메뉴 건너뛰기




Volumn 9, Issue 10, 2008, Pages 770-780

Modelling and analysis of gene regulatory networks

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS; BACTERIOPHAGE; BIOTECHNOLOGY; CELL CYCLE; CELL DIFFERENTIATION; ESCHERICHIA COLI; GENE EXPRESSION; GENE REGULATORY NETWORK; GENETIC ANALYSIS; INFORMATION SCIENCE; METHODOLOGY; MICHAELIS CONSTANT; NONHUMAN; PRIORITY JOURNAL; REVIEW; SIGNAL TRANSDUCTION; STOCHASTIC MODEL;

EID: 52649087274     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm2503     Document Type: Review
Times cited : (991)

References (138)
  • 2
    • 0015609281 scopus 로고
    • The logical analysis of continuous, non-linear biochemical control networks
    • Glass, L. & Kauffman, S. A. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103-129 (1973).
    • (1973) J. Theor. Biol , vol.39 , pp. 103-129
    • Glass, L.1    Kauffman, S.A.2
  • 3
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563-585 (1973).
    • (1973) J. Theor. Biol , vol.42 , pp. 563-585
    • Thomas, R.1
  • 4
    • 0036500609 scopus 로고    scopus 로고
    • A genomic regulatory network for development
    • A highly detailed reconstruction of the regulatory network that controls the first 24 hours of sea urchin embryo development
    • Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669-1678 (2002). A highly detailed reconstruction of the regulatory network that controls the first 24 hours of sea urchin embryo development.
    • (2002) Science , vol.295 , pp. 1669-1678
    • Davidson, E.H.1
  • 5
    • 38449100969 scopus 로고    scopus 로고
    • A gene regulatory network subcircuit drives a dynamic pattern of gene expression
    • Smith, J., Theodoris, C. & Davidson, E. H. A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318, 794-797 (2007).
    • (2007) Science , vol.318 , pp. 794-797
    • Smith, J.1    Theodoris, C.2    Davidson, E.H.3
  • 6
    • 52649148650 scopus 로고    scopus 로고
    • Kauffman, S. A. The Origins Of Order: Self-Organization And Selection In Evolution (Oxford University Press, Oxford, 1993). An accessible description of Kauffman's work, including the Boolean network model and its analysis.
    • Kauffman, S. A. The Origins Of Order: Self-Organization And Selection In Evolution (Oxford University Press, Oxford, 1993). An accessible description of Kauffman's work, including the Boolean network model and its analysis.
  • 7
  • 9
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the Boolean network model
    • Lähdesmäki, H., Shmulevich, I. & Yli-Harja, O. On learning gene regulatory networks under the Boolean network model. Machine Learning 52, 147-167 (2003).
    • (2003) Machine Learning , vol.52 , pp. 147-167
    • Lähdesmäki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 10
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T., Miyano, S. & Kuhara, S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp. Biocomput., 17-28 (1999).
    • (1999) Pac Symp. Biocomput , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 11
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273-3297 (1998).
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 12
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich, I., Dougherty, E. R., Kim, S. & Zhang, W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261-274 (2002).
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 13
    • 0346505356 scopus 로고    scopus 로고
    • Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks
    • Shmulevich, I., Gluhovsky, I., Hashimoto, R. F., Dougherty, E. R. & Zhan, W. Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp. Funct. Genomics 4, 601-608 (2003).
    • (2003) Comp. Funct. Genomics , vol.4 , pp. 601-608
    • Shmulevich, I.1    Gluhovsky, I.2    Hashimoto, R.F.3    Dougherty, E.R.4    Zhan, W.5
  • 16
    • 12844254468 scopus 로고    scopus 로고
    • Modeling and analysis of heterogeneous regulation in biological networks
    • Gat-Viks, I., Tanay, A. & Shamir, R. Modeling and analysis of heterogeneous regulation in biological networks. J. Comput. Biol. 11, 1034-1049 (2004).
    • (2004) J. Comput. Biol , vol.11 , pp. 1034-1049
    • Gat-Viks, I.1    Tanay, A.2    Shamir, R.3
  • 17
    • 33646012325 scopus 로고    scopus 로고
    • Gat-Viks, I., Tanay, A., Raijman, D. & Shamir, R. A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13, 165-181 (2006). An exposition of the MetaReg methodology, including the probabilistic layer.
    • Gat-Viks, I., Tanay, A., Raijman, D. & Shamir, R. A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13, 165-181 (2006). An exposition of the MetaReg methodology, including the probabilistic layer.
