메뉴 건너뛰기




Volumn 24, Issue 4, 2014, Pages 287-309

Pyridine nucleotides in regulation of cell death and survival by redox and Non-redox reactions

Author keywords

Energy metabolism; Oxidative stress; Poly(ADP ribose) polymerase; Pyridine nucleotide; Sirtuin; Sphingolipid

Indexed keywords

NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE 1; PYRIDINE NUCLEOTIDE; SIRTUIN 1; SPHINGOLIPID; NUCLEOTIDE; PYRIDINE DERIVATIVE;

EID: 84908217656     PISSN: 10454403     EISSN: None     Source Type: Journal    
DOI: 10.1615/CritRevEukaryotGeneExpr.2014011828     Document Type: Article
Times cited : (12)

References (192)
  • 1
    • 79960046164 scopus 로고    scopus 로고
    • Cellular stress response pathways and ageing: Intricate molecular relationships
    • Kourtis N, Tavernarakis N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 2011;30:2520–31.
    • (2011) EMBO J , vol.30 , pp. 2520-2531
    • Kourtis, N.1    Tavernarakis, N.2
  • 2
    • 34249007019 scopus 로고
    • A syndrome produced by diverse nocuous agents
    • Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32.
    • (1936) Nature , vol.138 , pp. 32
    • Selye, H.1
  • 3
    • 36749010860 scopus 로고    scopus 로고
    • Biochemistry of oxidative stress
    • Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.
    • (2007) Biochem Soc Trans , vol.35 , pp. 1147-1150
    • Halliwell, B.1
  • 4
    • 0034626735 scopus 로고    scopus 로고
    • Oxidants, oxidative stress and the biology of ageing
    • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247.
    • (2000) Nature , vol.408 , pp. 239-247
    • Finkel, T.1    Holbrook, N.J.2
  • 7
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: Metabolic reprogram-ming fuels cell growth and proliferation
    • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogram-ming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.
    • (2008) Cell Metab , vol.7 , pp. 11-20
    • Deberardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 8
    • 52649107626 scopus 로고    scopus 로고
    • Cancer cell metabolism: Warburg and beyond
    • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7.
    • (2008) Cell , vol.134 , pp. 703-707
    • Hsu, P.P.1    Sabatini, D.2
  • 9
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 10
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 12
    • 82755165163 scopus 로고    scopus 로고
    • Cell biology. Warburg effect and redox balance
    • Hamanaka RB, Chandel NS. Cell biology. Warburg effect and redox balance. Science. 2011;334:1219–20.
    • (2011) Science , vol.334 , pp. 1219-1220
    • Hamanaka, R.B.1    Chandel, N.2
  • 13
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 14
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 15
    • 33744783432 scopus 로고    scopus 로고
    • Attenuation of LDH-A expression uncovers a link between glycolysis, mito-chondrial physiology, and tumor maintenance
    • Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mito-chondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.
    • (2006) Cancer Cell , vol.9 , pp. 425-434
    • Fantin, V.R.1    St-Pierre, J.2    Leder, P.3
  • 21
    • 84865525580 scopus 로고    scopus 로고
    • Regulation of cell survival and death by pyridine nucleotides
    • Oka S, Hsu CP, Sadoshima J. Regulation of cell survival and death by pyridine nucleotides. Circ Res. 2012;111:611–27.
    • (2012) Circ Res , vol.111 , pp. 611-627
    • Oka, S.1    Hsu, C.P.2    Sadoshima, J.3
  • 22
    • 0029684208 scopus 로고    scopus 로고
    • Structure and function of eukaryotic mono-ADPribosyltransferases
    • Okazaki IJ, Moss J. Structure and function of eukaryotic mono-ADPribosyltransferases. Rev Physiol Biochem Pharmacol. 1996;129:51–104.
    • (1996) Rev Physiol Biochem Pharmacol , vol.129 , pp. 51-104
    • Okazaki, I.J.1    Moss, J.2
  • 23
    • 38449088040 scopus 로고    scopus 로고
    • The diverse biological roles of mammalian PARPs, a small but powerful family of poly-ADP-ribose polymerases
    • Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPs, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.
    • (2008) Front Biosci , vol.13 , pp. 3046-3082
    • Hassa, P.O.1    Hottiger, M.O.2
  • 24
    • 77953291365 scopus 로고    scopus 로고
    • Sirtuin chemical mechanisms
    • Sauve AA. Sirtuin chemical mechanisms. Biochim Bio-phys Acta. 2010;1804:1591–603.
    • (2010) Biochim Bio-phys Acta , vol.1804 , pp. 1591-1603
    • Sauve, A.A.1
  • 25
    • 84863009089 scopus 로고    scopus 로고
    • The control of the balance between ceramide and sphingosine-1-phosphate by sphin-gosine kinase: Oxidative stress and the seesaw of cell survival and death
    • Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphin-gosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B. 2012;163:26–36.
    • (2012) Comp Biochem Physiol B , vol.163 , pp. 26-36
    • Van Brocklyn, J.R.1    Williams, J.B.2
  • 26
    • 0019223613 scopus 로고
    • Dietary tryptophan level and the enzymes of tryptophan NAD pathway
    • Satyanarayana U, Narasinga Rao BS. Dietary tryptophan level and the enzymes of tryptophan NAD pathway. Br J Nutr. 1980;43:107–13.
    • (1980) Br J Nutr , vol.43 , pp. 107-113
    • Satyanarayana, U.1    Narasinga Rao, B.S.2
  • 27
    • 0036856578 scopus 로고    scopus 로고
    • Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis
    • Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225–34.
