-
1
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
41149105722
-
Mitochondria in cancer cells: what is so special about them?
-
Gogvadze V., et al. Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18:165-173.
-
(2008)
Trends Cell Biol.
, vol.18
, pp. 165-173
-
-
Gogvadze, V.1
-
3
-
-
58149136865
-
Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer
-
Yeung S.J., et al. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell. Mol. Life Sci. 2008, 65:3981-3999.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 3981-3999
-
-
Yeung, S.J.1
-
4
-
-
44449147036
-
Tumor cell metabolism: cancer's Achilles' heel
-
Kroemer G., Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008, 13:472-482.
-
(2008)
Cancer Cell
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
5
-
-
85006768050
-
The metabolism of tumors in the body
-
Warburg O., et al. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8:519-530.
-
(1927)
J. Gen. Physiol.
, vol.8
, pp. 519-530
-
-
Warburg, O.1
-
6
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
7
-
-
33745303045
-
Hypoxia signalling in cancer and approaches to enforce tumour regression
-
Pouyssegur J., et al. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006, 441:437-443.
-
(2006)
Nature
, vol.441
, pp. 437-443
-
-
Pouyssegur, J.1
-
8
-
-
60249085118
-
Mitochondria in cancer: not just innocent bystanders
-
Frezza C., Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Semin. Cancer Biol. 2009, 19:4-11.
-
(2009)
Semin. Cancer Biol.
, vol.19
, pp. 4-11
-
-
Frezza, C.1
Gottlieb, E.2
-
9
-
-
34250712408
-
Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond
-
Mankoff D.A., et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin. Cancer Res. 2007, 13:3460-3469.
-
(2007)
Clin. Cancer Res.
, vol.13
, pp. 3460-3469
-
-
Mankoff, D.A.1
-
10
-
-
52649107626
-
Cancer cell metabolism: Warburg and beyond
-
Hsu P.P., Sabatini D.M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134:703-707.
-
(2008)
Cell
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
11
-
-
78650894319
-
Crosstalk of reactive oxygen species and NF-κB signaling
-
Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21:103-115.
-
(2011)
Cell Res.
, vol.21
, pp. 103-115
-
-
Morgan, M.J.1
Liu, Z.G.2
-
12
-
-
79953684503
-
The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression
-
Diaz-Ruiz R., et al. The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. Acta 2011, 1807:568-576.
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, pp. 568-576
-
-
Diaz-Ruiz, R.1
-
14
-
-
79952690543
-
How phosphorylation controls p53
-
MacLaine N.J., Hupp T.R. How phosphorylation controls p53. Cell Cycle 2011, 10:916-921.
-
(2011)
Cell Cycle
, vol.10
, pp. 916-921
-
-
MacLaine, N.J.1
Hupp, T.R.2
-
16
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
-
17
-
-
43049139541
-
P53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation
-
Kawauchi K., et al. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 611-618
-
-
Kawauchi, K.1
-
18
-
-
61449206074
-
Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation
-
Zhao Y., et al. Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J. Biol. Chem. 2008, 283:36344-36353.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 36344-36353
-
-
Zhao, Y.1
-
19
-
-
70449093664
-
GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress
-
Ide T., et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 2009, 36:379-392.
-
(2009)
Mol. Cell
, vol.36
, pp. 379-392
-
-
Ide, T.1
-
20
-
-
33845768987
-
Integrating cell-signalling pathways with NF-κB and IKK function
-
Perkins N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007, 8:49-62.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 49-62
-
-
Perkins, N.D.1
-
21
-
-
80052014052
-
Inflammation meets cancer, with NF-κB as the matchmaker
-
Ben-Neriah Y., Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011, 12:715-723.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 715-723
-
-
Ben-Neriah, Y.1
Karin, M.2
-
22
-
-
84856213846
-
The diverse and complex roles of NF-κB subunits in cancer
-
Perkins N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer 2012, 12:121-132.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 121-132
-
-
Perkins, N.D.1
-
23
-
-
77957850069
-
P53 and NF-κB: different strategies for responding to stress lead to a functional antagonism
-
Ak P., Levine A.J. p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism. FASEB J. 2010, 24:3643-3652.
