-
1
-
-
4644326931
-
Genomic analysis of regulatory network dynamics reveals large topological change
-
10.1038/nature02782, 15372033
-
Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological change. Nature 2004, 431:308-312. 10.1038/nature02782, 15372033.
-
(2004)
Nature
, vol.431
, pp. 308-312
-
-
Luscombe, N.1
Babu, M.2
Yu, H.3
Snyder, M.4
Teichmann, S.5
Gerstein, M.6
-
2
-
-
33748846417
-
Transcriptional regulatory networks in bacteria: from input signals to output responses
-
10.1016/j.mib.2006.08.007, 16942903
-
Seshasayee A, Bertone P, Fraser G, Luscombe N. Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol 2006, 9(5):511-519. 10.1016/j.mib.2006.08.007, 16942903.
-
(2006)
Curr Opin Microbiol
, vol.9
, Issue.5
, pp. 511-519
-
-
Seshasayee, A.1
Bertone, P.2
Fraser, G.3
Luscombe, N.4
-
3
-
-
45149106353
-
Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
-
10.1038/ng.167, 2573859, 18552845
-
Zhu J, B Z, Smith E, Drees B, Brem R, Kruglyak L, Bumgarner R, Schadt E. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 2008, 40(7):854-861. 10.1038/ng.167, 2573859, 18552845.
-
(2008)
Nature Genetics
, vol.40
, Issue.7
, pp. 854-861
-
-
Zhu, J.1
B, Z.2
Smith, E.3
Drees, B.4
Brem, R.5
Kruglyak, L.6
Bumgarner, R.7
Schadt, E.8
-
4
-
-
33745038921
-
Ranked prediction of p53 targets using hidden variable dynamic modeling
-
10.1186/gb-2006-7-3-r25, 1557993, 16594986
-
Barenco M, Tomescu D, Brewer D, Callard R, Stark J, Hubank M. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology 2006, 7:R27. 10.1186/gb-2006-7-3-r25, 1557993, 16594986.
-
(2006)
Genome Biology
, vol.7
-
-
Barenco, M.1
Tomescu, D.2
Brewer, D.3
Callard, R.4
Stark, J.5
Hubank, M.6
-
5
-
-
37349099750
-
A predictive model for transcriptional control of physiology in a free living cell
-
10.1016/j.cell.2007.10.053, 18160043
-
Bonneau R, Facciotti M, Reiss D, Schmid A, Pan M, Kaur A, Thorsson V, Shannon P, Johnson M, Bare J, Longabaugh W, Vuthoori M, Whitehead K, Madar A, Suzuki L, Mori T, Chang D, Diruggiero J, Johnson C, Hood L, Baliga N. A predictive model for transcriptional control of physiology in a free living cell. Cell 2007, 131(7):1354-1365. 10.1016/j.cell.2007.10.053, 18160043.
-
(2007)
Cell
, vol.131
, Issue.7
, pp. 1354-1365
-
-
Bonneau, R.1
Facciotti, M.2
Reiss, D.3
Schmid, A.4
Pan, M.5
Kaur, A.6
Thorsson, V.7
Shannon, P.8
Johnson, M.9
Bare, J.10
Longabaugh, W.11
Vuthoori, M.12
Whitehead, K.13
Madar, A.14
Suzuki, L.15
Mori, T.16
Chang, D.17
Diruggiero, J.18
Johnson, C.19
Hood, L.20
Baliga, N.21
more..
-
6
-
-
0842288337
-
Inferring Cellular Networks Using Probabilistic Graphical Models
-
10.1126/science.1094068, 14764868
-
Friedman N. Inferring Cellular Networks Using Probabilistic Graphical Models. Science 2004, 303:799-805. 10.1126/science.1094068, 14764868.
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
7
-
-
22844441552
-
Reverse engineering gene regulatory networks
-
10.1038/nbt0505-554, 15877071
-
Hartemink A. Reverse engineering gene regulatory networks. Nature Biotechnology 2005, 23(5):554-555. 10.1038/nbt0505-554, 15877071.
-
(2005)
Nature Biotechnology
, vol.23
, Issue.5
, pp. 554-555
-
-
Hartemink, A.1
-
8
-
-
33749825955
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
-
10.1093/bioinformatics/btl391, 16844710
-
Werhli A, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006, 22(20):2523-2531. 10.1093/bioinformatics/btl391, 16844710.
-
(2006)
Bioinformatics
, vol.22
, Issue.20
, pp. 2523-2531
-
-
Werhli, A.1
Grzegorczyk, M.2
Husmeier, D.3
-
9
-
-
33745508737
-
Estimating Time-Dependent Gene Networks from Time Series Microarray Data by Dynamic Linear Models with Markov Switching
-
Washington, DC, USA: IEEE Computer Society
-
Yoshida R, Imoto S, Higuchi T. Estimating Time-Dependent Gene Networks from Time Series Microarray Data by Dynamic Linear Models with Markov Switching. CSB '05: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference 2005, 289-298. Washington, DC, USA: IEEE Computer Society.
