메뉴 건너뛰기




Volumn 37, Issue 8, 2012, Pages 317-324

Nuclear factor-κB, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; GLUCOSE TRANSPORTER 1; GLUCOSE TRANSPORTER 3; GLUCOSE TRANSPORTER 4; HEXOKINASE 1; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; HYPOXIA INDUCIBLE FACTOR; I KAPPA B ALPHA; I KAPPA B KINASE ALPHA; I KAPPA B KINASE BETA; I KAPPA B KINASE GAMMA; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MALATE DEHYDROGENASE; METFORMIN; MITOCHONDRIAL DNA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PHOSPHOGLYCERATE MUTASE; PROTEIN KINASE B; PROTEIN MDM2; PROTEIN P53; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; RIBOSOME RNA; STAT3 PROTEIN; TRANSCRIPTION FACTOR NRF1; TRANSCRIPTION FACTOR RELA; TRANSCRIPTION FACTOR RELB; TRANSFER RNA; UNINDEXED DRUG;

EID: 84864292987     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.04.002     Document Type: Review
Times cited : (128)

References (70)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 41149105722 scopus 로고    scopus 로고
    • Mitochondria in cancer cells: what is so special about them?
    • Gogvadze V., et al. Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18:165-173.
    • (2008) Trends Cell Biol. , vol.18 , pp. 165-173
    • Gogvadze, V.1
  • 3
    • 58149136865 scopus 로고    scopus 로고
    • Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer
    • Yeung S.J., et al. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell. Mol. Life Sci. 2008, 65:3981-3999.
    • (2008) Cell. Mol. Life Sci. , vol.65 , pp. 3981-3999
    • Yeung, S.J.1
  • 4
    • 44449147036 scopus 로고    scopus 로고
    • Tumor cell metabolism: cancer's Achilles' heel
    • Kroemer G., Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008, 13:472-482.
    • (2008) Cancer Cell , vol.13 , pp. 472-482
    • Kroemer, G.1    Pouyssegur, J.2
  • 5
    • 85006768050 scopus 로고
    • The metabolism of tumors in the body
    • Warburg O., et al. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8:519-530.
    • (1927) J. Gen. Physiol. , vol.8 , pp. 519-530
    • Warburg, O.1
  • 6
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 7
    • 33745303045 scopus 로고    scopus 로고
    • Hypoxia signalling in cancer and approaches to enforce tumour regression
    • Pouyssegur J., et al. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006, 441:437-443.
    • (2006) Nature , vol.441 , pp. 437-443
    • Pouyssegur, J.1
  • 8
    • 60249085118 scopus 로고    scopus 로고
    • Mitochondria in cancer: not just innocent bystanders
    • Frezza C., Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Semin. Cancer Biol. 2009, 19:4-11.
    • (2009) Semin. Cancer Biol. , vol.19 , pp. 4-11
    • Frezza, C.1    Gottlieb, E.2
  • 9
    • 34250712408 scopus 로고    scopus 로고
    • Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond
    • Mankoff D.A., et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin. Cancer Res. 2007, 13:3460-3469.
    • (2007) Clin. Cancer Res. , vol.13 , pp. 3460-3469
    • Mankoff, D.A.1
  • 10
    • 52649107626 scopus 로고    scopus 로고
    • Cancer cell metabolism: Warburg and beyond
    • Hsu P.P., Sabatini D.M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134:703-707.
    • (2008) Cell , vol.134 , pp. 703-707
    • Hsu, P.P.1    Sabatini, D.M.2
  • 11
    • 78650894319 scopus 로고    scopus 로고
    • Crosstalk of reactive oxygen species and NF-κB signaling
    • Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21:103-115.
    • (2011) Cell Res. , vol.21 , pp. 103-115
    • Morgan, M.J.1    Liu, Z.G.2
  • 12
    • 79953684503 scopus 로고    scopus 로고
    • The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression
    • Diaz-Ruiz R., et al. The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. Acta 2011, 1807:568-576.