    • (2002) Eur J Immunol , vol.32 , pp. 3225-3234
    • Rongvaux, A.1    Shea, R.J.2    Mulks, M.H.3    Gigot, D.4    Urbain, J.5    Leo, O.6    Andris, F.7
  • 28
    • 10944270187 scopus 로고    scopus 로고
    • The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltrans-ferase regulates Sir2 activity in mammalian cells
    • Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltrans-ferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279:50754–63.
    • (2004) J Biol Chem , vol.279 , pp. 50754-50763
    • Revollo, J.R.1    Grimm, A.A.2    Imai, S.3
  • 29
    • 70449212074 scopus 로고
    • Handler P. Biosynthesis of diphosphopyridine nucleotide: I. Identifcation of intermediates
    • Preiss J, Handler P. Biosynthesis of diphosphopyridine nucleotide: I. Identifcation of intermediates. J Biol Chem. 1958;233:488–92.
    • (1958) J Biol Chem , vol.233 , pp. 488-492
    • Preiss, J.1
  • 30
    • 70449213670 scopus 로고
    • Handler P. Biosynthesis of diphosphopyri-dine nucleotide: II. enzymatic aspects
    • Preiss J, Handler P. Biosynthesis of diphosphopyri-dine nucleotide: II. enzymatic aspects. J Biol Chem. 1958;233:493–500.
    • (1958) J Biol Chem , vol.233 , pp. 493-500
    • Preiss, J.1
  • 31
    • 2342550554 scopus 로고    scopus 로고
    • Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
    • Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117:495–502.
    • (2004) Cell , vol.117 , pp. 495-502
    • Bieganowski, P.1    Brenner, C.2
  • 32
    • 79957549799 scopus 로고    scopus 로고
    • Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation
    • Nikiforov A, Dolle C, Niere M, Ziegler M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem. 2011;286:21767–78.
    • (2011) J Biol Chem , vol.286 , pp. 21767-21778
    • Nikiforov, A.1    Dolle, C.2    Niere, M.3    Ziegler, M.4
  • 34
    • 0004856494 scopus 로고
    • Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats
    • Shibata K, Hayakawa T, Iwai K. Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats. Agric Biol Chem. 1986;50:3037–41.
    • (1986) Agric Biol Chem , vol.50 , pp. 3037-3041
    • Shibata, K.1    Hayakawa, T.2    Iwai, K.3
  • 35
    • 34247500849 scopus 로고    scopus 로고
    • Initial-rate kinetics of human NMN adenylyltransferases: Substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis
    • Sorci L, Cimadamore F, Scotti S, Petrelli R, Cappellacci L, Franchetti P, Orsomando G, Magni G. Initial-rate kinetics of human NMN adenylyltransferases: substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis. Biochemistry. 2007;46:4912–22.
    • (2007) Biochemistry , vol.46 , pp. 4912-4922
    • Sorci, L.1    Cimadamore, F.2    Scotti, S.3    Petrelli, R.4    Cappellacci, L.5    Franchetti, P.6    Orsomando, G.7    Magni, G.8
  • 36
    • 0037066769 scopus 로고    scopus 로고
    • Structure of human nicotinamide/nicotinic acid mononucleotide ad-enylyltransferase. Basis for the dual substrate specifcity and activation of the oncolytic agent tiazofurin
    • Zhou T, Kurnasov O, Tomchick DR, Binns DD, Grishin NV, Marquez VE, Osterman AL; Zhang H. Structure of human nicotinamide/nicotinic acid mononucleotide ad-enylyltransferase. Basis for the dual substrate specifcity and activation of the oncolytic agent tiazofurin. J Biol Chem. 2002;277:13148–54.
    • (2002) J Biol Chem , vol.277 , pp. 13148-13154
    • Zhou, T.1    Kurnasov, O.2    Tomchick, D.R.3    Binns, D.D.4    Grishin, N.V.5    Marquez, V.E.6    Osterman, A.L.7    Zhang, H.8
  • 37
    • 27744501798 scopus 로고    scopus 로고
    • Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyl-transferase isoforms
    • Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyl-transferase isoforms. J Biol Chem. 2005;280:36334–41.
    • (2005) J Biol Chem , vol.280 , pp. 36334-36341
    • Berger, F.1    Lau, C.2    Dahlmann, M.3    Ziegler, M.4
  • 38
    • 77953314024 scopus 로고    scopus 로고
    • Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyl-transferases
    • Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyl-transferases. J Biol Chem. 2010;285:18868–76.
    • (2010) J Biol Chem , vol.285 , pp. 18868-18876
    • Lau, C.1    Dölle, C.2    Gossmann, T.I.3    Agledal, L.4    Niere, M.5    Ziegler, M.6
  • 39
    • 84885396877 scopus 로고    scopus 로고
    • Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria
    • Felici R, Lapucci A, Ramazzotti M, Chiarugi A. Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria. PLoS One. 2013;8:e76938.
    • (2013) PLoS One , vol.8
    • Felici, R.1    Lapucci, A.2    Ramazzotti, M.3    Chiarugi, A.4
  • 42
    • 84886717428 scopus 로고    scopus 로고
    • Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
    • Cantó C, Sauve AA, Bai P. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med. 2013;34:1168–201.
    • (2013) Mol Aspects Med , vol.34 , pp. 1168-1201
    • Cantó, C.1    Sauve, A.A.2    Bai, P.3
  • 43
    • 0041589716 scopus 로고    scopus 로고
    • Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?
    • Zhang J. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays. 2003;25:808–14.
    • (2003) Bioessays , vol.25 , pp. 808-814
    • Zhang, J.1
  • 45
    • 0027441894 scopus 로고
    • Poly(ADP-ri-bose) polymerase is a catalytic dimer and the automodif-cation reaction is intermolecular
    • Mendoza-Alvarez H, Alvarez-Gonzalez R. Poly(ADP-ri-bose) polymerase is a catalytic dimer and the automodif-cation reaction is intermolecular. J Biol Chem. 1993;268: 22575–80.