-
(2005)
CSB '05: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference
, pp. 289-298
-
-
Yoshida, R.1
Imoto, S.2
Higuchi, T.3
-
10
-
-
20744459144
-
Structural learning with time-varying components: tracking the cross-section of financial time series
-
Talih M, Hengartner N. Structural learning with time-varying components: tracking the cross-section of financial time series. Journal of the Royal Statistical Society Series B 2005, 67(3).
-
(2005)
Journal of the Royal Statistical Society Series B
, vol.67
, Issue.3
-
-
Talih, M.1
Hengartner, N.2
-
11
-
-
34547852213
-
Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
-
10.1093/bioinformatics/btm151, 17463021
-
Fujita A, Sato J, Garay-Malpartida H, Morettin P, Sogayar M, Ferreira C. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics 2007, 23(13):1623-1630. 10.1093/bioinformatics/btm151, 17463021.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 1623-1630
-
-
Fujita, A.1
Sato, J.2
Garay-Malpartida, H.3
Morettin, P.4
Sogayar, M.5
Ferreira, C.6
-
12
-
-
34547991011
-
Modeling changing dependency structure in multivariate time series
-
ACM International Conference Proceeding Series
-
Xuan X, Murphy KP. Modeling changing dependency structure in multivariate time series. ICML 2007, 227:1055-1062. ACM International Conference Proceeding Series.
-
(2007)
ICML
, vol.227
, pp. 1055-1062
-
-
Xuan, X.1
Murphy, K.P.2
-
15
-
-
67849135609
-
Recovering time-varying networks of dependencies in social and biological studies
-
Ahmed A, Xing EP. Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences 2009, 106(29):11878-11883.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, Issue.29
, pp. 11878-11883
-
-
Ahmed, A.1
Xing, E.P.2
-
16
-
-
30544444469
-
Inference in Bayesian networks
-
10.1038/nbt0106-51, 16404397
-
Needham C, Bradford J, Bulpitt A, Westhead D. Inference in Bayesian networks. Nature Biotechnology 2006, 24:51-53. 10.1038/nbt0106-51, 16404397.
-
(2006)
Nature Biotechnology
, vol.24
, pp. 51-53
-
-
Needham, C.1
Bradford, J.2
Bulpitt, A.3
Westhead, D.4
-
17
-
-
34249079154
-
Network motifs: theory and experimental approaches
-
10.1038/nrg2102, 17510665
-
Alon U. Network motifs: theory and experimental approaches. Nature Reviews Genetics 2007, 8(6):450-461. 10.1038/nrg2102, 17510665.
-
(2007)
Nature Reviews Genetics
, vol.8
, Issue.6
, pp. 450-461
-
-
Alon, U.1
-
18
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
10.1126/science.1105809, 15845847
-
Sachs K, Perez O, Pe'er D, Lauffenburger D, Nolan G. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308(5721):523-529. 10.1126/science.1105809, 15845847.
-
(2005)
Science
, vol.308
, Issue.5721
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.4
Nolan, G.5
-
19
-
-
84866934189
-
Inferring dynamic genetic networks with low order independencies
-
10.2202/1544-6115.1294, 19222392
-
Lebre S. Inferring dynamic genetic networks with low order independencies. Statistical Applications in Genetics and Molecular Biology 2009, 8. 10.2202/1544-6115.1294, 19222392.
-
(2009)
Statistical Applications in Genetics and Molecular Biology
, vol.8
-
-
Lebre, S.1
-
20
-
-
33747150019
-
Complex networks and simple models in biology
-
de Silva E, Stumpf M. Complex networks and simple models in biology. J Roy Soc Interface 2005, 2:419-340.
-
(2005)
J Roy Soc Interface
, vol.2
, pp. 419-1340
-
-
de Silva, E.1
Stumpf, M.2
-
21
-
-
77956889087
-
Reversible jump Markoc chain Monte Carlo computation and Bayesian model determination
-
Green P. Reversible jump Markoc chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82:711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.1
-
22
-
-
0034366269
-
Bayesian inference in hidden Markov models through reversible jump Markov chain Monte Carlo
-
Robert C, Ryden T, Titterington D. Bayesian inference in hidden Markov models through reversible jump Markov chain Monte Carlo. Journal of the Royal Statistical Society B 2000, 62:57-75.
-
(2000)
Journal of the Royal Statistical Society B
, vol.62
, pp. 57-75
-
-
Robert, C.1
Ryden, T.2
Titterington, D.3
-
23
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82:711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
24
-
-
0042243482
-
Inferring spatial phylogenetic variation along nucleotide sequences: a multiple change-point model
-
Suchard M, Weiss R, Dorman K, Sinsheimer J. Inferring spatial phylogenetic variation along nucleotide sequences: a multiple change-point model. Journal of the American Statistical Assocation 2003, 98:427-437.