  • 20
    • 33847708336 scopus 로고    scopus 로고
    • Refinement and expansion of signaling pathways: The osmotic response network in yeast
    • Gat-Viks, I. & Shamir, R. Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res. 17, 358-367 (2007).
    • (2007) Genome Res , vol.17 , pp. 358-367
    • Gat-Viks, I.1    Shamir, R.2
  • 22
    • 22144460567 scopus 로고    scopus 로고
    • STEPP - search tool for exploration of Petri net paths: A new tool for Petri net-based path analysis in biochemical networks
    • Koch, I., Schueler, M. & Heiner, M. STEPP - search tool for exploration of Petri net paths: a new tool for Petri net-based path analysis in biochemical networks. In Silico Biol. 5, 129-137 (2005).
    • (2005) In Silico Biol , vol.5 , pp. 129-137
    • Koch, I.1    Schueler, M.2    Heiner, M.3
  • 24
    • 0033670135 scopus 로고    scopus 로고
    • Pathway analysis in metabolic databases via differential metabolic display (DMD)
    • Kuffner, R., Zimmer, R. & Lengauer, T. Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16, 825-836 (2000).
    • (2000) Bioinformatics , vol.16 , pp. 825-836
    • Kuffner, R.1    Zimmer, R.2    Lengauer, T.3
  • 26
    • 27544501653 scopus 로고    scopus 로고
    • Qualitative modelling of regulated metabolic pathways: Application to the tryptophan biosynthesis in E. coli
    • Simao, E., Remy, E., Thieffry, D. & Chaouiya, C. Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21, 190-196 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 190-196
    • Simao, E.1    Remy, E.2    Thieffry, D.3    Chaouiya, C.4
  • 27
    • 33847304166 scopus 로고    scopus 로고
    • Qualitatively modelling and analysing genetic regulatory networks: A Petri net approach
    • Steggles, L. J., Banks, R., Shaw, O. & Wipat, A. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23, 336-343 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 336-343
    • Steggles, L.J.1    Banks, R.2    Shaw, O.3    Wipat, A.4
  • 29
    • 52649095496 scopus 로고    scopus 로고
    • Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Francisco, 1988). An excellent source on the foundation of probabilistic inference.
    • Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Francisco, 1988). An excellent source on the foundation of probabilistic inference.
  • 30
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genet. 34, 166-176 (2003).
    • (2003) Nature Genet , vol.34 , pp. 166-176
    • Segal, E.1
  • 31
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 303, 799-805 (2004).
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 32
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • A pioneering work that describes the use of Bayesian networks for recovering regulatory interactions from experimental data
    • Friedman, N., Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601-620 (2000). A pioneering work that describes the use of Bayesian networks for recovering regulatory interactions from experimental data.
    • (2000) J. Comput. Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 34
    • 33748323125 scopus 로고    scopus 로고
    • A joint model of regulatory and metabolic networks
    • Yeang, C. H. & Vingron, M. A joint model of regulatory and metabolic networks. BMC Bioinformatics 7, 332 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 332
    • Yeang, C.H.1    Vingron, M.2
  • 35
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799-804 (2002).
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.I.1
  • 36
    • 0029781898 scopus 로고    scopus 로고
    • Physiology and metabolic fluxes of wildtype and riboflavin-producing Bacillus subtilis
    • Sauer, U. et al. Physiology and metabolic fluxes of wildtype and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62, 3687-3696 (1996).
    • (1996) Appl. Environ. Microbiol , vol.62 , pp. 3687-3696
    • Sauer, U.1
  • 37
    • 33744509689 scopus 로고    scopus 로고
    • Basic microarray analysis: Strategies for successful experiments
    • Ness, S. A. Basic microarray analysis: strategies for successful experiments. Methods Mol. Biol. 316, 13-33 (2006).
    • (2006) Methods Mol. Biol , vol.316 , pp. 13-33
    • Ness, S.A.1
  • 38
    • 33645463194 scopus 로고    scopus 로고
    • Multiplexed protein measurement: Technologies and applications of protein and antibody arrays
    • Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nature Rev. Drug Discov. 5, 310-320 (2006).
    • (2006) Nature Rev. Drug Discov , vol.5 , pp. 310-320
    • Kingsmore, S.F.1
  • 39
    • 0041864127 scopus 로고    scopus 로고
    • In vivo measurement of fluxes through metabolic pathways: The missing link in functional genomics and pharmaceutical research
    • Hellerstein, M. K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr. 23, 379-402 (2003).
