메뉴 건너뛰기




Volumn 4, Issue , 2010, Pages

Statistical inference of the time-varying structure of gene-regulation networks

Author keywords

[No Author keywords available]

Indexed keywords

DROSOPHILA MELANOGASTER; SACCHAROMYCES CEREVISIAE;

EID: 77957930628     PISSN: None     EISSN: 17520509     Source Type: Journal    
DOI: 10.1186/1752-0509-4-130     Document Type: Article
Times cited : (160)

References (42)
  • 1
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological change
    • 10.1038/nature02782, 15372033
    • Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological change. Nature 2004, 431:308-312. 10.1038/nature02782, 15372033.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.1    Babu, M.2    Yu, H.3    Snyder, M.4    Teichmann, S.5    Gerstein, M.6
  • 2
    • 33748846417 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in bacteria: from input signals to output responses
    • 10.1016/j.mib.2006.08.007, 16942903
    • Seshasayee A, Bertone P, Fraser G, Luscombe N. Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol 2006, 9(5):511-519. 10.1016/j.mib.2006.08.007, 16942903.
    • (2006) Curr Opin Microbiol , vol.9 , Issue.5 , pp. 511-519
    • Seshasayee, A.1    Bertone, P.2    Fraser, G.3    Luscombe, N.4
  • 3
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • 10.1038/ng.167, 2573859, 18552845
    • Zhu J, B Z, Smith E, Drees B, Brem R, Kruglyak L, Bumgarner R, Schadt E. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 2008, 40(7):854-861. 10.1038/ng.167, 2573859, 18552845.
    • (2008) Nature Genetics , vol.40 , Issue.7 , pp. 854-861
    • Zhu, J.1    B, Z.2    Smith, E.3    Drees, B.4    Brem, R.5    Kruglyak, L.6    Bumgarner, R.7    Schadt, E.8
  • 4
    • 33745038921 scopus 로고    scopus 로고
    • Ranked prediction of p53 targets using hidden variable dynamic modeling
    • 10.1186/gb-2006-7-3-r25, 1557993, 16594986
    • Barenco M, Tomescu D, Brewer D, Callard R, Stark J, Hubank M. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology 2006, 7:R27. 10.1186/gb-2006-7-3-r25, 1557993, 16594986.
    • (2006) Genome Biology , vol.7
    • Barenco, M.1    Tomescu, D.2    Brewer, D.3    Callard, R.4    Stark, J.5    Hubank, M.6
  • 6
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks Using Probabilistic Graphical Models
    • 10.1126/science.1094068, 14764868
    • Friedman N. Inferring Cellular Networks Using Probabilistic Graphical Models. Science 2004, 303:799-805. 10.1126/science.1094068, 14764868.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 7
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • 10.1038/nbt0505-554, 15877071
    • Hartemink A. Reverse engineering gene regulatory networks. Nature Biotechnology 2005, 23(5):554-555. 10.1038/nbt0505-554, 15877071.
    • (2005) Nature Biotechnology , vol.23 , Issue.5 , pp. 554-555
    • Hartemink, A.1
  • 8
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • 10.1093/bioinformatics/btl391, 16844710
    • Werhli A, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006, 22(20):2523-2531. 10.1093/bioinformatics/btl391, 16844710.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.1    Grzegorczyk, M.2    Husmeier, D.3
  • 9
    • 33745508737 scopus 로고    scopus 로고
    • Estimating Time-Dependent Gene Networks from Time Series Microarray Data by Dynamic Linear Models with Markov Switching
    • Washington, DC, USA: IEEE Computer Society
    • Yoshida R, Imoto S, Higuchi T. Estimating Time-Dependent Gene Networks from Time Series Microarray Data by Dynamic Linear Models with Markov Switching. CSB '05: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference 2005, 289-298. Washington, DC, USA: IEEE Computer Society.
    • (2005) CSB '05: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference , pp. 289-298
    • Yoshida, R.1    Imoto, S.2    Higuchi, T.3
  • 10
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: tracking the cross-section of financial time series
    • Talih M, Hengartner N. Structural learning with time-varying components: tracking the cross-section of financial time series. Journal of the Royal Statistical Society Series B 2005, 67(3).
    • (2005) Journal of the Royal Statistical Society Series B , vol.67 , Issue.3
    • Talih, M.1    Hengartner, N.2
  • 11
    • 34547852213 scopus 로고    scopus 로고
    • Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
    • 10.1093/bioinformatics/btm151, 17463021