    • (1993) J Biol Chem , vol.268 , pp. 22575-22580
    • Mendoza-Alvarez, H.1    Alvarez-Gonzalez, R.2
  • 47
    • 77953631698 scopus 로고    scopus 로고
    • The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways
    • Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010;31:194–223.
    • (2010) Endocr Rev , vol.31 , pp. 194-223
    • Houtkooper, R.H.1    Canto, C.2    Wanders, R.J.3    Auwerx, J.4
  • 49
    • 77953290752 scopus 로고    scopus 로고
    • SIRT1-dependent regulation of chromatin and transcription: Linking NAD+ metabolism and signaling to the control of cellular functions
    • Zhang T, Kraus WL. SIRT1-dependent regulation of chromatin and transcription: Linking NAD+ metabolism and signaling to the control of cellular functions. Bio-chim Biophys Acta. 2010;1804:1666–75.
    • (2010) Bio-chim Biophys Acta , vol.1804 , pp. 1666-1675
    • Zhang, T.1    Kraus, W.L.2
  • 51
    • 34247278118 scopus 로고    scopus 로고
    • Regulation of poly(ADP-ribose)polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1
    • Berger F, Lau C, Ziegler M. Regulation of poly(ADP-ribose)polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc Natl Acad Sci U S A. 2007;104:3765–70.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 3765-3770
    • Berger, F.1    Lau, C.2    Ziegler, M.3
  • 52
    • 84859506559 scopus 로고    scopus 로고
    • Regulation of poly(ADP-ribose) polymerase-1-depen-dent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase
    • Zhang T, Berrocal JG, Yao J, DuMond ME, Krishna-kumar R, Ruhl DD, Ryu KW, Gamble MJ, Kraus WL. Regulation of poly(ADP-ribose) polymerase-1-depen-dent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J Biol Chem. 2012;287:12405–16.
    • (2012) J Biol Chem , vol.287 , pp. 12405-12416
    • Zhang, T.1    Berrocal, J.G.2    Yao, J.3    Dumond, M.E.4    Krishna-Kumar, R.5    Ruhl, D.D.6    Ryu, K.W.7    Gamble, M.J.8    Kraus, W.L.9
  • 54
    • 0346435109 scopus 로고    scopus 로고
    • Mechanism of nicotinamide inhibition and transglycosi-dation by Sir2 histone/protein deacetylases
    • Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. Mechanism of nicotinamide inhibition and transglycosi-dation by Sir2 histone/protein deacetylases. J Biol Chem. 2003;278:50985-50998.
    • (2003) J Biol Chem , vol.278 , pp. 50985-50998
    • Jackson, M.D.1    Schmidt, M.T.2    Oppenheimer, N.J.3    Denu, J.M.4
  • 55
    • 0026601666 scopus 로고
    • Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase
    • Benasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem. 1992;267:1569–75.
    • (1992) J Biol Chem , vol.267 , pp. 1569-1575
    • Benasik, M.1    Komura, H.2    Shimoyama, M.3    Ueda, K.4
  • 56
    • 0034023238 scopus 로고    scopus 로고
    • New functions of a long-known molecule. Emerging roles of NAD in cellular signaling
    • Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Bio-chem. 2000;267:1550–64.
    • (2000) Eur J Bio-chem , vol.267 , pp. 1550-1564
    • Ziegler, M.1
  • 57
    • 33847711060 scopus 로고    scopus 로고
    • The power to reduce: pyridine nucleotides-small molecules with a multitude of functions
    • Pollak N, Dölle C, Ziegler M. The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochem J. 2007;402:205-218.
    • (2007) Biochem J , vol.402 , pp. 205-218
    • Pollak, N.1    Dölle, C.2    Ziegler, M.3
  • 58
    • 36348971843 scopus 로고    scopus 로고
    • NAD kinase levels control the NADPH concentration in human cells
    • Pollak N, Niere M, Ziegler M. NAD kinase levels control the NADPH concentration in human cells. J Biol Chem. 2007;282:33562–71.
    • (2007) J Biol Chem , vol.282 , pp. 33562-33571
    • Pollak, N.1    Niere, M.2    Ziegler, M.3
  • 59
    • 84871820491 scopus 로고    scopus 로고
    • Identification and characterization of a human mitochondrial NAD kinase
    • Ohashi K, Kawai S, Murata K. Identification and characterization of a human mitochondrial NAD kinase. Nat Commun. 2012;3:1248.
    • (2012) Nat Commun , vol.3 , pp. 1248
    • Ohashi, K.1    Kawai, S.2    Murata, K.3
  • 60
  • 61
    • 0037376665 scopus 로고    scopus 로고
    • Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease
    • Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol. 2003;15:241–6.
    • (2003) Curr Opin Cell Biol , vol.15 , pp. 241-246
    • Lin, S.J.1    Guarente, L.2
  • 62
    • 37549068090 scopus 로고    scopus 로고
    • NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences
    • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10:179–206.
    • (2008) Antioxid Redox Signal , vol.10 , pp. 179-206
    • Ying, W.1
  • 63
    • 52049117617 scopus 로고    scopus 로고
    • Enzy-mology of mammalian NAD metabolism in health and disease
    • Magni G, Orsomando G, Raffelli N, Ruggieri S. Enzy-mology of mammalian NAD metabolism in health and disease. Front Biosci. 2008;13:6135–54.
    • (2008) Front Biosci , vol.13 , pp. 6135-6154
    • Magni, G.1    Orsomando, G.2    Raffelli, N.3    Ruggieri, S.4
  • 64
    • 0014082605 scopus 로고
    • The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver
    • Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967;103:514–27.