-
(2010)
FASEB J.
, vol.24
, pp. 3643-3652
-
-
Ak, P.1
Levine, A.J.2
-
24
-
-
57149112608
-
Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-κB pathways
-
Dey A., et al. Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-κB pathways. Nat. Rev. Drug Discov. 2008, 7:1031-1040.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 1031-1040
-
-
Dey, A.1
-
25
-
-
62449257012
-
Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP
-
Xia Y., et al. Phosphorylation of p53 by IκB kinase 2 promotes its degradation by β-TrCP. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2629-2634.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 2629-2634
-
-
Xia, Y.1
-
26
-
-
80053539605
-
NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
-
Mauro C., et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol. 2011, 13:1272-1279.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1272-1279
-
-
Mauro, C.1
-
27
-
-
77957085271
-
Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad
-
Leary S.C. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 2010, 13:1403-1416.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 1403-1416
-
-
Leary, S.C.1
-
28
-
-
70449109147
-
Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma
-
Meylan E., et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature 2009, 462:104-107.
-
(2009)
Nature
, vol.462
, pp. 104-107
-
-
Meylan, E.1
-
29
-
-
77951706304
-
Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis
-
Basseres D.S., et al. Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 2010, 70:3537-3546.
-
(2010)
Cancer Res.
, vol.70
, pp. 3537-3546
-
-
Basseres, D.S.1
-
30
-
-
77956090193
-
Mitochondrial protein import: from proteomics to functional mechanisms
-
Schmidt O., et al. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11:655-667.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 655-667
-
-
Schmidt, O.1
-
31
-
-
34548627532
-
DNA replication and transcription in mammalian mitochondria
-
Falkenberg M., et al. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 2007, 76:679-699.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 679-699
-
-
Falkenberg, M.1
-
32
-
-
77958194568
-
Nuclear transcription factors in mammalian mitochondria
-
Leigh-Brown S., et al. Nuclear transcription factors in mammalian mitochondria. Genome Biol. 2010, 11:215.
-
(2010)
Genome Biol.
, vol.11
, pp. 215
-
-
Leigh-Brown, S.1
-
33
-
-
77955392757
-
Co-regulation of nuclear respiratory factor-1 by NFκB and CREB links LPS-induced inflammation to mitochondrial biogenesis
-
Suliman H.B., et al. Co-regulation of nuclear respiratory factor-1 by NFκB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J. Cell Sci. 2010, 123:2565-2575.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 2565-2575
-
-
Suliman, H.B.1
-
34
-
-
79955571599
-
Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer
-
Willers I.M., Cuezva J.M. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. Biochim. Biophys. Acta 2011, 1807:543-551.
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, pp. 543-551
-
-
Willers, I.M.1
Cuezva, J.M.2
-
35
-
-
0035877820
-
IκB-α, the NF-κB inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator
-
Bottero V., et al. IκB-α, the NF-κB inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J. Biol. Chem. 2001, 276:21317-21324.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 21317-21324
-
-
Bottero, V.1
-
36
-
-
0037474269
-
NF-κB and I κB α are found in the mitochondria, Evidence for regulation of mitochondrial gene expression by NF-κB
-
Cogswell P.C., et al. NF-κB and I κB α are found in the mitochondria, Evidence for regulation of mitochondrial gene expression by NF-κB. J. Biol. Chem. 2003, 278:2963-2968.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 2963-2968
-
-
Cogswell, P.C.1
-
37
-
-
6344235255
-
Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-κB in prostatic carcinoma cell lines
-
Guseva N.V., et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-κB in prostatic carcinoma cell lines. Mol. Cancer Res. 2004, 2:574-584.
-
(2004)
Mol. Cancer Res.
, vol.2
, pp. 574-584
-
-
Guseva, N.V.1
-
38
-
-
80051677812
-
P53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB
-
Johnson R.F., et al. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res. 2011, 71:5588-5597.
-
(2011)
Cancer Res.