    • Fujita A, Sato J, Garay-Malpartida H, Morettin P, Sogayar M, Ferreira C. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 2007, 23(13):1623-1630. 10.1093/bioinformatics/btm151, 17463021.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1623-1630
    • Fujita, A.1    Sato, J.2    Garay-Malpartida, H.3    Morettin, P.4    Sogayar, M.5    Ferreira, C.6
  • 12
    • 34547991011 scopus 로고    scopus 로고
    • Modeling changing dependency structure in multivariate time series
    • ACM International Conference Proceeding Series
    • Xuan X, Murphy KP. Modeling changing dependency structure in multivariate time series. ICML 2007, 227:1055-1062. ACM International Conference Proceeding Series.
    • (2007) ICML , vol.227 , pp. 1055-1062
    • Xuan, X.1    Murphy, K.P.2
  • 15
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • Ahmed A, Xing EP. Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences 2009, 106(29):11878-11883.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , Issue.29 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 17
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • 10.1038/nrg2102, 17510665
    • Alon U. Network motifs: theory and experimental approaches. Nature Reviews Genetics 2007, 8(6):450-461. 10.1038/nrg2102, 17510665.
    • (2007) Nature Reviews Genetics , vol.8 , Issue.6 , pp. 450-461
    • Alon, U.1
  • 18
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • 10.1126/science.1105809, 15845847
    • Sachs K, Perez O, Pe'er D, Lauffenburger D, Nolan G. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308(5721):523-529. 10.1126/science.1105809, 15845847.
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 19
    • 84866934189 scopus 로고    scopus 로고
    • Inferring dynamic genetic networks with low order independencies
    • 10.2202/1544-6115.1294, 19222392
    • Lebre S. Inferring dynamic genetic networks with low order independencies. Statistical Applications in Genetics and Molecular Biology 2009, 8. 10.2202/1544-6115.1294, 19222392.
    • (2009) Statistical Applications in Genetics and Molecular Biology , vol.8
    • Lebre, S.1
  • 20
    • 33747150019 scopus 로고    scopus 로고
    • Complex networks and simple models in biology
    • de Silva E, Stumpf M. Complex networks and simple models in biology. J Roy Soc Interface 2005, 2:419-340.
    • (2005) J Roy Soc Interface , vol.2 , pp. 419-1340
    • de Silva, E.1    Stumpf, M.2
  • 21
    • 77956889087 scopus 로고
    • Reversible jump Markoc chain Monte Carlo computation and Bayesian model determination
    • Green P. Reversible jump Markoc chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82:711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 22
    • 0034366269 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov models through reversible jump Markov chain Monte Carlo
    • Robert C, Ryden T, Titterington D. Bayesian inference in hidden Markov models through reversible jump Markov chain Monte Carlo. Journal of the Royal Statistical Society B 2000, 62:57-75.
    • (2000) Journal of the Royal Statistical Society B , vol.62 , pp. 57-75
    • Robert, C.1    Ryden, T.2    Titterington, D.3
  • 23
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82:711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 25
    • 0033349354 scopus 로고    scopus 로고
    • Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    • Andrieu C, Doucet A. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Trans. on Signal Processing 1999, 47(10):2667-2676.
    • (1999) IEEE Trans. on Signal Processing , vol.47 , Issue.10 , pp. 2667-2676
    • Andrieu, C.1    Doucet, A.2
  • 26
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distribution
    • New York: Elsevier, Goel PK, Zellner A
    • Zellner A. On assessing prior distributions and Bayesian regression analysis with g-prior distribution. Bayesian Inference and Decision Techniques 1986, 233-243. New York: Elsevier, Goel PK, Zellner A.
    • (1986) Bayesian Inference and Decision Techniques , pp. 233-243
    • Zellner, A.1
  • 29
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology
    • 10.1038/75556, 10802651, The Gene Ontology Consortium
    • The Gene Ontology Consortium Gene ontology: tool for the unification of biology. Nature Genetics 2000, 25:25-29. 10.1038/75556, 10802651, The Gene Ontology Consortium., http://www.geneontology.org
    • (2000) Nature Genetics , vol.25 , pp. 25-29
  • 30
    • 14044253523 scopus 로고    scopus 로고
    • Early Expression of Yeast Genes Affected by Chemical Stress
    • 10.1128/MCB.25.5.1860-1868.2005, 549374, 15713640
    • Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C. Early Expression of Yeast Genes Affected by Chemical Stress. Mol Cell Biol 2005, 25(5):1860-1868. 10.1128/MCB.25.5.1860-1868.2005, 549374, 15713640.
    • (2005) Mol Cell Biol , vol.25 , Issue.5 , pp. 1860-1868
    • Lucau-Danila, A.1    Lelandais, G.2    Kozovska, Z.3    Tanty, V.4    Delaveau, T.5    Devaux, F.6    Jacq, C.7
  • 32
    • 49249094963 scopus 로고    scopus 로고
    • Structure and properties of transcriptional networks driving selenite stress response in yeasts
    • 10.1186/1471-2164-9-333, 2515152, 18627600
    • Salin H, Fardeau V, Piccini E, Lelandais G, Tanty V, Lemoine S, Jacq C, Devaux F. Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics 2008, 9:333. 10.1186/1471-2164-9-333, 2515152, 18627600., http://www.biomedcentral.com/1471-2164/9/333
    • (2008) BMC Genomics , vol.9 , pp. 333
    • Salin, H.1    Fardeau, V.2    Piccini, E.3    Lelandais, G.4    Tanty, V.5    Lemoine, S.6    Jacq, C.7    Devaux, F.8
  • 33
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • [PMID: 15961453], 10.1093/bioinformatics/bti1022, 15961453
    • Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics (Oxford, England) 2005, 21(Suppl 1):i159-168. [PMID: 15961453], 10.1093/bioinformatics/bti1022, 15961453.
    • (2005) Bioinformatics (Oxford, England) , vol.21 , Issue.SUPPL 1
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 34
    • 40649087677 scopus 로고    scopus 로고
    • Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks
    • 10.1128/EC.00256-07, 2224153, 17993571
    • Banerjee D, Lelandais G, Shukla S, Mukhopadhyay G, Jacq C, Devaux F, Prasad R. Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks. Eukaryotic Cell 2008, 7:68-77. 10.1128/EC.00256-07, 2224153, 17993571., http://ec.asm.org/cgi/content/abstract/7/1/68
    • (2008) Eukaryotic Cell , vol.7 , pp. 68-77
    • Banerjee, D.1    Lelandais, G.2    Shukla, S.3    Mukhopadhyay, G.4    Jacq, C.5    Devaux, F.6    Prasad, R.7
  • 35
    • 33947545767 scopus 로고    scopus 로고
    • The Central Role of PDR1 in the Foundation of Yeast Drug Resistance
    • 10.1074/jbc.M610197200, 17158869
    • Fardeau V, Lelandais G, Oldfield A, Salin H, Lemoine S, Garcia M, Tanty V, Crom SL, Jacq C, Devaux F. The Central Role of PDR1 in the Foundation of Yeast Drug Resistance. J Biol Chem 2007, 282(7):5063-5074. 10.1074/jbc.M610197200, 17158869., http://www.jbc.org/cgi/content/abstract/282/7/5063
    • (2007) J Biol Chem , vol.282 , Issue.7 , pp. 5063-5074
    • Fardeau, V.1    Lelandais, G.2    Oldfield, A.3    Salin, H.4    Lemoine, S.5    Garcia, M.6    Tanty, V.7    Crom, S.L.8    Jacq, C.9    Devaux, F.10
  • 36
    • 58149142997 scopus 로고    scopus 로고
    • Approximate Bayesian Computation scheme for parameter inference and model selection in dynamical systems
    • Toni T, Welch D, Strelkowa N, Ipsen D, Stumpf M. Approximate Bayesian Computation scheme for parameter inference and model selection in dynamical systems. J Roy Soc Interface 2009, 6:187-202.
    • (2009) J Roy Soc Interface , vol.6 , pp. 187-202
    • Toni, T.1    Welch, D.2    Strelkowa, N.3    Ipsen, D.4    Stumpf, M.5
  • 37
    • 35748977901 scopus 로고    scopus 로고
    • Universally sloppy parameter sensitivities in systems biology models
    • 10.1371/journal.pcbi.0030189, 2000971,2000971, 17922568
    • Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 2007, 3:1871-1878. 10.1371/journal.pcbi.0030189, 2000971,2000971, 17922568.
    • (2007) PLoS Comput Biol , vol.3 , pp. 1871-1878
    • Gutenkunst, R.N.1    Waterfall, J.J.2    Casey, F.P.3    Brown, K.S.4    Myers, C.R.5    Sethna, J.P.6
  • 38
  • 40
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge
    • 10.2202/1544-6115.1282, 17542777
    • Werhli A, Husmeier D. Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge. Statistical Applications in Genetics and Molecular Biology 2007, 6. 10.2202/1544-6115.1282, 17542777.
    • (2007) Statistical Applications in Genetics and Molecular Biology , vol.6
    • Werhli, A.1    Husmeier, D.2
  • 42
    • 77956512704 scopus 로고    scopus 로고
    • Non-stationary continuous dynamic Bayesian networks
    • Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A
    • Grzegorczyk M, Husmeier D. Non-stationary continuous dynamic Bayesian networks. Advances in Neural Information Processing Systems (NIPS) 2009, 22:682-690. Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.22 , pp. 682-690
    • Grzegorczyk, M.1    Husmeier, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.