    • (2003) Annu. Rev. Nutr , vol.23 , pp. 379-402
    • Hellerstein, M.K.1
  • 40
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung, M. K., Tegner, J. & Collins, J. J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl Acad. Sci. USA 99, 6163-6168 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 43
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal, M., Gatta, G. D. & di Bernardo, D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22, 815-822 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Gatta, G.D.2    di Bernardo, D.3
  • 44
    • 2442687038 scopus 로고    scopus 로고
    • A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks
    • Dasika, M. S., Gupta, A. & Maranas, C. D. A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks. Pac Symp. Biocomput, 474-485 (2004).
    • (2004) Pac Symp. Biocomput , pp. 474-485
    • Dasika, M.S.1    Gupta, A.2    Maranas, C.D.3
  • 45
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman, I., Regev, A. & Friedman, N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20, 248-256 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 248-256
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 46
    • 84889389880 scopus 로고    scopus 로고
    • Klipp, E. Systems Biology In Practice: Concepts, Implementation And Application (Wiley-VCH, Weinheim, 2005). Explains basic concepts in modelling biological networks and provides an excellent introduction for the use of ODEs.
    • Klipp, E. Systems Biology In Practice: Concepts, Implementation And Application (Wiley-VCH, Weinheim, 2005). Explains basic concepts in modelling biological networks and provides an excellent introduction for the use of ODEs.
  • 48
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim, S. Y., Imoto, S. & Miyano, S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform. 4, 228-235 (2003).
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 50
    • 34547844132 scopus 로고    scopus 로고
    • Connecting quantitative regulatory-network models to the genome
    • Pan, Y., Durfee, T., Bockhorst, J. & Craven, M. Connecting quantitative regulatory-network models to the genome. Bioinformatics 23, 367-376 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 367-376
    • Pan, Y.1    Durfee, T.2    Bockhorst, J.3    Craven, M.4
  • 51
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • Li, Z., Shaw, S. M., Yedwabnick, M. J. & Chan, C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747-754 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 747-754
    • Li, Z.1    Shaw, S.M.2    Yedwabnick, M.J.3    Chan, C.4
  • 52
    • 38749127589 scopus 로고    scopus 로고
    • Predicting expression patterns from regulatory sequence in Drosophila segmentation
    • Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535-540 (2008).
    • (2008) Nature , vol.451 , pp. 535-540
    • Segal, E.1    Raveh-Sadka, T.2    Schroeder, M.3    Unnerstall, U.4    Gaul, U.5
  • 54
    • 38949110777 scopus 로고    scopus 로고
    • A quantitative study of the division cycle of Caulobacter crescentus stalked cells
    • Li, S., Brazhnik, P., Sobral, B. & Tyson, J. J. A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput. Biol. 4, e9 (2008).
    • (2008) PLoS Comput. Biol , vol.4
    • Li, S.1    Brazhnik, P.2    Sobral, B.3    Tyson, J.J.4
  • 55
    • 0141868933 scopus 로고    scopus 로고
    • A bacterial cell-cycle regulatory network operating in time and space
    • McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874-1877 (2003).
    • (2003) Science , vol.301 , pp. 1874-1877
    • McAdams, H.H.1    Shapiro, L.2
  • 56
    • 0034671792 scopus 로고    scopus 로고
    • Global analysis of the genetic network controlling a bacterial cell cycle
    • Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144-2148 (2000).
    • (2000) Science , vol.290 , pp. 2144-2148
    • Laub, M.T.1    McAdams, H.H.2    Feldblyum, T.3    Fraser, C.M.4    Shapiro, L.5
  • 57
    • 2342476606 scopus 로고    scopus 로고
    • Oscillating global regulators control the genetic circuit driving a bacterial cell cycle
    • Holtzendorff, J. et al. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304, 983-987 (2004).
    • (2004) Science , vol.304 , pp. 983-987
    • Holtzendorff, J.1
  • 58
    • 33845870386 scopus 로고    scopus 로고
    • Regulation of the bacterial cell cycle by an integrated genetic circuit
    • Biondi, E. G. et al. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444, 899-904 (2006).
    • (2006) Nature , vol.444 , pp. 899-904
    • Biondi, E.G.1
  • 59
    • 3343020085 scopus 로고    scopus 로고
    • Integrative analysis of cell cycle control in budding yeast
    • An ODE model for the yeast cell-cycle regulatory network that is supported by phenotypes of more than 100 mutant strains
    • Chen, K. C. et al. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841-3862 (2004). An ODE model for the yeast cell-cycle regulatory network that is supported by phenotypes of more than 100 mutant strains.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 3841-3862
    • Chen, K.C.1
  • 60
    • 29544448913 scopus 로고    scopus 로고
    • Extension of a genetic network model by iterative experimentation and mathematical analysis
    • Locke, J. C. et al. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Syst. Biol. 1, 0013 (2005).