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 568-576
    • Diaz-Ruiz, R.1
  • 14
    • 79952690543 scopus 로고    scopus 로고
    • How phosphorylation controls p53
    • MacLaine N.J., Hupp T.R. How phosphorylation controls p53. Cell Cycle 2011, 10:916-921.
    • (2011) Cell Cycle , vol.10 , pp. 916-921
    • MacLaine, N.J.1    Hupp, T.R.2
  • 16
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
    • (2006) Science , vol.312 , pp. 1650-1653
    • Matoba, S.1
  • 17
    • 43049139541 scopus 로고    scopus 로고
    • P53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation
    • Kawauchi K., et al. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 611-618
    • Kawauchi, K.1
  • 18
    • 61449206074 scopus 로고    scopus 로고
    • Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation
    • Zhao Y., et al. Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J. Biol. Chem. 2008, 283:36344-36353.
    • (2008) J. Biol. Chem. , vol.283 , pp. 36344-36353
    • Zhao, Y.1
  • 19
    • 70449093664 scopus 로고    scopus 로고
    • GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress
    • Ide T., et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 2009, 36:379-392.
    • (2009) Mol. Cell , vol.36 , pp. 379-392
    • Ide, T.1
  • 20
    • 33845768987 scopus 로고    scopus 로고
    • Integrating cell-signalling pathways with NF-κB and IKK function
    • Perkins N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8:49-62.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 49-62
    • Perkins, N.D.1
  • 21
    • 80052014052 scopus 로고    scopus 로고
    • Inflammation meets cancer, with NF-κB as the matchmaker
    • Ben-Neriah Y., Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011, 12:715-723.
    • (2011) Nat. Immunol. , vol.12 , pp. 715-723
    • Ben-Neriah, Y.1    Karin, M.2
  • 22
    • 84856213846 scopus 로고    scopus 로고
    • The diverse and complex roles of NF-κB subunits in cancer
    • Perkins N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer 2012, 12:121-132.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 121-132
    • Perkins, N.D.1
  • 23
    • 77957850069 scopus 로고    scopus 로고
    • P53 and NF-κB: different strategies for responding to stress lead to a functional antagonism
    • Ak P., Levine A.J. p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism. FASEB J. 2010, 24:3643-3652.
    • (2010) FASEB J. , vol.24 , pp. 3643-3652
    • Ak, P.1    Levine, A.J.2
  • 24
    • 57149112608 scopus 로고    scopus 로고
    • Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-κB pathways
    • Dey A., et al. Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-κB pathways. Nat. Rev. Drug Discov. 2008, 7:1031-1040.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 1031-1040
    • Dey, A.1
  • 25
    • 62449257012 scopus 로고    scopus 로고
    • Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP
    • Xia Y., et al. Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2629-2634.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2629-2634
    • Xia, Y.1
  • 26
    • 80053539605 scopus 로고    scopus 로고
    • NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
    • Mauro C., et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol. 2011, 13:1272-1279.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1272-1279
    • Mauro, C.1
  • 27
    • 77957085271 scopus 로고    scopus 로고
    • Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad
    • Leary S.C. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 2010, 13:1403-1416.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1403-1416
    • Leary, S.C.1
  • 28
    • 70449109147 scopus 로고    scopus 로고
    • Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma
    • Meylan E., et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature 2009, 462:104-107.
    • (2009) Nature , vol.462 , pp. 104-107
    • Meylan, E.1
  • 29
    • 77951706304 scopus 로고    scopus 로고
    • Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis
    • Basseres D.S., et al. Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 2010, 70:3537-3546.