    • (1967) Biochem J , vol.103 , pp. 514-527
    • Williamson, D.H.1    Lund, P.2    Krebs, H.A.3
  • 65
    • 0014621744 scopus 로고
    • The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver
    • Veech RL, Eggleston LV, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969;115:609–19.
    • (1969) Biochem J , vol.115 , pp. 609-619
    • Veech, R.L.1    Eggleston, L.V.2    Krebs, H.A.3
  • 66
    • 33745854833 scopus 로고    scopus 로고
    • Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis
    • Magni G, Orsomando G, Raffaelli N. Structural and functional properties of NAD kinase, a key enzyme in NADP biosynthesis. Mini Rev Med Chem. 2006;6:739–46.
    • (2006) Mini Rev Med Chem , vol.6 , pp. 739-746
    • Magni, G.1    Orsomando, G.2    Raffaelli, N.3
  • 68
    • 0021107546 scopus 로고
    • The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat
    • Plaut GW, Cook M, Aogaichi T. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Biochim Biophys Acta. 1983;760:300–8.
    • (1983) Biochim Biophys Acta , vol.760 , pp. 300-308
    • Plaut, G.W.1    Cook, M.2    Aogaichi, T.3
  • 69
    • 7944237790 scopus 로고    scopus 로고
    • Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by γ -rays
    • Lee SH, Jo SH, Lee SM, Koh HJ, Song H, Park JW, Lee WH, Huh TL. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by γ -rays. Int J Radiat Biol. 2004;80:635–42.
    • (2004) Int J Radiat Biol , vol.80 , pp. 635-642
    • Lee, S.H.1    Jo, S.H.2    Lee, S.M.3    Koh, H.J.4    Song, H.5    Park, J.W.6    Lee, W.H.7    Huh, T.L.8
  • 72
    • 32444448861 scopus 로고    scopus 로고
    • Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family
    • Vasiliou V, Nebert DW. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics. 2005;2:138–43.
    • (2005) Hum Genomics , vol.2 , pp. 138-143
    • Vasiliou, V.1    Nebert, D.W.2
  • 73
    • 0032873333 scopus 로고    scopus 로고
    • Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines
    • Sládek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr Pharm Des. 1999;5:607-625.
    • (1999) Curr Pharm Des , vol.5 , pp. 607-625
    • Sládek, N.E.1
  • 75
    • 0015217697 scopus 로고
    • Bovine heart malic enzyme. I. Isolation and partial purifcation of a cytoplasmic and a mitochondrial enzyme
    • Frenkel R. Bovine heart malic enzyme. I. Isolation and partial purifcation of a cytoplasmic and a mitochondrial enzyme. J Biol Chem. 1971;246:3069–74.
    • (1971) J Biol Chem , vol.246 , pp. 3069-3074
    • Frenkel, R.1
  • 76
    • 0028912532 scopus 로고
    • Purification and properties of cytosolic and mitochondrial malic enzyme isolated from human brain
    • Bukato G, Kochan Z, Swierczynski J. Purification and properties of cytosolic and mitochondrial malic enzyme isolated from human brain. Int J Biochem Cell Biol. 1995;27:47–54.
    • (1995) Int J Biochem Cell Biol , vol.27 , pp. 47-54
    • Bukato, G.1    Kochan, Z.2    Swierczynski, J.3
  • 77
    • 33745635338 scopus 로고    scopus 로고
    • Mitochondrial NADPH, transhydrogenase and disease
    • Rydström J. Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta. 2006;1757:721–6.
    • (2006) Biochim Biophys Acta , vol.1757 , pp. 721-726
    • Rydström, J.1
  • 78
    • 33745209498 scopus 로고    scopus 로고
    • NADPH oxidases: New kids on the block
    • Geiszt M. NADPH oxidases: new kids on the block. Car-diovasc Res. 2006;71:289–99.
    • (2006) Car-diovasc Res , vol.71 , pp. 289-299
    • Geiszt, M.1
  • 79
    • 0034013476 scopus 로고    scopus 로고
    • The role of de novo ceramide synthesis in chemotherapy-induced apoptosis
    • Perry DK. The role of de novo ceramide synthesis in chemotherapy-induced apoptosis. Ann NY Acad Sci. 2000;905:91–6.
    • (2000) Ann NY Acad Sci , vol.905 , pp. 91-96
    • Perry, D.K.1
  • 81
    • 84855918312 scopus 로고    scopus 로고
    • Ceramide synthases at the centre of sphingolipid metabolism and biology
    • Mullen TD, Hannun YA, Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J. 2012;441:789–802.
    • (2012) Biochem J , vol.441 , pp. 789-802
    • Mullen, T.D.1    Hannun, Y.A.2    Obeid, L.M.3
  • 84
    • 0019258425 scopus 로고
    • Ceramide synthesis in rat brain: Characterization of the synthesis requiring pyridine nu-cleotide
    • Singh I, Kishimoto Y. Ceramide synthesis in rat brain: Characterization of the synthesis requiring pyridine nu-cleotide. Arch Biochem Biophys. 1980;220:93–100.
    • (1980) Arch Biochem Biophys , vol.220 , pp. 93-100
    • Singh, I.1    Kishimoto, Y.2
  • 85
    • 33646724707 scopus 로고    scopus 로고
    • Evidence that feedback inhibition of NAD kinase controls responses to oxi-dative stress
    • Grose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxi-dative stress. Proc Natl Acad Sci U S A. 2006;103:7601–6.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 7601-7606
    • Grose, J.H.1    Joss, L.2    Velick, S.F.3    Roth, J.R.4
  • 86
    • 0033801107 scopus 로고    scopus 로고
    • Nico-tinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve epidermal permeability barrier
    • Tanno O, Ota Y, Kitamura N, Katsube T, Inoue S. Nico-tinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve epidermal permeability barrier. Br J Dermatol. 2000;143:524–31.