    • (2005) Mol. Syst. Biol , vol.1 , pp. 0013
    • Locke, J.C.1
  • 62
    • 33947685522 scopus 로고    scopus 로고
    • Modeling gene regulatory networks with piecewise linear differential equations
    • Gebert, J., Radde, N. & Weber, G. Modeling gene regulatory networks with piecewise linear differential equations. Eur. J. Oper. Res. 181, 1148 (2007).
    • (2007) Eur. J. Oper. Res , vol.181 , pp. 1148
    • Gebert, J.1    Radde, N.2    Weber, G.3
  • 63
    • 33646377419 scopus 로고    scopus 로고
    • Qualitative simulation of the carbon starvation response in Escherichia coli
    • Ropers, D., de Jong, H., Page, M., Schneider, D. & Geiselmann, J. Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 84, 124-152 (2006).
    • (2006) Biosystems , vol.84 , pp. 124-152
    • Ropers, D.1    de Jong, H.2    Page, M.3    Schneider, D.4    Geiselmann, J.5
  • 65
    • 0035824029 scopus 로고    scopus 로고
    • Regulation of gene expression in flux balance models of metabolism
    • Covert, M. W., Schilling, C. H. & Palsson, B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73-88 (2001).
    • (2001) J. Theor. Biol , vol.213 , pp. 73-88
    • Covert, M.W.1    Schilling, C.H.2    Palsson, B.3
  • 67
    • 84923570019 scopus 로고    scopus 로고
    • Palsson, B. Ø. Systems Biology: Properties Of Reconstructed Networks (Cambridge University Press, New York, 2006). An excellent book about the study of biological networks by one of the leading researchers in this field.
    • Palsson, B. Ø. Systems Biology: Properties Of Reconstructed Networks (Cambridge University Press, New York, 2006). An excellent book about the study of biological networks by one of the leading researchers in this field.
  • 68
    • 0036001069 scopus 로고    scopus 로고
    • Metabolic modelling of microbes: The flux-balance approach
    • Edwards, J. S., Covert, M. & Palsson, B. Metabolic modelling of microbes: the flux-balance approach. Environ. Microbiol 4, 133-140 (2002).
    • (2002) Environ. Microbiol , vol.4 , pp. 133-140
    • Edwards, J.S.1    Covert, M.2    Palsson, B.3
  • 69
    • 34547887655 scopus 로고    scopus 로고
    • Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity
    • Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl Acad. Sci. USA 104, 12663-12668 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 12663-12668
    • Beg, Q.K.1
  • 70
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte, N. C., Herrgard, M. J. & Palsson, B. O. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298-1309 (2004).
    • (2004) Genome Res , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgard, M.J.2    Palsson, B.O.3
  • 72
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).
    • (2007) Mol. Syst. Biol , vol.3 , pp. 121
    • Feist, A.M.1
  • 73
    • 0036350955 scopus 로고    scopus 로고
    • The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy
    • Papin, J. A., Price, N. D., Edwards, J. S. & Palsson, B. B. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. 215, 67-82 (2002).
    • (2002) J. Theor. Biol , vol.215 , pp. 67-82
    • Papin, J.A.1    Price, N.D.2    Edwards, J.S.3    Palsson, B.B.4
  • 74
    • 0037008673 scopus 로고    scopus 로고
    • Transcriptional regulation in constraints-based metabolic models of Escherichia coli
    • Covert, M. W. & Palsson, B. O. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058-28064 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 28058-28064
    • Covert, M.W.1    Palsson, B.O.2
  • 75
    • 2342648924 scopus 로고    scopus 로고
    • Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92-96 (2004). A large-scale model of E. coli metabolic regulation that uses quantitative metabolic flux values.
    • Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92-96 (2004). A large-scale model of E. coli metabolic regulation that uses quantitative metabolic flux values.
  • 76
    • 33646920070 scopus 로고    scopus 로고
    • Iterative reconstruction of transcriptional regulatory networks: An algorithmic approach
    • Barrett, C. L. & Palsson, B. O. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Comput. Biol. 2, e52 (2006).
    • (2006) PLoS Comput. Biol , vol.2
    • Barrett, C.L.1    Palsson, B.O.2
  • 77
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • Ideker, T. E., Thorsson, V. & Karp, R. M. Discovery of regulatory interactions through perturbation: inference and experimental design. Pac Symp. Biocomput, 305-316 (2000).
    • (2000) Pac Symp. Biocomput , pp. 305-316
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.M.3
  • 78
    • 27744521520 scopus 로고    scopus 로고
    • Validation and refinement of gene-regulatory pathways on a network of physical interactions
    • Yeang, C. H. et al. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol. 6, R62 (2005).