, vol.71
, pp. 5588-5597
-
-
Johnson, R.F.1
-
39
-
-
40849083857
-
IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis
-
Bakkar N., et al. IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J. Cell Biol. 2008, 180:787-802.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 787-802
-
-
Bakkar, N.1
-
40
-
-
67649988989
-
Mitochondrial STAT3 supports Ras-dependent oncogenic transformation
-
Gough D.J., et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 2009, 324:1713-1716.
-
(2009)
Science
, vol.324
, pp. 1713-1716
-
-
Gough, D.J.1
-
41
-
-
68549101500
-
Mitochondrial localization of the low level p53 protein in proliferative cells
-
Ferecatu I., et al. Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem. Biophys. Res. Commun. 2009, 387:772-777.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.387
, pp. 772-777
-
-
Ferecatu, I.1
-
42
-
-
34249811206
-
Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion
-
Bourdon A., et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 2007, 39:776-780.
-
(2007)
Nat. Genet.
, vol.39
, pp. 776-780
-
-
Bourdon, A.1
-
43
-
-
66249086606
-
P53 regulates mtDNA copy number and mitocheckpoint pathway
-
Kulawiec M., et al. p53 regulates mtDNA copy number and mitocheckpoint pathway. J. Carcinog. 2009, 8:8.
-
(2009)
J. Carcinog.
, vol.8
, pp. 8
-
-
Kulawiec, M.1
-
44
-
-
65449137587
-
Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis
-
Lebedeva M.A., et al. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim. Biophys. Acta 2009, 1787:328-334.
-
(2009)
Biochim. Biophys. Acta
, vol.1787
, pp. 328-334
-
-
Lebedeva, M.A.1
-
45
-
-
49649108032
-
Regulation of gene expression by hypoxia
-
Kenneth N.S., Rocha S. Regulation of gene expression by hypoxia. Biochem. J. 2008, 414:19-29.
-
(2008)
Biochem. J.
, vol.414
, pp. 19-29
-
-
Kenneth, N.S.1
Rocha, S.2
-
46
-
-
11144337759
-
Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators
-
Dery M.A., et al. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 2005, 37:535-540.
-
(2005)
Int. J. Biochem. Cell Biol.
, vol.37
, pp. 535-540
-
-
Dery, M.A.1
-
47
-
-
76049100577
-
HIF-1: upstream and downstream of cancer metabolism
-
Semenza G.L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 2010, 20:51-56.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 51-56
-
-
Semenza, G.L.1
-
48
-
-
33646917296
-
The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism
-
Ullah M.S., et al. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 2006, 281:9030-9037.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 9030-9037
-
-
Ullah, M.S.1
-
49
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
Kim J.W., et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
-
50
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I., et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3:187-197.
-
(2006)
Cell Metab.
, vol.3
, pp. 187-197
-
-
Papandreou, I.1
-
51
-
-
70349478990
-
MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2
-
Chan S.Y., et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009, 10:273-284.
-
(2009)
Cell Metab.
, vol.10
, pp. 273-284
-
-
Chan, S.Y.1
-
52
-
-
42549148534
-
Hypoxic regulation of miR-210: shrinking targets expand HIF-1s influence
-
Corn P.G. Hypoxic regulation of miR-210: shrinking targets expand HIF-1s influence. Cancer Biol. Ther. 2008, 7:265-267.
-
(2008)
Cancer Biol. Ther.
, vol.7
, pp. 265-267
-
-
Corn, P.G.1
-
53
-
-
33947724515
-
HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells
-
Fukuda R., et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007, 129:111-122.
-
(2007)
Cell
, vol.129
, pp. 111-122
-
-
Fukuda, R.1
-
54
-
-
0028268629
-
Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues
-
Koong A.C., et al. Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res. 1994, 54:1425-1430.
-
(1994)
Cancer Res.