    • (2000) Br J Dermatol , vol.143 , pp. 524-531
    • Tanno, O.1    Ota, Y.2    Kitamura, N.3    Katsube, T.4    Inoue, S.5
  • 88
    • 77955493271 scopus 로고    scopus 로고
    • Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells
    • De Luca T, Morre DM, Morre DJ. Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells. J Cell Biochem. 2010;110:1504–11.
    • (2010) J Cell Biochem , vol.110 , pp. 1504-1511
    • De Luca, T.1    Morre, D.M.2    Morre, D.J.3
  • 89
    • 0031661695 scopus 로고    scopus 로고
    • Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways
    • Gillard BK, Clement RG, Marcus DM. Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways. Glycobiology. 1998;8:885–90.
    • (1998) Glycobiology , vol.8 , pp. 885-890
    • Gillard, B.K.1    Clement, R.G.2    Marcus, D.M.3
  • 90
    • 38549152194 scopus 로고    scopus 로고
    • Principles of bioactive lipid signalling: Lessons from sphingolipids
    • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 139-150
    • Hannun, Y.A.1    Obeid, L.M.2
  • 92
    • 0032211769 scopus 로고    scopus 로고
    • Signal transduction of stress via ceramide
    • Mathias S, Peña LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J. 1998;335:465–80.
    • (1998) Biochem J , vol.335 , pp. 465-480
    • Mathias, S.1    Peña, L.A.2    Kolesnick, R.N.3
  • 93
    • 0032079524 scopus 로고    scopus 로고
    • Glutathione regulation of neutral sphingo-myelinase in tumor necrosis factor-alpha-induced cell death
    • Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA. Glutathione regulation of neutral sphingo-myelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998;273:11313–20.
    • (1998) J Biol Chem , vol.273 , pp. 11313-11320
    • Liu, B.1    Andrieu-Abadie, N.2    Levade, T.3    Zhang, P.4    Obeid, L.M.5    Hannun, Y.A.6
  • 94
    • 1542358155 scopus 로고    scopus 로고
    • Ceramide synthesis and metabolism as a target for cancer therapy
    • Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 2004;206:169–80.
    • (2004) Cancer Lett , vol.206 , pp. 169-180
    • Reynolds, C.P.1    Maurer, B.J.2    Kolesnick, R.N.3
  • 95
    • 60549083256 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism by hypoxia-inducible factor 1
    • Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 2009;19:12–6.
    • (2009) Semin Cancer Biol , vol.19 , pp. 12-16
    • Semenza, G.L.1
  • 98
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
    • Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38:864–78.
    • (2010) Mol Cell , vol.38 , pp. 864-878
    • Lim, J.H.1    Lee, Y.M.2    Chun, Y.S.3    Chen, J.4    Kim, J.E.5    Park, J.W.6
  • 101
    • 66749129781 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacety-lase sirtuin 1
    • Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacety-lase sirtuin 1. Science. 2009;324:1289–93.
    • (2009) Science , vol.324 , pp. 1289-1293
    • Dioum, E.M.1    Chen, R.2    Alexander, M.S.3    Zhang, Q.4    Hogg, R.T.5    Gerard, R.D.6    Garcia, J.A.7
  • 103
    • 41249103991 scopus 로고    scopus 로고
    • Sphingosine kinase 1 is up-regulated during hypoxia in U87MG gli-oma cells. Role of hypoxia-inducible factors 1 and 2
    • Anelli V, Gault CR, Cheng AB, Obeid LM. Sphingosine kinase 1 is up-regulated during hypoxia in U87MG gli-oma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem. 2008;283:3365–75.
    • (2008) J Biol Chem , vol.283 , pp. 3365-3375
    • Anelli, V.1    Gault, C.R.2    Cheng, A.B.3    Obeid, L.M.4
  • 104
    • 0036470433 scopus 로고    scopus 로고
    • Replication licensing - defning the proliferative state?
    • Blow JJ, Hodgson B. Replication licensing - defning the proliferative state? Trends Cell Biol. 2002;12:72–8.
    • (2002) Trends Cell Biol , vol.12 , pp. 72-78
    • Blow, J.J.1    Hodgson, B.2
  • 105
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 106
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14:661–73.
    • (2008) Dev Cell , vol.14 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3    Hoffman, E.P.4    McBurney, M.W.5    Sauve, A.A.6    Sartorelli, V.7
  • 108
    • 84887020906 scopus 로고    scopus 로고
    • Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3
    • Brenmoehl J, Hoefich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. 2013;13:755–61.
    • (2013) Mitochondrion , vol.13 , pp. 755-761
    • Brenmoehl, J.1    Hoefich, A.2
  • 109
    • 84895437352 scopus 로고    scopus 로고
    • Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain
    • Babenko NA, Shakhova EG. Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain. Arch Gerontol Geriatr. 2014;58:420–6.
    • (2014) Arch Gerontol Geriatr , vol.58 , pp. 420-426
    • Babenko, N.A.1    Shakhova, E.G.2
  • 110
    • 84904130220 scopus 로고    scopus 로고
    • Sphingosine 1-phos-phate (S1P) promotes mitochondrial biogenesis in Hep G2 cells by activating Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)
    • Shen Z, Liu C, Liu P, Zhao J, Xu W. Sphingosine 1-phos-phate (S1P) promotes mitochondrial biogenesis in Hep G2 cells by activating Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Cell Stress Chaper-ones. 2014;19:541–8.
