 건너뛰기




Volumn 22, Issue 20, 2006, Pages 2523-2531

Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

RAF PROTEIN;

EID: 33749825955     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btl391     Document Type: Article
Times cited : (284)

References (28)
  • 1
    • 0003516749 scopus 로고
    • 3rd edn. Oxford University Press, Oxford
    • Atkins,P.W. (1986) Physical Chemistry, 3rd edn. Oxford University Press, Oxford.
    • (1986) Physical Chemistry
    • Atkins, P.W.1
  • 2
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte,A.S. and Kohane,I.S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 418-429.
    • (2000) Pac. Symp. Biocomput. , pp. 418-429
    • Butte, A.S.1    Kohane, I.S.2
  • 3
    • 33646351332 scopus 로고    scopus 로고
    • Relevance networks: A first step toward finding genetic regulatory networks within microarray data
    • In Parmigiani,G., Garett,E.S., Irizarry,R.A. and Zeger,S.L. (eds), Springer, New York
    • Butte,A.S. and Kohane,I.S. (2003) Relevance networks: A first step toward finding genetic regulatory networks within microarray data. In Parmigiani,G., Garett,E.S., Irizarry,R.A. and Zeger,S.L. (eds), The Analysis of Gene Expression Data, Springer, New York, pp. 428-446.
    • (2003) The Analysis of Gene Expression Data , pp. 428-446
    • Butte, A.S.1    Kohane, I.S.2
  • 4
    • 0002013121 scopus 로고
    • A transformational characterization of equivalent Bayesian network structures
    • Chickering,D.M. (1995) A transformational characterization of equivalent Bayesian network structures. Int. Conf. Uncertain. Artif. Intell., 11, 87-98.
    • (1995) Int. Conf. Uncertain. Artif. Intell. , vol.11 , pp. 87-98
    • Chickering, D.M.1
  • 5
    • 19944430124 scopus 로고    scopus 로고
    • Regulation of raf-1 by direct feedback phosphorylation
    • Dougherty,M.K. et al. (2005) Regulation of raf-1 by direct feedback phosphorylation. Mol. Cell, 17, 215-224.
    • (2005) Mol. Cell , vol.17 , pp. 215-224
    • Dougherty, M.K.1
  • 7
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • Friedman,N. and Koller,D. (2003) Being Bayesian about network structure. Mach. Learn., 50, 95-126.
    • (2003) Mach. Learn. , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 8
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman,N. et al. (2000) Using Bayesian networks to analyze expression data. J. Comput. Biol., 7, 601-620.
    • (2000) J. Comput. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1
  • 10
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • In Jordan,M.I. (ed.), MIT Press, Cambridge Massachusetts
    • Heckerman,D. (1999) A tutorial on learning with Bayesian networks. In Jordan,M.I. (ed.), Learning in Graphical Models, Adaptive Computation and Machine Learning. MIT Press, Cambridge Massachusetts, pp. 301-354.
    • (1999) Learning in Graphical Models, Adaptive Computation and Machine Learning , pp. 301-354
    • Heckerman, D.1
  • 11
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman,D. et al. (1995) Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn., 20, 245-274.
    • (1995) Mach. Learn. , vol.20 , pp. 245-274
    • Heckerman, D.1
  • 12
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 13
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • Imoto,S. et al. (2003a) Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Proc. IEEE Comput. Soc. Bioinform. Conf., 104-113.
    • (2003) Proc. IEEE Comput. Soc. Bioinform. Conf. , pp. 104-113
    • Imoto, S.1
  • 14
    • 3042698613 scopus 로고    scopus 로고
    • Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
    • Imoto,S. et al. (2003b) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol., 1, 231-252.
    • (2003) J. Bioinform. Comput. Biol. , vol.1 , pp. 231-252
    • Imoto, S.1
  • 15
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan,D. and York,J. (1995) Bayesian graphical models for discrete data. Int. Stat. Rev., 63, 215-232.
    • (1995) Int. Stat. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 16
    • 27544494569 scopus 로고    scopus 로고
    • Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
    • Nariai,N. et al. (2005) Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics, 21 (Suppl 2), ii206-ii212.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Nariai, N.1
  • 17
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er,D. et al. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17, S215-S224.
    • (2001) Bioinformatics , vol.17
    • Pe'er, D.1
  • 18
    • 33749862801 scopus 로고    scopus 로고
    • Reconstructing gene networks by passive and active Bayesian learning
    • PhD thesis. Birbeck College, University of London, UK
    • Pournara,I.V. (2005) Reconstructing gene networks by passive and active Bayesian learning. PhD thesis. Birbeck College, University of London, UK.
    • (2005)
    • Pournara, I.V.1
  • 19
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • Pournara,I.V. and Wernisch,L. (2004) Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics, 20, 2934-2942.
    • (2004) Bioinformatics , vol.20 , pp. 2934-2942
    • Pournara, I.V.1    Wernisch, L.2
  • 20
    • 17644427718 scopus 로고    scopus 로고
    • Protein-signaling networks derived from multiparameter single-cell data
    • Sachs,K. et al. (2005) Protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 21
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring largescale gene association networks
    • Schäfer,J. and Strimmer,K. (2005a) An empirical Bayes approach to inferring largescale gene association networks. Bioinformatics, 21, 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 22
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Article 32
    • Schäfer,J. and Strimmer,K. (2005b) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol., 4, Article 32.
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4
    • Schäfer, J.1    Strimmer, K.2
  • 23
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • Smith,V.A. et al. (2002) Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18, S216-S224.
    • (2002) Bioinformatics , vol.18
    • Smith, V.A.1
  • 25
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomwide studies
    • Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomwide studies. Proc. Natl Acad. Sci. USA, 100, 9440-9445.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 26
    • 0032549745 scopus 로고    scopus 로고
    • Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene
    • Yuh,C.H. et al. (1998) Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science, 279, 1896-1902.
    • (1998) Science , vol.279 , pp. 1896-1902
    • Yuh, C.H.1
  • 27
    • 0035094449 scopus 로고    scopus 로고
    • Cis-regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control
    • Yuh,C.H. et al. (2001) Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development, 128, 617-629.
    • (2001) Development , vol.128 , pp. 617-629
    • Yuh, C.H.1
  • 28
    • 0242651270 scopus 로고    scopus 로고
    • Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data
    • Pasadena, CA
    • Zak,D.E. et al. (2001) Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data. In Proceedings of the Second International Conference on Systems Biology, Pasadena, CA, pp. 231-238.
    • (2001) Proceedings of the Second International Conference on Systems Biology , pp. 231-238
    • Zak, D.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.