메뉴 건너뛰기




Volumn 6, Issue 1, 2007, Pages

Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge

Author keywords

Bayesian inference; Bayesian networks; Gene expression data; Gene regulatory networks; Immunoprecipitation experiments; KEGG pathways; Markov chain Monte Carlo; Microarrays

Indexed keywords

RAF PROTEIN;

EID: 34249774309     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1282     Document Type: Article
Times cited : (226)

References (35)
  • 1
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • World Scientific, New Jersey
    • Bernard,A. and Hartemink,A.J. (2005) Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In Pacific Symposium on Biocomputing pp. 459-470 World Scientific, New Jersey.
    • (2005) Pacific Symposium on Biocomputing , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 2
    • 33646351332 scopus 로고    scopus 로고
    • Relevance networks: A first step toward finding genetic regulatory networks within microarray data
    • Parmigiani,G, Garett,E.S, Irizarry,R.A. and Zeger,S.L, eds, pp, Springer, New York
    • Butte,A.S. and Kohane,I.S. (2003) Relevance networks: a first step toward finding genetic regulatory networks within microarray data. In The Analysis of Gene Expression Data, (Parmigiani,G., Garett,E.S., Irizarry,R.A. and Zeger,S.L., eds), pp. 428-446 Springer, New York.
    • (2003) The Analysis of Gene Expression Data , pp. 428-446
    • Butte, A.S.1    Kohane, I.S.2
  • 6
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • Friedman,N. and Koller,D. (2003) Being Bayesian about network structure. Machine Learning, 50, 95-126.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 10
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • Giudici,P. and Castelo,R. (2003) Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50, 127-158.
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 13
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink,A.J., Gifford,D.K., Jaakkola,T.S. and Young,R.A. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 6, 422-433.
    • (2001) Pacific Symposium on Biocomputing , vol.6 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 14
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings,W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 15
    • 34249786431 scopus 로고    scopus 로고
    • Heckerman,D. (1999) A tutorial on learning with Bayesian networks. In Learning in Graphical Models, (Jordan,M.I., ed.), Adaptive Computation and Machine Learning pp. 301-354 MIT Press, Cambridge, Massachusetts.
    • Heckerman,D. (1999) A tutorial on learning with Bayesian networks. In Learning in Graphical Models, (Jordan,M.I., ed.), Adaptive Computation and Machine Learning pp. 301-354 MIT Press, Cambridge, Massachusetts.
  • 16
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman,D., Geiger,D. and Chickering,D.M. (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 245-274.
    • (1995) Machine Learning , vol.20 , pp. 245-274
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 17
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 20
    • 33644783926 scopus 로고    scopus 로고
    • Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks
    • Imoto,S., Higuchi,T., Goto,T. and Miyano,S. (2006) Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks. Statistical Methodology, 3 (1), 1-16.
    • (2006) Statistical Methodology , vol.3 , Issue.1 , pp. 1-16
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Miyano, S.4
  • 22
    • 0030921594 scopus 로고    scopus 로고
    • A database for post-genome analysis
    • Kanehisa,M. (1997) A database for post-genome analysis. Trends Genet, 13, 375-376.
    • (1997) Trends Genet , vol.13 , pp. 375-376
    • Kanehisa, M.1
  • 23
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30.
    • (2000) Nucleic Acids Research , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 26
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan,D. and York,J. (1995) Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 28
    • 2442718023 scopus 로고    scopus 로고
    • Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
    • Nariai,N., Kim,S., Imoto,S. and Miyano,S. (2004) Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pacific Symposium on Biocomputing, 9, 336-347.
    • (2004) Pacific Symposium on Biocomputing , vol.9 , pp. 336-347
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 29
    • 17644427718 scopus 로고    scopus 로고
    • Sachs,K., Perez,O., Pe'er,D., Lauffenburger,D.A. and Nolan,G.P. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, Issue 5721, 523-529 , 22 April 2005, 308 (5721), 523-529.
    • Sachs,K., Perez,O., Pe'er,D., Lauffenburger,D.A. and Nolan,G.P. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, Vol 308, Issue 5721, 523-529 , 22 April 2005, 308 (5721), 523-529.
  • 30
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Article
    • Schäfer,J. and Strimmer,K. (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4. Article 32.
    • (2005) Statistical Applications in Genetics and Molecular Biology , vol.4 , pp. 32
    • Schäfer, J.1    Strimmer, K.2
  • 31
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman,P.T., Sherlock,G., Zhang,M.Q., Iyer,V.R., Anders,K., Eisen,M.B., Brown,P.O., Botstein,D. and Futcher,B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9 (12), 3273-3297.
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 33
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • ii227-ii236
    • Tamada,Y., Kim,S., Bannai,H., Imoto,S., Tashiro,K., Kuhara,S. and Miyano,S. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19, ii227-ii236.
    • (2003) Bioinformatics , vol.19
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 34
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
    • Tu,B.P., Kudlicki,A., Rowicka,M. and Mcknight,S.L. (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 310 (5751), 1152-1158.
    • (2005) Science , vol.310 , Issue.5751 , pp. 1152-1158
    • Tu, B.P.1    Kudlicki, A.2    Rowicka, M.3    Mcknight, S.L.4
  • 35
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • Werhli,A.V., Grzegorczyk,M. and Husmeier,D. (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics, 22 (20), 2523-2531.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.