    • (2014) Cell Stress Chaper-ones , vol.19 , pp. 541-548
    • Shen, Z.1    Liu, C.2    Liu, P.3    Zhao, J.4    Xu, W.5
  • 111
    • 84897034027 scopus 로고    scopus 로고
    • Ceramide and the mitochon-drial respiratory chain
    • Kogot-Levin A, Saada A. Ceramide and the mitochon-drial respiratory chain. Biochimie. 2014;100:88–94.
    • (2014) Biochimie , vol.100 , pp. 88-94
    • Kogot-Levin, A.1    Saada, A.2
  • 113
    • 84879047011 scopus 로고    scopus 로고
    • Cellular metabolic and autophagic pathways: Traffc control by redox signaling
    • Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffc control by redox signaling. Free Radic Biol Med. 2013;63:207–21.
    • (2013) Free Radic Biol Med , vol.63 , pp. 207-221
    • Dodson, M.1    Darley-Usmar, V.2    Zhang, J.3
  • 114
    • 70549092785 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate hypoxic signaling
    • Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol. 2009;21:894–9.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 894-899
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 115
    • 79956158509 scopus 로고    scopus 로고
    • Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: Implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells
    • Circu ML, Maloney RE, Aw TY. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells. Anti-oxid Redox Signal. 2011;14:2151–62.
    • (2011) Anti-oxid Redox Signal , vol.14 , pp. 2151-2162
    • Circu, M.L.1    Maloney, R.E.2    Aw, T.Y.3
  • 116
    • 84856117760 scopus 로고    scopus 로고
    • Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress
    • Módis K, Gero D, Erdélyi K, Szoleczky P, DeWitt D, Szabo C. Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress. Bio-chem Pharmacol. 2012;83:633–43.
    • (2012) Bio-chem Pharmacol , vol.83 , pp. 633-643
    • Módis, K.1    Gero, D.2    Erdélyi, K.3    Szoleczky, P.4    Dewitt, D.5    Szabo, C.6
  • 117
    • 74449084424 scopus 로고    scopus 로고
    • Hypoxia-induced neuronal apoptosis is mediated by de novo synthesis of ceramide through activation of serine palmitoyltransferase
    • Kang MS, Ahn KH, Kim SK, Jeon HJ, Ji JE, Choi JM, Jung KM, Jung SY, Kim DK. Hypoxia-induced neuronal apoptosis is mediated by de novo synthesis of ceramide through activation of serine palmitoyltransferase. Cell Signal. 2010;22:610–8.
    • (2010) Cell Signal , vol.22 , pp. 610-618
    • Kang, M.S.1    Ahn, K.H.2    Kim, S.K.3    Jeon, H.J.4    Ji, J.E.5    Choi, J.M.6    Jung, K.M.7    Jung, S.Y.8    Kim, D.K.9
  • 118
    • 0041573041 scopus 로고    scopus 로고
    • NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes
    • Ying W, Garnier P, Swanson RA. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochim Biophys Res Commun. 2003;308:809–13.
    • (2003) Biochim Biophys Res Commun , vol.308 , pp. 809-813
    • Ying, W.1    Garnier, P.2    Swanson, R.A.3
  • 119
  • 121
    • 73749087580 scopus 로고    scopus 로고
    • Mitochondrial function as a determinant of life span
    • Lanza IR, Nair KS. Mitochondrial function as a determinant of life span. Pfugers Arch. 2010;459:277–89.
    • (2010) Pfugers Arch , vol.459 , pp. 277-289
    • Lanza, I.R.1    Nair, K.S.2
  • 122
    • 0034578528 scopus 로고    scopus 로고
    • Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging
    • Lightle SA, Oakley JI, Nikolova-Karakashian MN. Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech Ageing Dev. 2000;120:111–25.
    • (2000) Mech Ageing Dev , vol.120 , pp. 111-125
    • Lightle, S.A.1    Oakley, J.I.2    Nikolova-Karakashian, M.N.3
  • 123
    • 70350676840 scopus 로고    scopus 로고
    • Increase in sphingolipid catabolic enzyme activity during aging
    • Sacket SJ, Chung HY, Okajima F, Im DS. Increase in sphingolipid catabolic enzyme activity during aging. Acta Pharmacol Sin. 2009;30:1454–61.
    • (2009) Acta Pharmacol Sin , vol.30 , pp. 1454-1461
    • Sacket, S.J.1    Chung, H.Y.2    Okajima, F.3    Im, D.S.4
  • 124
    • 1842330849 scopus 로고    scopus 로고
    • Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione
    • García-Ruiz C, Colell A, Marí M, Morales A, Fernández-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997;272:11369–77.
    • (1997) J Biol Chem , vol.272 , pp. 11369-11377
    • García-Ruiz, C.1    Colell, A.2    Marí, M.3    Morales, A.4    Fernández-Checa, J.C.5
  • 125
    • 35848937327 scopus 로고    scopus 로고
    • Regulation of neutral sphingomyelinase-2 by GSH: A new insight to the role of oxidative stress in aging-associated inflammation
    • Rutkute K, Asmis RH, Nikolova-Karakashian MN. Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res. 2007;48:2443–52.
    • (2007) J Lipid Res , vol.48 , pp. 2443-2452
    • Rutkute, K.1    Asmis, R.H.2    Nikolova-Karakashian, M.N.3
  • 128
    • 44649130038 scopus 로고    scopus 로고
    • Transcriptional control by PARP-1: Chroma-tin modulation, enhancer-binding, coregulation, and insulation
    • Kraus WL. Transcriptional control by PARP-1: Chroma-tin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008;20:294–302.
    • (2008) Curr Opin Cell Biol , vol.20 , pp. 294-302
    • Kraus, W.L.1
  • 129
    • 77954274504 scopus 로고    scopus 로고
    • The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets
    • Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010;39:8–24.