    • (2005) Genome Biol , vol.6
    • Yeang, C.H.1
  • 79
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgard, M. J., Lee, B. S., Portnoy, V. & Palsson, B. O. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627-635 (2006).
    • (2006) Genome Res , vol.16 , pp. 627-635
    • Herrgard, M.J.1    Lee, B.S.2    Portnoy, V.3    Palsson, B.O.4
  • 80
    • 34247183123 scopus 로고    scopus 로고
    • A genome-scale computational study of the interplay between transcriptional regulation and metabolism
    • Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007).
    • (2007) Mol. Syst. Biol , vol.3 , pp. 101
    • Shlomi, T.1    Eisenberg, Y.2    Sharan, R.3    Ruppin, E.4
  • 82
    • 0033083733 scopus 로고    scopus 로고
    • It's a noisy business! Genetic regulation at the nanomolar scale
    • McAdams, H. H. & Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65-69 (1999).
    • (1999) Trends Genet , vol.15 , pp. 65-69
    • McAdams, H.H.1    Arkin, A.2
  • 83
    • 0028328719 scopus 로고
    • Transcription of individual genes in eukaryotic cells occurs randomly and infrequently
    • Ross, I. L., Browne, C. M. & Hume, D. A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177-185 (1994).
    • (1994) Immunol. Cell Biol , vol.72 , pp. 177-185
    • Ross, I.L.1    Browne, C.M.2    Hume, D.A.3
  • 84
    • 0034161394 scopus 로고    scopus 로고
    • dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex
    • Bae, K., Lee, C., Hardin, P. E. & Edery, I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex. J. Neurosci. 20, 1746-1753 (2000).
    • (2000) J. Neurosci , vol.20 , pp. 1746-1753
    • Bae, K.1    Lee, C.2    Hardin, P.E.3    Edery, I.4
  • 85
    • 0029394767 scopus 로고
    • Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli?
    • Guptasarma, P. Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays 17, 987-997 (1995).
    • (1995) Bioessays , vol.17 , pp. 987-997
    • Guptasarma, P.1
  • 86
    • 0018782266 scopus 로고
    • Inactivation of prophage λ repressor in vivo
    • Bailone, A., Levine, A. & Devoret, R. Inactivation of prophage λ repressor in vivo. J. Mol. Biol. 131, 553-572 (1979).
    • (1979) J. Mol. Biol , vol.131 , pp. 553-572
    • Bailone, A.1    Levine, A.2    Devoret, R.3
  • 87
    • 0022429106 scopus 로고
    • The OR control system of bacteriophage λ. A physical-chemical model for gene regulation
    • Shea, M. A. & Ackers, G. K. The OR control system of bacteriophage λ. A physical-chemical model for gene regulation. J. Mol. Biol. 181, 211-230 (1985).
    • (1985) J. Mol. Biol , vol.181 , pp. 211-230
    • Shea, M.A.1    Ackers, G.K.2
  • 88
    • 28944434119 scopus 로고    scopus 로고
    • Real-time kinetics of gene activity in individual bacteria
    • Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025-1036 (2005).
    • (2005) Cell , vol.123 , pp. 1025-1036
    • Golding, I.1    Paulsson, J.2    Zawilski, S.M.3    Cox, E.C.4
  • 91
    • 33645027986 scopus 로고    scopus 로고
    • Stochastic protein expression in individual cells at the single molecule level
    • Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358-362 (2006).
    • (2006) Nature , vol.440 , pp. 358-362
    • Cai, L.1    Friedman, N.2    Xie, X.S.3
  • 92
    • 33645033645 scopus 로고    scopus 로고
    • Probing gene expression in live cells, one protein molecule at a time
    • Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600-1603 (2006).
    • (2006) Science , vol.311 , pp. 1600-1603
    • Yu, J.1    Xiao, J.2    Ren, X.3    Lao, K.4    Xie, X.S.5
  • 93
    • 34249950625 scopus 로고    scopus 로고
    • Stochastic simulation of chemical kinetics
    • Gillespie, D. T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35-55 (2007).
    • (2007) Annu. Rev. Phys. Chem , vol.58 , pp. 35-55
    • Gillespie, D.T.1
  • 94
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • McAdams and Arkin describe their modelling methodology, which uses Gillespie's SSA, and present simulation results of a simple system that exhibits protein bursts
    • McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814-819 (1997). McAdams and Arkin describe their modelling methodology, which uses Gillespie's SSA, and present simulation results of a simple system that exhibits protein bursts.