    • (2010) Cancer Res. , vol.70 , pp. 3537-3546
    • Basseres, D.S.1
  • 30
    • 77956090193 scopus 로고    scopus 로고
    • Mitochondrial protein import: from proteomics to functional mechanisms
    • Schmidt O., et al. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11:655-667.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 655-667
    • Schmidt, O.1
  • 31
    • 34548627532 scopus 로고    scopus 로고
    • DNA replication and transcription in mammalian mitochondria
    • Falkenberg M., et al. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 2007, 76:679-699.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 679-699
    • Falkenberg, M.1
  • 32
    • 77958194568 scopus 로고    scopus 로고
    • Nuclear transcription factors in mammalian mitochondria
    • Leigh-Brown S., et al. Nuclear transcription factors in mammalian mitochondria. Genome Biol. 2010, 11:215.
    • (2010) Genome Biol. , vol.11 , pp. 215
    • Leigh-Brown, S.1
  • 33
    • 77955392757 scopus 로고    scopus 로고
    • Co-regulation of nuclear respiratory factor-1 by NFκB and CREB links LPS-induced inflammation to mitochondrial biogenesis
    • Suliman H.B., et al. Co-regulation of nuclear respiratory factor-1 by NFκB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J. Cell Sci. 2010, 123:2565-2575.
    • (2010) J. Cell Sci. , vol.123 , pp. 2565-2575
    • Suliman, H.B.1
  • 34
    • 79955571599 scopus 로고    scopus 로고
    • Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer
    • Willers I.M., Cuezva J.M. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. Biochim. Biophys. Acta 2011, 1807:543-551.
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 543-551
    • Willers, I.M.1    Cuezva, J.M.2
  • 35
    • 0035877820 scopus 로고    scopus 로고
    • IκB-α, the NF-κB inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator
    • Bottero V., et al. IκB-α, the NF-κB inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J. Biol. Chem. 2001, 276:21317-21324.
    • (2001) J. Biol. Chem. , vol.276 , pp. 21317-21324
    • Bottero, V.1
  • 36
    • 0037474269 scopus 로고    scopus 로고
    • NF-κB and I κB α are found in the mitochondria, Evidence for regulation of mitochondrial gene expression by NF-κB
    • Cogswell P.C., et al. NF-κB and I κB α are found in the mitochondria, Evidence for regulation of mitochondrial gene expression by NF-κB. J. Biol. Chem. 2003, 278:2963-2968.
    • (2003) J. Biol. Chem. , vol.278 , pp. 2963-2968
    • Cogswell, P.C.1
  • 37
    • 6344235255 scopus 로고    scopus 로고
    • Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-κB in prostatic carcinoma cell lines
    • Guseva N.V., et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-κB in prostatic carcinoma cell lines. Mol. Cancer Res. 2004, 2:574-584.
    • (2004) Mol. Cancer Res. , vol.2 , pp. 574-584
    • Guseva, N.V.1
  • 38
    • 80051677812 scopus 로고    scopus 로고
    • P53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB
    • Johnson R.F., et al. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res. 2011, 71:5588-5597.
    • (2011) Cancer Res. , vol.71 , pp. 5588-5597
    • Johnson, R.F.1
  • 39
    • 40849083857 scopus 로고    scopus 로고
    • IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis
    • Bakkar N., et al. IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J. Cell Biol. 2008, 180:787-802.
    • (2008) J. Cell Biol. , vol.180 , pp. 787-802
    • Bakkar, N.1
  • 40
    • 67649988989 scopus 로고    scopus 로고
    • Mitochondrial STAT3 supports Ras-dependent oncogenic transformation
    • Gough D.J., et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 2009, 324:1713-1716.
    • (2009) Science , vol.324 , pp. 1713-1716
    • Gough, D.J.1
  • 41
    • 68549101500 scopus 로고    scopus 로고
    • Mitochondrial localization of the low level p53 protein in proliferative cells
    • Ferecatu I., et al. Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem. Biophys. Res. Commun. 2009, 387:772-777.
    • (2009) Biochem. Biophys. Res. Commun. , vol.387 , pp. 772-777
    • Ferecatu, I.1
  • 42
    • 34249811206 scopus 로고    scopus 로고
    • Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion
    • Bourdon A., et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 2007, 39:776-780.