    • (2010) Mol Cell , vol.39 , pp. 8-24
    • Krishnakumar, R.1    Kraus, W.L.2
  • 130
    • 77956648852 scopus 로고    scopus 로고
    • The roles of PARP1 in gene control and cell differentiation
    • Ji Y, Tulin AV. The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev. 2010;20:512–8.
    • (2010) Curr Opin Genet Dev , vol.20 , pp. 512-518
    • Ji, Y.1    Tulin, A.V.2
  • 131
    • 24344454692 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation by PARP-1: «PAR-laying» NAD+ into nuclear signal
    • Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: «PAR-laying» NAD+ into nuclear signal. Genes Dev. 2005;19:1951–67.
    • (2005) Genes Dev , vol.19 , pp. 1951-1967
    • Kim, M.Y.1    Zhang, T.2    Kraus, W.L.3
  • 132
    • 0034537290 scopus 로고    scopus 로고
    • Autophagy as a regulated pathway of cellular degradation
    • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.
    • (2000) Science , vol.290 , pp. 1717-1721
    • Klionsky, D.J.1    Emr, S.D.2
  • 133
    • 39849109338 scopus 로고    scopus 로고
    • Au-tophagy fghts disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Au-tophagy fghts disease through cellular self-digestion. Nature. 2008;451:1069–75.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 135
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 136
    • 79551634458 scopus 로고    scopus 로고
    • Autophagy in tumorigenesis and energy metabolism: Friend by day, foe by night
    • Mathew R, White E. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev. 2011;21:113–9.
    • (2011) Curr Opin Genet Dev , vol.21 , pp. 113-119
    • Mathew, R.1    White, E.2
  • 137
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 138
    • 61649093766 scopus 로고    scopus 로고
    • To die or to live: The dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage
    • Huang Q, Shen HM. To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy. 2009;5:273–6.
    • (2009) Autophagy , vol.5 , pp. 273-276
    • Huang, Q.1    Shen, H.M.2
  • 139
    • 84882935541 scopus 로고    scopus 로고
    • Sirtuins’ modulation of autophagy
    • Ng F, Tang BL. Sirtuins’ modulation of autophagy. J Cell Physiol. 2013;228:2262–70.
    • (2013) J Cell Physiol , vol.228 , pp. 2262-2270
    • Ng, F.1    Tang, B.L.2
  • 140
    • 59749104287 scopus 로고    scopus 로고
    • Starvation in the midst of plenty: Making sense of ceramide-induced autophagy by analysing nutrient transporter expression
    • Edinger AL. Starvation in the midst of plenty: making sense of ceramide-induced autophagy by analysing nutrient transporter expression. Biochem Soc Trans. 2009;37:253–8.
    • (2009) Biochem Soc Trans , vol.37 , pp. 253-258
    • Edinger, A.L.1
  • 143
    • 84897954412 scopus 로고
    • Autophagy paradox and ceramide
    • Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim Biophys Acta. 2014;1841:783–92.
    • (1841) Biochim Biophys Acta , vol.2014 , pp. 783-792
    • Jiang, W.1    Ogretmen, B.2
  • 144
    • 0021997074 scopus 로고
    • Poly(ADP-ribose) in the cellular response to DNA damage
    • Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985;101:4–15.
    • (1985) Radiat Res , vol.101 , pp. 4-15
    • Berger, N.A.1
  • 145
    • 84872113498 scopus 로고    scopus 로고
    • AMPK mediates a pro-survival autophagy downstream of PARP-1 activation in response to DNA alkylat-ing agents
    • Zhou J, Ng S, Huang Q, Wu Y-T, Li Z, Yao SQ, Shen H-M. AMPK mediates a pro-survival autophagy downstream of PARP-1 activation in response to DNA alkylat-ing agents. FEBS Lett. 2013;587:170–7.
    • (2013) FEBS Lett , vol.587 , pp. 170-177
    • Zhou, J.1    Ng, S.2    Huang, Q.3    Wu, Y.-T.4    Li, Z.5    Yao, S.Q.6    Shen, H.-M.7
  • 147
    • 50049105823 scopus 로고    scopus 로고
    • The regulation of AMP-activated protein kinase by upstream kinases
    • Carling D, Sanders MJ, Woods A. The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond). 2008;32 Suppl 4:S55–9.
    • (2008) Int J Obes (Lond) , vol.32 , pp. 5-9
    • Carling, D.1    Sanders, M.J.2    Woods, A.3
  • 150
    • 84871250128 scopus 로고    scopus 로고
    • Sphingolipids: Regulators of crosstalk between apoptosis and autophagy
    • Young MM, Kester M, Wang HG. Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res. 2013;54:5–19.
    • (2013) J Lipid Res , vol.54 , pp. 5-19
    • Young, M.M.1    Kester, M.2    Wang, H.G.3
  • 152
    • 3543114272 scopus 로고    scopus 로고
    • Biologically active sphingo-lipids in cancer pathogenesis and treatment
    • Ogretmen B, Hannun YA. Biologically active sphingo-lipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.
    • (2004) Nat Rev Cancer , vol.4 , pp. 604-616
    • Ogretmen, B.1    Hannun, Y.A.2
  • 153
    • 57749196164 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM
    • Maeurer C, Holland S, Pierre S, Potstada W, Scholich K. Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM. Cell Signal. 2009;21:293–300.
    • (2009) Cell Signal , vol.21 , pp. 293-300
    • Maeurer, C.1    Holland, S.2    Pierre, S.3    Potstada, W.4    Scholich, K.5
  • 154
    • 35948995400 scopus 로고    scopus 로고
    • Mechanism of DNA damage and apop-tosis induced by anticancer drugs through generation of reactive oxygen species
    • Mizutani H. Mechanism of DNA damage and apop-tosis induced by anticancer drugs through generation of reactive oxygen species. Yakugaku Zasshi. 2007;127:1837–42.