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 814-819
    • McAdams, H.H.1    Arkin, A.2
  • 95
    • 0017030517 scopus 로고
    • A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
    • Gillespie presents his SSA, the understanding of which is of major importance for computational modelling
    • Gillespie, D. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403-434 (1976). Gillespie presents his SSA, the understanding of which is of major importance for computational modelling.
    • (1976) J. Comp. Phys , vol.22 , pp. 403-434
    • Gillespie, D.1
  • 96
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • Gillespie, D. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340-2361 (1977).
    • (1977) J. Phys. Chem , vol.81 , pp. 2340-2361
    • Gillespie, D.1
  • 97
    • 3042579602 scopus 로고    scopus 로고
    • How do site-specific DNA-binding proteins find their targets?
    • Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040-3052 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. 3040-3052
    • Halford, S.E.1    Marko, J.F.2
  • 98
    • 36749081534 scopus 로고    scopus 로고
    • Crossing the nuclear envelope: Hierarchical regulation of nucleocytoplasmic transport
    • Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412-1416 (2007).
    • (2007) Science , vol.318 , pp. 1412-1416
    • Terry, L.J.1    Shows, E.B.2    Wente, S.R.3
  • 99
    • 0029952518 scopus 로고    scopus 로고
    • Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes
    • Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271-303 (1996).
    • (1996) Annu. Rev. Biochem , vol.65 , pp. 271-303
    • Rapoport, T.A.1    Jungnickel, B.2    Kutay, U.3
  • 100
    • 33745725676 scopus 로고    scopus 로고
    • Circadian rhythms and molecular noise
    • Gonze, D. & Goldbeter, A. Circadian rhythms and molecular noise. Chaos 16, 026110 (2006).
    • (2006) Chaos , vol.16 , pp. 026110
    • Gonze, D.1    Goldbeter, A.2
  • 101
    • 25644440059 scopus 로고    scopus 로고
    • Modelling of translation of human protein disulfide isomerase in Escherichia coli - a case study of gene optimisation
    • Niemitalo, O. et al. Modelling of translation of human protein disulfide isomerase in Escherichia coli - a case study of gene optimisation. J. Biotechnol. 120, 11-24 (2005).
    • (2005) J. Biotechnol , vol.120 , pp. 11-24
    • Niemitalo, O.1
  • 102
    • 36749100036 scopus 로고    scopus 로고
    • Molecular level stochastic model for competence cycles in Bacillus subtilis
    • Schultz, D., Ben Jacob, E., Onuchic, J. N. & Wolynes, P. G. Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 17582-17587 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 17582-17587
    • Schultz, D.1    Ben Jacob, E.2    Onuchic, J.N.3    Wolynes, P.G.4
  • 103
    • 22744441386 scopus 로고    scopus 로고
    • Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity
    • Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. & Schaffer, D. V. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122, 169-182 (2005).
    • (2005) Cell , vol.122 , pp. 169-182
    • Weinberger, L.S.1    Burnett, J.C.2    Toettcher, J.E.3    Arkin, A.P.4    Schaffer, D.V.5
  • 104
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells
    • A seminal work that quantitatively explains how phage λ makes a stochastic decision between lysis and lysogeny using regulatory network simulation
    • Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633-1648 (1998). A seminal work that quantitatively explains how phage λ makes a stochastic decision between lysis and lysogeny using regulatory network simulation.
    • (1998) Genetics , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 105
    • 0001144902 scopus 로고    scopus 로고
    • Efficient exact stochastic simulation of chemical systems with many species and many channels
    • Gibson, M. & Bruck, J. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876-1889 (1999).
    • (1999) J. Phys. Chem , vol.104 , pp. 1876-1889
    • Gibson, M.1    Bruck, J.2
  • 106
    • 0035933994 scopus 로고    scopus 로고
    • Approximate accelerated stochastic simulation of chemically reacting systems
    • Gillespie, D. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716-1733 (2001).
    • (2001) J. Chem. Phys , vol.115 , pp. 1716-1733
    • Gillespie, D.1
  • 107
    • 38949164415 scopus 로고    scopus 로고
    • Algorithms and software for stochastic simulation of biochemical reacting systems
    • Li, H., Cao, Y., Petzold, L. R. & Gillespie, D. T. Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56-61 (2008).