    • (2007) Nat. Genet. , vol.39 , pp. 776-780
    • Bourdon, A.1
  • 43
    • 66249086606 scopus 로고    scopus 로고
    • P53 regulates mtDNA copy number and mitocheckpoint pathway
    • Kulawiec M., et al. p53 regulates mtDNA copy number and mitocheckpoint pathway. J. Carcinog. 2009, 8:8.
    • (2009) J. Carcinog. , vol.8 , pp. 8
    • Kulawiec, M.1
  • 44
    • 65449137587 scopus 로고    scopus 로고
    • Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis
    • Lebedeva M.A., et al. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim. Biophys. Acta 2009, 1787:328-334.
    • (2009) Biochim. Biophys. Acta , vol.1787 , pp. 328-334
    • Lebedeva, M.A.1
  • 45
    • 49649108032 scopus 로고    scopus 로고
    • Regulation of gene expression by hypoxia
    • Kenneth N.S., Rocha S. Regulation of gene expression by hypoxia. Biochem. J. 2008, 414:19-29.
    • (2008) Biochem. J. , vol.414 , pp. 19-29
    • Kenneth, N.S.1    Rocha, S.2
  • 46
    • 11144337759 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators
    • Dery M.A., et al. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 2005, 37:535-540.
    • (2005) Int. J. Biochem. Cell Biol. , vol.37 , pp. 535-540
    • Dery, M.A.1
  • 47
    • 76049100577 scopus 로고    scopus 로고
    • HIF-1: upstream and downstream of cancer metabolism
    • Semenza G.L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 2010, 20:51-56.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 51-56
    • Semenza, G.L.1
  • 48
    • 33646917296 scopus 로고    scopus 로고
    • The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism
    • Ullah M.S., et al. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 2006, 281:9030-9037.
    • (2006) J. Biol. Chem. , vol.281 , pp. 9030-9037
    • Ullah, M.S.1
  • 49
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim J.W., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
    • (2006) Cell Metab. , vol.3 , pp. 177-185
    • Kim, J.W.1
  • 50
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou I., et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3:187-197.
    • (2006) Cell Metab. , vol.3 , pp. 187-197
    • Papandreou, I.1
  • 51
    • 70349478990 scopus 로고    scopus 로고
    • MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2
    • Chan S.Y., et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009, 10:273-284.
    • (2009) Cell Metab. , vol.10 , pp. 273-284
    • Chan, S.Y.1
  • 52
    • 42549148534 scopus 로고    scopus 로고
    • Hypoxic regulation of miR-210: shrinking targets expand HIF-1s influence
    • Corn P.G. Hypoxic regulation of miR-210: shrinking targets expand HIF-1s influence. Cancer Biol. Ther. 2008, 7:265-267.
    • (2008) Cancer Biol. Ther. , vol.7 , pp. 265-267
    • Corn, P.G.1
  • 53
    • 33947724515 scopus 로고    scopus 로고
    • HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells
    • Fukuda R., et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007, 129:111-122.
    • (2007) Cell , vol.129 , pp. 111-122
    • Fukuda, R.1
  • 54
    • 0028268629 scopus 로고
    • Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues
    • Koong A.C., et al. Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res. 1994, 54:1425-1430.
    • (1994) Cancer Res. , vol.54 , pp. 1425-1430
    • Koong, A.C.1
  • 55
    • 78049364235 scopus 로고    scopus 로고
    • Mechanism of hypoxia-induced NF-κB
    • Culver C., et al. Mechanism of hypoxia-induced NF-κB. Mol. Cell. Biol. 2010, 30:4901-4921.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 4901-4921
    • Culver, C.1
  • 56
    • 45349097483 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor-1α by NF-κB
    • van Uden P., et al. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochem. J. 2008, 412:477-484.