, vol.54
, pp. 1425-1430
-
-
Koong, A.C.1
-
55
-
-
78049364235
-
Mechanism of hypoxia-induced NF-κB
-
Culver C., et al. Mechanism of hypoxia-induced NF-κB. Mol. Cell. Biol. 2010, 30:4901-4921.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 4901-4921
-
-
Culver, C.1
-
56
-
-
45349097483
-
Regulation of hypoxia-inducible factor-1α by NF-κB
-
van Uden P., et al. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochem. J. 2008, 412:477-484.
-
(2008)
Biochem. J.
, vol.412
, pp. 477-484
-
-
van Uden, P.1
-
57
-
-
44849100198
-
NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α
-
Rius J., et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 2008, 453:807-811.
-
(2008)
Nature
, vol.453
, pp. 807-811
-
-
Rius, J.1
-
58
-
-
79851471726
-
Evolutionary conserved regulation of HIF-1β by NF-κB
-
van Uden P., et al. Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet. 2011, 7:e1001285.
-
(2011)
PLoS Genet.
, vol.7
-
-
van Uden, P.1
-
59
-
-
77549083560
-
Dangerous liaisons: STAT3 and NF-κB collab oration and crosstalk in cancer
-
Grivennikov S.I., Karin M. Dangerous liaisons: STAT3 and NF-κB collab oration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010, 21:11-19.
-
(2010)
Cytokine Growth Factor Rev.
, vol.21
, pp. 11-19
-
-
Grivennikov, S.I.1
Karin, M.2
-
60
-
-
70350778443
-
An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation
-
Iliopoulos D., et al. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 2009, 139:693-706.
-
(2009)
Cell
, vol.139
, pp. 693-706
-
-
Iliopoulos, D.1
-
61
-
-
79953705886
-
Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
-
Jose C., et al. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?. Biochim. Biophys. Acta 2011, 1807:552-561.
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, pp. 552-561
-
-
Jose, C.1
-
62
-
-
38049182786
-
Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers
-
Facey K., et al. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol. Assess. 2007, 11:1-267.
-
(2007)
Health Technol. Assess.
, vol.11
, pp. 1-267
-
-
Facey, K.1
-
63
-
-
35148889082
-
Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas
-
Lopez-Rios F., et al. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007, 67:9013-9017.
-
(2007)
Cancer Res.
, vol.67
, pp. 9013-9017
-
-
Lopez-Rios, F.1
-
64
-
-
79953747944
-
Respiratory competent mitochondria in human ovarian and peritoneal cancer
-
Lim H.Y., et al. Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion 2011, 11:437-443.
-
(2011)
Mitochondrion
, vol.11
, pp. 437-443
-
-
Lim, H.Y.1
-
65
-
-
79958173253
-
Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells
-
Smolkova K., et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int. J. Biochem. Cell Biol. 2011, 43:950-968.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 950-968
-
-
Smolkova, K.1
-
66
-
-
78649492693
-
Selective activation of p53-mediated tumour suppression in high-grade tumours
-
Junttila M.R., et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 2010, 468:567-571.
-
(2010)
Nature
, vol.468
, pp. 567-571
-
-
Junttila, M.R.1
-
67
-
-
12144289400
-
A physical and functional map of the human TNF-α NF-κB signal transduction pathway
-
Bouwmeester T., et al. A physical and functional map of the human TNF-α NF-κB signal transduction pathway. Nat. Cell Biol. 2004, 6:97-105.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 97-105
-
-
Bouwmeester, T.1
-
68
-
-
0034682972
-
Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75
-
Ran Q., et al. Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem. Biophys. Res. Commun. 2000, 275:174-179.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.275
, pp. 174-179
-
-
Ran, Q.1
-
69
-
-
0037160054
-
Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway
-
Biswas T.K., Getz G.S. Import of yeast mitochondrial transcription factor (Mtf1p) via a nonconventional pathway. J. Biol. Chem. 2002, 277:45704-45714.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 45704-45714
-
-
Biswas, T.K.1
Getz, G.S.2
-
70
-
-
0033506827
-
A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis
-
Casas F., et al. A variant form of the nuclear triiodothyronine receptor c-ErbAα1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell. Biol. 1999, 19:7913-7924.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 7913-7924
-
-
Casas, F.1
|