    • (2008) Biotechnol. Prog , vol.24 , pp. 56-61
    • Li, H.1    Cao, Y.2    Petzold, L.R.3    Gillespie, D.T.4
  • 109
    • 33750970021 scopus 로고    scopus 로고
    • Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network
    • Griffith, M., Courtney, T., Peccoud, J. & Sanders, W. H. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics 22, 2782-2789 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 2782-2789
    • Griffith, M.1    Courtney, T.2    Peccoud, J.3    Sanders, W.H.4
  • 110
    • 1542400036 scopus 로고    scopus 로고
    • A multialgorithm, multi-timescale method for cell simulation
    • Takahashi, K., Kaizu, K., Hu, B. & Tomita, M. A multialgorithm, multi-timescale method for cell simulation. Bioinformatics 20, 538-546 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 538-546
    • Takahashi, K.1    Kaizu, K.2    Hu, B.3    Tomita, M.4
  • 111
    • 33845369407 scopus 로고    scopus 로고
    • Ribeiro, A., Zhu, R. & Kauffman, S. A. A general modeling strategy for gene regulatory networks with stochastic dynamics. J. Comput. Biol. 13, 1630-1639 (2006).
    • Ribeiro, A., Zhu, R. & Kauffman, S. A. A general modeling strategy for gene regulatory networks with stochastic dynamics. J. Comput. Biol. 13, 1630-1639 (2006).
  • 112
    • 34248147640 scopus 로고    scopus 로고
    • Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models
    • Zhu, R., Ribeiro, A. S., Salahub, D. & Kauffman, S. A. Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models. J. Theor. Biol. 246, 725-745 (2007).
    • (2007) J. Theor. Biol , vol.246 , pp. 725-745
    • Zhu, R.1    Ribeiro, A.S.2    Salahub, D.3    Kauffman, S.A.4
  • 113
    • 0037444724 scopus 로고    scopus 로고
    • Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm
    • Rao, C. & Arkin, A. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999-5010 (2003).
    • (2003) J. Chem. Phys , vol.118 , pp. 4999-5010
    • Rao, C.1    Arkin, A.2
  • 114
    • 43049144658 scopus 로고    scopus 로고
    • A topographical map of spatiotemporal patterns of gene expression
    • Furlong, E. E. A topographical map of spatiotemporal patterns of gene expression. Dev. Cell 14, 639-640 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 639-640
    • Furlong, E.E.1
  • 115
    • 0034225547 scopus 로고    scopus 로고
    • The chemical Langevin equation
    • Gillespie, D. The chemical Langevin equation. J. Chem. Phys. 113, 297-306 (2000).
    • (2000) J. Chem. Phys , vol.113 , pp. 297-306
    • Gillespie, D.1
  • 116
    • 0037162469 scopus 로고    scopus 로고
    • Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays
    • Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697-9702 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 9697-9702
    • Bernstein, J.A.1    Khodursky, A.B.2    Lin, P.H.3    Lin-Chao, S.4    Cohen, S.N.5
  • 117
    • 18344369543 scopus 로고    scopus 로고
    • MicroRNA biogenesis: Coordinated cropping and dicing
    • Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376-385 (2005).
    • (2005) Nature Rev. Mol. Cell Biol , vol.6 , pp. 376-385
    • Kim, V.N.1
  • 118
    • 2142765527 scopus 로고    scopus 로고
    • Nuclear architecture and genome functioning in plants and animals: What can we learn from both?
    • van Driel, R. & Fransz, P. Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp. Cell Res. 296, 86-90 (2004).
    • (2004) Exp. Cell Res , vol.296 , pp. 86-90
    • van Driel, R.1    Fransz, P.2
  • 119
    • 0035834705 scopus 로고    scopus 로고
    • p53 targets chromatin structure alteration to repress α-fetoprotein gene expression
    • Ogden, S. K. et al. p53 targets chromatin structure alteration to repress α-fetoprotein gene expression. J. Biol. Chem. 276, 42057-42062 (2001).
    • (2001) J. Biol. Chem , vol.276 , pp. 42057-42062
    • Ogden, S.K.1
  • 120
    • 34547572517 scopus 로고    scopus 로고
    • Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator
    • Wong, W. W., Tsai, T. Y. & Liao, J. C. Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. Mol. Syst. Biol. 3, 130 (2007).
    • (2007) Mol. Syst. Biol , vol.3 , pp. 130
    • Wong, W.W.1    Tsai, T.Y.2    Liao, J.C.3
  • 121
    • 33645787282 scopus 로고    scopus 로고
    • Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana
    • Tetko, I. V. et al. Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana. PLoS Comput. Biol. 2, e21 (2006).
    • (2006) PLoS Comput. Biol , vol.2
    • Tetko, I.V.1
  • 122
    • 37249015899 scopus 로고    scopus 로고
    • Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
    • Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780-1782 (2007).
    • (2007) Science , vol.318 , pp. 1780-1782
    • Chapman, R.D.1
  • 123
    • 45849122499 scopus 로고    scopus 로고
    • Widespread translational inhibition by plant miRNAs and siRNAs
    • Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185-1190 (2008).