    • (2008) Biochem. J. , vol.412 , pp. 477-484
    • van Uden, P.1
  • 57
    • 44849100198 scopus 로고    scopus 로고
    • NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α
    • Rius J., et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 2008, 453:807-811.
    • (2008) Nature , vol.453 , pp. 807-811
    • Rius, J.1
  • 58
    • 79851471726 scopus 로고    scopus 로고
    • Evolutionary conserved regulation of HIF-1β by NF-κB
    • van Uden P., et al. Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet. 2011, 7:e1001285.
    • (2011) PLoS Genet. , vol.7
    • van Uden, P.1
  • 59
    • 77549083560 scopus 로고    scopus 로고
    • Dangerous liaisons: STAT3 and NF-κB collab oration and crosstalk in cancer
    • Grivennikov S.I., Karin M. Dangerous liaisons: STAT3 and NF-κB collab oration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010, 21:11-19.
    • (2010) Cytokine Growth Factor Rev. , vol.21 , pp. 11-19
    • Grivennikov, S.I.1    Karin, M.2
  • 60
    • 70350778443 scopus 로고    scopus 로고
    • An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation
    • Iliopoulos D., et al. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 2009, 139:693-706.
    • (2009) Cell , vol.139 , pp. 693-706
    • Iliopoulos, D.1
  • 61
    • 79953705886 scopus 로고    scopus 로고
    • Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
    • Jose C., et al. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?. Biochim. Biophys. Acta 2011, 1807:552-561.
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 552-561
    • Jose, C.1
  • 62
    • 38049182786 scopus 로고    scopus 로고
    • Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers
    • Facey K., et al. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol. Assess. 2007, 11:1-267.
    • (2007) Health Technol. Assess. , vol.11 , pp. 1-267
    • Facey, K.1
  • 63
    • 35148889082 scopus 로고    scopus 로고
    • Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas
    • Lopez-Rios F., et al. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007, 67:9013-9017.
    • (2007) Cancer Res. , vol.67 , pp. 9013-9017
    • Lopez-Rios, F.1
  • 64
    • 79953747944 scopus 로고    scopus 로고
    • Respiratory competent mitochondria in human ovarian and peritoneal cancer
    • Lim H.Y., et al. Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion 2011, 11:437-443.
    • (2011) Mitochondrion , vol.11 , pp. 437-443
    • Lim, H.Y.1
  • 65
    • 79958173253 scopus 로고    scopus 로고
    • Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells
    • Smolkova K., et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int. J. Biochem. Cell Biol. 2011, 43:950-968.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 950-968
    • Smolkova, K.1
  • 66
    • 78649492693 scopus 로고    scopus 로고
    • Selective activation of p53-mediated tumour suppression in high-grade tumours
    • Junttila M.R., et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 2010, 468:567-571.
    • (2010) Nature , vol.468 , pp. 567-571
    • Junttila, M.R.1
  • 67
    • 12144289400 scopus 로고    scopus 로고
    • A physical and functional map of the human TNF-α NF-κB signal transduction pathway
    • Bouwmeester T., et al. A physical and functional map of the human TNF-α NF-κB signal transduction pathway. Nat. Cell Biol. 2004, 6:97-105.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 97-105
    • Bouwmeester, T.1
  • 68
    • 0034682972 scopus 로고    scopus 로고
    • Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75
    • Ran Q., et al. Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem. Biophys. Res. Commun. 2000, 275:174-179.
    • (2000) Biochem. Biophys. Res. Commun. , vol.275 , pp. 174-179
    • Ran, Q.1
  • 69
    • 0037160054 scopus 로고    scopus 로고
    • Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway
    • Biswas T.K., Getz G.S. Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway. J. Biol. Chem. 2002, 277:45704-45714.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45704-45714
    • Biswas, T.K.1    Getz, G.S.2
  • 70
    • 0033506827 scopus 로고    scopus 로고
    • A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis
    • Casas F., et al. A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell. Biol. 1999, 19:7913-7924.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 7913-7924
    • Casas, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.