    • (2007) Yakugaku Zasshi , vol.127 , pp. 1837-1842
    • Mizutani, H.1
  • 157
    • 84868118383 scopus 로고    scopus 로고
    • PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent
    • Éthier C, Tardif M, Arul L, Poirier GG. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent. PLoS One. 2012;7:e47978.
    • (2012) PLoS One , vol.7
    • Éthier, C.1    Tardif, M.2    Arul, L.3    Poirier, G.G.4
  • 161
    • 79953193036 scopus 로고    scopus 로고
    • Sensing of energy and nutrients by AMP-activated protein kinase
    • Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr. 2011;93:891S–6S.
    • (2011) Am J Clin Nutr , vol.93 , pp. 891S-896S
    • Hardie, D.G.1
  • 164
    • 55549096745 scopus 로고    scopus 로고
    • SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
    • Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283:27628–35.
    • (2008) J Biol Chem , vol.283 , pp. 27628-27635
    • Lan, F.1    Cacicedo, J.M.2    Ruderman, N.3    Ido, Y.4
  • 165
    • 84867627541 scopus 로고    scopus 로고
    • SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells
    • Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Bio-chem Biophys Res Commun. 2012;427:191–6.
    • (2012) Bio-chem Biophys Res Commun , vol.427 , pp. 191-196
    • Takeda-Watanabe, A.1    Kitada, M.2    Kanasaki, K.3    Koya, D.4
  • 166
    • 84874361039 scopus 로고    scopus 로고
    • PARP1 inhibition affects pleural mesothelioma cell viability and uncouples AKT/mTOR axis via SIRT1
    • Pinton G, Manente AG, Murer B, De Marino E, Mutti L, Moro L. PARP1 inhibition affects pleural mesothelioma cell viability and uncouples AKT/mTOR axis via SIRT1. J Cell Mol Med. 2013;17:233–41.
    • (2013) J Cell Mol Med , vol.17 , pp. 233-241
    • Pinton, G.1    Manente, A.G.2    Murer, B.3    De Marino, E.4    Mutti, L.5    Moro, L.6
  • 171
    • 84890822456 scopus 로고    scopus 로고
    • Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuro-blastoma cells
    • Dodson M, Liang Q, Johnson MS, Redmann M, Fineberg N, Darley-Usmar VM, Zhang J. Inhibition of glycolysis attenuates 4-hydroxynonenal-dependent autophagy and exacerbates apoptosis in differentiated SH-SY5Y neuro-blastoma cells. Autophagy. 2013;9:1996–2008.
    • (2013) Autophagy , vol.9 , pp. 1996-2008
    • Dodson, M.1    Liang, Q.2    Johnson, M.S.3    Redmann, M.4    Fineberg, N.5    Darley-Usmar, V.M.6    Zhang, J.7
  • 172
    • 84890964690 scopus 로고    scopus 로고
    • Glucose deprivation converts poly(ADP-ribose) poly-merase-1 hyperactivation into a transient energy producing process
    • Buonvicino D, Formentini L, Cipriani G, Chiarugi A. Glucose deprivation converts poly(ADP-ribose) poly-merase-1 hyperactivation into a transient energy producing process. J Biol Chem. 2013;288:36530–7.
    • (2013) J Biol Chem , vol.288 , pp. 36530-36537
    • Buonvicino, D.1    Formentini, L.2    Cipriani, G.3    Chiarugi, A.4
  • 174
    • 63849149937 scopus 로고    scopus 로고
    • LKB1 and AMP-activated protein kinase control of mTOR signalling and growth
    • Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196:65–80.
    • (2009) Acta Physiol (Oxf) , vol.196 , pp. 65-80
    • Shaw, R.J.1
  • 175
  • 177
    • 77950346282 scopus 로고    scopus 로고
    • Immunity, inflammation, and cancer
    • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.
    • (2010) Cell , vol.140 , pp. 883-899
    • Grivennikov, S.I.1    Greten, F.R.2    Karin, M.3
  • 186
    • 84866294574 scopus 로고    scopus 로고
    • Metabolic reprogramming and two-compartment tumor metabolism: Opposing role(s) of HIF1α and HIF2α in tumor-associated fbroblasts and human breast cancer cells
    • Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Tanowitz HB, Pestell RG, Sotgia F, Lisanti MP. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fbroblasts and human breast cancer cells. Cell Cycle. 2012;11:3280–9.
    • (2012) Cell Cycle , vol.11 , pp. 3280-3289
    • Chiavarina, B.1    Martinez-Outschoorn, U.E.2    Whitaker-Menezes, D.3    Howell, A.4    Tanowitz, H.B.5    Pestell, R.G.6    Sotgia, F.7    Lisanti, M.P.8
  • 187
    • 84880160092 scopus 로고    scopus 로고
    • Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders
    • Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Sal-minen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013;25:1939–48.
    • (2013) Cell Signal , vol.25 , pp. 1939-1948
    • Kauppinen, A.1    Suuronen, T.2    Ojala, J.3    Kaarniranta, K.4    Sal-Minen, A.5
  • 188
    • 84877795435 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 deacetylation
    • Kauppinen TM, Gan L, Swanson RA. Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 deacetylation. Biochim Biophys Acta. 2013;1833:1985–91.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 1985-1991
    • Kauppinen, T.M.1    Gan, L.2    Swanson, R.A.3
  • 190
    • 43049139541 scopus 로고    scopus 로고
    • p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
    • Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008;10:611–8.
    • (2008) Nat Cell Biol , vol.10 , pp. 611-618
    • Kawauchi, K.1    Araki, K.2    Tobiume, K.3    Tanaka, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.