-
(2003)
Journal of the American Statistical Assocation
, vol.98
, pp. 427-437
-
-
Suchard, M.1
Weiss, R.2
Dorman, K.3
Sinsheimer, J.4
-
25
-
-
0033349354
-
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
-
Andrieu C, Doucet A. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Trans. on Signal Processing 1999, 47(10):2667-2676.
-
(1999)
IEEE Trans. on Signal Processing
, vol.47
, Issue.10
, pp. 2667-2676
-
-
Andrieu, C.1
Doucet, A.2
-
26
-
-
0002817906
-
On assessing prior distributions and Bayesian regression analysis with g-prior distribution
-
New York: Elsevier, Goel PK, Zellner A
-
Zellner A. On assessing prior distributions and Bayesian regression analysis with g-prior distribution. Bayesian Inference and Decision Techniques 1986, 233-243. New York: Elsevier, Goel PK, Zellner A.
-
(1986)
Bayesian Inference and Decision Techniques
, pp. 233-243
-
-
Zellner, A.1
-
28
-
-
0037183901
-
Gene expression during the life cycle of drosophila melanogaster
-
10.1126/science.1072152, 12351791
-
Arbeitman MN, Furlong F, Imam EE, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP, Davis RW, P WK. Gene expression during the life cycle of drosophila melanogaster. Science 2002, 297(5590):2270-2275. 10.1126/science.1072152, 12351791.
-
(2002)
Science
, vol.297
, Issue.5590
, pp. 2270-2275
-
-
Arbeitman, M.N.1
Furlong, F.2
Imam, E.E.3
Johnson, E.4
Null, B.H.5
Baker, B.S.6
Krasnow, M.A.7
Scott, M.P.8
Davis, R.W.9
P, W.K.10
-
29
-
-
0034069495
-
Gene ontology: tool for the unification of biology
-
10.1038/75556, 10802651, The Gene Ontology Consortium
-
The Gene Ontology Consortium Gene ontology: tool for the unification of biology. Nature Genetics 2000, 25:25-29. 10.1038/75556, 10802651, The Gene Ontology Consortium., http://www.geneontology.org
-
(2000)
Nature Genetics
, vol.25
, pp. 25-29
-
-
-
30
-
-
14044253523
-
Early Expression of Yeast Genes Affected by Chemical Stress
-
10.1128/MCB.25.5.1860-1868.2005, 549374, 15713640
-
Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C. Early Expression of Yeast Genes Affected by Chemical Stress. Mol Cell Biol 2005, 25(5):1860-1868. 10.1128/MCB.25.5.1860-1868.2005, 549374, 15713640.
-
(2005)
Mol Cell Biol
, vol.25
, Issue.5
, pp. 1860-1868
-
-
Lucau-Danila, A.1
Lelandais, G.2
Kozovska, Z.3
Tanty, V.4
Delaveau, T.5
Devaux, F.6
Jacq, C.7
-
31
-
-
38549135468
-
YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae
-
2238916, 18032429
-
Monteiro PT, Mendes ND, Teixeira MC, d'Orey S, Tenreiro S, Mira NP, Pais H, Francisco AP, Carvalho AM, Lourenco AB, Sa-Correia I, Oliveira AL, Freitas AT. YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucl Acids Res 2008, 36(suppl_1):D132-136. 2238916, 18032429., http://nar.oxfordjournals.org/cgi/content/abstract/36/suppl_1/D132
-
(2008)
Nucl Acids Res
, vol.36
, Issue.SUPPL 1
-
-
Monteiro, P.T.1
Mendes, N.D.2
Teixeira, M.C.3
d'Orey, S.4
Tenreiro, S.5
Mira, N.P.6
Pais, H.7
Francisco, A.P.8
Carvalho, A.M.9
Lourenco, A.B.10
Sa-Correia, I.11
Oliveira, A.L.12
Freitas, A.T.13
-
32
-
-
49249094963
-
Structure and properties of transcriptional networks driving selenite stress response in yeasts
-
10.1186/1471-2164-9-333, 2515152, 18627600
-
Salin H, Fardeau V, Piccini E, Lelandais G, Tanty V, Lemoine S, Jacq C, Devaux F. Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics 2008, 9:333. 10.1186/1471-2164-9-333, 2515152, 18627600., http://www.biomedcentral.com/1471-2164/9/333
-
(2008)
BMC Genomics
, vol.9
, pp. 333
-
-
Salin, H.1
Fardeau, V.2
Piccini, E.3
Lelandais, G.4
Tanty, V.5
Lemoine, S.6
Jacq, C.7
Devaux, F.8
-
33
-
-
28644452470
-
Clustering short time series gene expression data
-
[PMID: 15961453], 10.1093/bioinformatics/bti1022, 15961453
-
Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics (Oxford, England) 2005, 21(Suppl 1):i159-168. [PMID: 15961453], 10.1093/bioinformatics/bti1022, 15961453.