    • (2008) Science , vol.320 , pp. 1185-1190
    • Brodersen, P.1
  • 124
    • 34247527312 scopus 로고    scopus 로고
    • Identification of primary transcriptional regulation of cell cycle-regulated genes upon DNA damage
    • Zhou, T. et al. Identification of primary transcriptional regulation of cell cycle-regulated genes upon DNA damage. Cell Cycle 6, 972-981 (2007).
    • (2007) Cell Cycle , vol.6 , pp. 972-981
    • Zhou, T.1
  • 125
    • 0142027814 scopus 로고    scopus 로고
    • Structure and function of the feed-forward loop network motif
    • Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980-11985 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 11980-11985
    • Mangan, S.1    Alon, U.2
  • 126
    • 33745780500 scopus 로고    scopus 로고
    • Network motifs: Structure does not determine function
    • Ingram, P. J., Stumpf, M. P. & Stark, J. Network motifs: structure does not determine function. BMC Genomics 7, 108 (2006).
    • (2006) BMC Genomics , vol.7 , pp. 108
    • Ingram, P.J.1    Stumpf, M.P.2    Stark, J.3
  • 127
    • 49549085003 scopus 로고    scopus 로고
    • Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework
    • Remy, É., Ruet, P. & Thieffry, D. Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. (2008).
    • (2008) Adv. Appl. Math
    • Remy, E.1    Ruet, P.2    Thieffry, D.3
  • 128
    • 35448971021 scopus 로고    scopus 로고
    • Necessary conditions for multistationarity in discrete dynamical systems
    • Richard, A. & Comet, J. Necessary conditions for multistationarity in discrete dynamical systems. Dis. Appl. Math. 155, 2403-2413 (2007).
    • (2007) Dis. Appl. Math , vol.155 , pp. 2403-2413
    • Richard, A.1    Comet, J.2
  • 129
    • 34247487796 scopus 로고    scopus 로고
    • Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge
    • Stern, S., Dror, T., Stolovicki, E., Brenner, N. & Braun, E. Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge. Mol. Syst. Biol. 3, 106 (2007).
    • (2007) Mol. Syst. Biol , vol.3 , pp. 106
    • Stern, S.1    Dror, T.2    Stolovicki, E.3    Brenner, N.4    Braun, E.5
  • 130
    • 33745287724 scopus 로고    scopus 로고
    • Noise in protein expression scales with natural protein abundance
    • Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nature Genet. 38, 636-643 (2006).
    • (2006) Nature Genet , vol.38 , pp. 636-643
    • Bar-Even, A.1
  • 131
    • 0025038122 scopus 로고
    • On the dominance ratio. Reprint in Bull
    • Fisher, R. A. On the dominance ratio. Reprint in Bull. Math. Biol. 52, 297-318 (1990).
    • (1990) Math. Biol , vol.52 , pp. 297-318
    • Fisher, R.A.1
  • 134
    • 0001771498 scopus 로고
    • Evolution in mendelian populations
    • Wright, S. Evolution in mendelian populations. Genetics 16, 97-159 (1931).
    • (1931) Genetics , vol.16 , pp. 97-159
    • Wright, S.1
  • 135
    • 44949247269 scopus 로고    scopus 로고
    • Dynamic analysis of integrated signaling, metabolic, and regulatory networks
    • Min. Lee, J., Gianchandani, E. P., Eddy, J. A. & Papin, J. A. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4, e1000086 (2008).
    • (2008) PLoS Comput. Biol , vol.4
    • Min1    Lee, J.2    Gianchandani, E.P.3    Eddy, J.A.4    Papin, J.A.5
  • 136
    • 0033031386 scopus 로고    scopus 로고
    • E-CELL: Software environment for whole-cell simulation
    • Tomita, M. et al. E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72-84 (1999).
    • (1999) Bioinformatics , vol.15 , pp. 72-84
    • Tomita, M.1
  • 137
    • 0029028963 scopus 로고
    • Circuit simulation of genetic networks
    • McAdams, H. H. & Shapiro, L. Circuit simulation of genetic networks. Science 269, 650-656 (1995).
    • (1995) Science , vol.269 , pp. 650-656
    • McAdams, H.H.1    Shapiro, L.2
  • 138
    • 0036204115 scopus 로고    scopus 로고
    • Stochastic kinetic simulations of biochemical systems with Gillespie algorithm
    • Kierzek, A. M. STOCKS: Stochastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18, 470-481 (2002).
    • (2002) Bioinformatics , vol.18 , pp. 470-481
    • Kierzek, A.1    STOCKS, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.