-
(2005)
Bioinformatics (Oxford, England)
, vol.21
, Issue.SUPPL 1
-
-
Ernst, J.1
Nau, G.J.2
Bar-Joseph, Z.3
-
34
-
-
40649087677
-
Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks
-
10.1128/EC.00256-07, 2224153, 17993571
-
Banerjee D, Lelandais G, Shukla S, Mukhopadhyay G, Jacq C, Devaux F, Prasad R. Responses of Pathogenic and Nonpathogenic Yeast Species to Steroids Reveal the Functioning and Evolution of Multidrug Resistance Transcriptional Networks. Eukaryotic Cell 2008, 7:68-77. 10.1128/EC.00256-07, 2224153, 17993571., http://ec.asm.org/cgi/content/abstract/7/1/68
-
(2008)
Eukaryotic Cell
, vol.7
, pp. 68-77
-
-
Banerjee, D.1
Lelandais, G.2
Shukla, S.3
Mukhopadhyay, G.4
Jacq, C.5
Devaux, F.6
Prasad, R.7
-
35
-
-
33947545767
-
The Central Role of PDR1 in the Foundation of Yeast Drug Resistance
-
10.1074/jbc.M610197200, 17158869
-
Fardeau V, Lelandais G, Oldfield A, Salin H, Lemoine S, Garcia M, Tanty V, Crom SL, Jacq C, Devaux F. The Central Role of PDR1 in the Foundation of Yeast Drug Resistance. J Biol Chem 2007, 282(7):5063-5074. 10.1074/jbc.M610197200, 17158869., http://www.jbc.org/cgi/content/abstract/282/7/5063
-
(2007)
J Biol Chem
, vol.282
, Issue.7
, pp. 5063-5074
-
-
Fardeau, V.1
Lelandais, G.2
Oldfield, A.3
Salin, H.4
Lemoine, S.5
Garcia, M.6
Tanty, V.7
Crom, S.L.8
Jacq, C.9
Devaux, F.10
-
36
-
-
58149142997
-
Approximate Bayesian Computation scheme for parameter inference and model selection in dynamical systems
-
Toni T, Welch D, Strelkowa N, Ipsen D, Stumpf M. Approximate Bayesian Computation scheme for parameter inference and model selection in dynamical systems. J Roy Soc Interface 2009, 6:187-202.
-
(2009)
J Roy Soc Interface
, vol.6
, pp. 187-202
-
-
Toni, T.1
Welch, D.2
Strelkowa, N.3
Ipsen, D.4
Stumpf, M.5
-
37
-
-
35748977901
-
Universally sloppy parameter sensitivities in systems biology models
-
10.1371/journal.pcbi.0030189, 2000971,2000971, 17922568
-
Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 2007, 3:1871-1878. 10.1371/journal.pcbi.0030189, 2000971,2000971, 17922568.
-
(2007)
PLoS Comput Biol
, vol.3
, pp. 1871-1878
-
-
Gutenkunst, R.N.1
Waterfall, J.J.2
Casey, F.P.3
Brown, K.S.4
Myers, C.R.5
Sethna, J.P.6
-
38
-
-
36248970060
-
Extracting falsifiable predictions from sloppy models
-
10.1196/annals.1407.003, 17925353
-
Gutenkunst RN, Casey FP, Waterfall JJ, Myers CR, Sethna JP. Extracting falsifiable predictions from sloppy models. Ann N Y Acad Sci 2007, 1115:203-11. 10.1196/annals.1407.003, 17925353.
-
(2007)
Ann N Y Acad Sci
, vol.1115
, pp. 203-211
-
-
Gutenkunst, R.N.1
Casey, F.P.2
Waterfall, J.J.3
Myers, C.R.4
Sethna, J.P.5
-
40
-
-
34249774309
-
Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge
-
10.2202/1544-6115.1282, 17542777
-
Werhli A, Husmeier D. Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge. Statistical Applications in Genetics and Molecular Biology 2007, 6. 10.2202/1544-6115.1282, 17542777.
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, vol.6
-
-
Werhli, A.1
Husmeier, D.2
-
42
-
-
77956512704
-
Non-stationary continuous dynamic Bayesian networks
-
Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A
-
Grzegorczyk M, Husmeier D. Non-stationary continuous dynamic Bayesian networks. Advances in Neural Information Processing Systems (NIPS) 2009, 22:682-690. Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, vol.22
, pp. 682-690
-
-
Grzegorczyk, M.1
Husmeier, D.2
|