메뉴 건너뛰기




Volumn 65, Issue 11-12, 2013, Pages 1626-1663

Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery

Author keywords

Biological processing; Device fabrication; Functional materials; Microfluidics; Monodisperse droplets; Parallel flow; Scale up; Unit operation

Indexed keywords

BIOLOGICAL PROCESSING; DEVICE FABRICATIONS; HIGH-THROUGHPUT ANALYSIS; INTERDISCIPLINARY TECHNOLOGIES; MICRO FLUIDIC APPLICATIONS; MONODISPERSE DROPLETS; NOVEL FUNCTIONAL MATERIALS; SCALE-UP;

EID: 84887608703     PISSN: 0169409X     EISSN: 18728294     Source Type: Journal    
DOI: 10.1016/j.addr.2013.07.017     Document Type: Review
Times cited : (279)

References (409)
  • 1
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 2
    • 0011224531 scopus 로고
    • Microchannels made on silicon wafer for measurement of flow properties of blood cells
    • Kikuchi Y., Ohki H., Kaneko T., Sato K. Microchannels made on silicon wafer for measurement of flow properties of blood cells. Biorheology 1989, 26:1055.
    • (1989) Biorheology , vol.26 , pp. 1055
    • Kikuchi, Y.1    Ohki, H.2    Kaneko, T.3    Sato, K.4
  • 3
    • 0026673875 scopus 로고
    • Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology
    • Kikuchi Y., Sato K., Ohki H., Kaneko T. Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology. Microvasc. Res. 1992, 44:226-240.
    • (1992) Microvasc. Res. , vol.44 , pp. 226-240
    • Kikuchi, Y.1    Sato, K.2    Ohki, H.3    Kaneko, T.4
  • 4
    • 0026584033 scopus 로고
    • Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip
    • Manz A., Harrison D.J., Verpoorte E.M.J., Fettinger J.C., Paulus A., Lüdi H., Widmer H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J. Chromatogr. A 1992, 593:253-258.
    • (1992) J. Chromatogr. A , vol.593 , pp. 253-258
    • Manz, A.1    Harrison, D.J.2    Verpoorte, E.M.J.3    Fettinger, J.C.4    Paulus, A.5    Lüdi, H.6    Widmer, H.M.7
  • 5
    • 70349317278 scopus 로고    scopus 로고
    • Parallel multiphase microflows: fundamental physics, stabilization methods and applications
    • Aota A., Mawatari K., Kitamori T. Parallel multiphase microflows: fundamental physics, stabilization methods and applications. Lab Chip 2009, 9:2470-2476.
    • (2009) Lab Chip , vol.9 , pp. 2470-2476
    • Aota, A.1    Mawatari, K.2    Kitamori, T.3
  • 6
    • 77952922120 scopus 로고    scopus 로고
    • Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip
    • Li L., Ismagilov R.F. Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip. Annu. Rev. Biophys. 2010, 39:139-158.
    • (2010) Annu. Rev. Biophys. , vol.39 , pp. 139-158
    • Li, L.1    Ismagilov, R.F.2
  • 7
    • 77957653051 scopus 로고    scopus 로고
    • A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system
    • Liu G., Shen C., Yang Z., Cai X., Zhang H. A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system. Sens. Actuators A 2010, 163:291-296.
    • (2010) Sens. Actuators A , vol.163 , pp. 291-296
    • Liu, G.1    Shen, C.2    Yang, Z.3    Cai, X.4    Zhang, H.5
  • 8
    • 84861841903 scopus 로고    scopus 로고
    • Photoresponsive coumarin-stabilized polymeric nanoparticles as a detectable drug carrier
    • Chung J.W., Lee K., Neikirk C., Nelson C.M., Priestley R.D. Photoresponsive coumarin-stabilized polymeric nanoparticles as a detectable drug carrier. Small 2012, 8:1693-1700.
    • (2012) Small , vol.8 , pp. 1693-1700
    • Chung, J.W.1    Lee, K.2    Neikirk, C.3    Nelson, C.M.4    Priestley, R.D.5
  • 10
    • 37649010665 scopus 로고    scopus 로고
    • Microfluidics for drug discovery and development: From target selection to product lifecycle management
    • Kang L., Chung B.G., Langer R., Khademhosseini A. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov. Today 2008, 13:1-13.
    • (2008) Drug Discov. Today , vol.13 , pp. 1-13
    • Kang, L.1    Chung, B.G.2    Langer, R.3    Khademhosseini, A.4
  • 12
    • 77954970051 scopus 로고    scopus 로고
    • Dynamics of microfluidic droplets
    • Baroud C.N., Gallaire F., Dangla R. Dynamics of microfluidic droplets. Lab Chip 2010, 10:2032-2045.
    • (2010) Lab Chip , vol.10 , pp. 2032-2045
    • Baroud, C.N.1    Gallaire, F.2    Dangla, R.3
  • 14
    • 84863445588 scopus 로고    scopus 로고
    • Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices
    • Vladisavljević G.T., Kobayashi I., Nakajima M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid. Nanofluid. 2012, 13:151-178.
    • (2012) Microfluid. Nanofluid. , vol.13 , pp. 151-178
    • Vladisavljević, G.T.1    Kobayashi, I.2    Nakajima, M.3
  • 15
    • 26944440933 scopus 로고    scopus 로고
    • Controlled microfluidic interfaces
    • Atencia J., Beebe D.J. Controlled microfluidic interfaces. Nature 2005, 437:648-655.
    • (2005) Nature , vol.437 , pp. 648-655
    • Atencia, J.1    Beebe, D.J.2
  • 16
    • 33846374379 scopus 로고    scopus 로고
    • Controlled generation of monodisperse discoid droplets using microchannel arrays
    • Kobayashi I., Uemura K., Nakajima M. Controlled generation of monodisperse discoid droplets using microchannel arrays. Langmuir 2006, 22:10893-10897.
    • (2006) Langmuir , vol.22 , pp. 10893-10897
    • Kobayashi, I.1    Uemura, K.2    Nakajima, M.3
  • 17
  • 18
    • 84874506976 scopus 로고    scopus 로고
    • Large-scale droplet production in microfluidic devices - an industrial perspective
    • Holtze C. Large-scale droplet production in microfluidic devices - an industrial perspective. J. Phys. D Appl. Phys. 2013, 46:114008.
    • (2013) J. Phys. D Appl. Phys. , vol.46 , pp. 114008
    • Holtze, C.1
  • 19
    • 38349103622 scopus 로고    scopus 로고
    • Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators
    • Li W., Young E.W.K., Seo M., Nie Z., Garstecki P., Simmons C.A., Kumacheva E. Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 2008, 4:258-262.
    • (2008) Soft Matter , vol.4 , pp. 258-262
    • Li, W.1    Young, E.W.K.2    Seo, M.3    Nie, Z.4    Garstecki, P.5    Simmons, C.A.6    Kumacheva, E.7
  • 20
    • 38849164275 scopus 로고    scopus 로고
    • Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
    • Nisisako T., Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 2008, 8:287-293.
    • (2008) Lab Chip , vol.8 , pp. 287-293
    • Nisisako, T.1    Torii, T.2
  • 21
    • 70349303088 scopus 로고    scopus 로고
    • Parallelized edge-based droplet generation (EDGE) devices
    • van Dijke K., Veldhuis G., Schroen K., Boom R. Parallelized edge-based droplet generation (EDGE) devices. Lab Chip 2009, 9:2824-2830.
    • (2009) Lab Chip , vol.9 , pp. 2824-2830
    • van Dijke, K.1    Veldhuis, G.2    Schroen, K.3    Boom, R.4
  • 22
    • 77649237831 scopus 로고    scopus 로고
    • Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip
    • Kobayashi I., Wada Y., Uemura K., Nakajima M. Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip. Microfluid. Nanofluid. 2010, 8:255-262.
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 255-262
    • Kobayashi, I.1    Wada, Y.2    Uemura, K.3    Nakajima, M.4
  • 23
    • 84887606764 scopus 로고    scopus 로고
    • Large microchannel emulsification device for mass producing uniformly sized droplets on a liter per hour scale
    • Kobayashi I., Neves Marcos A., Wada Y., Uemura K., Nakajima M. Large microchannel emulsification device for mass producing uniformly sized droplets on a liter per hour scale. Green Process. Sci. 2012, 1:353.
    • (2012) Green Process. Sci. , vol.1 , pp. 353
    • Kobayashi, I.1    Neves Marcos, A.2    Wada, Y.3    Uemura, K.4    Nakajima, M.5
  • 24
    • 0035807144 scopus 로고    scopus 로고
    • Interfacial tension driven monodispersed droplet formation from microfabricated channel array
    • Sugiura S., Nakajima M., Iwamoto S., Seki M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 2001, 17:5562-5566.
    • (2001) Langmuir , vol.17 , pp. 5562-5566
    • Sugiura, S.1    Nakajima, M.2    Iwamoto, S.3    Seki, M.4
  • 25
    • 84856142118 scopus 로고    scopus 로고
    • High throughput production of single core double emulsions in a parallelized microfluidic device
    • Romanowsky M.B., Abate A.R., Rotem A., Holtze C., Weitz D.A. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 2012, 12:802-807.
    • (2012) Lab Chip , vol.12 , pp. 802-807
    • Romanowsky, M.B.1    Abate, A.R.2    Rotem, A.3    Holtze, C.4    Weitz, D.A.5
  • 26
    • 34548152794 scopus 로고    scopus 로고
    • Multiphase flow in microfluidic systems - control and applications of droplets and interfaces
    • Shui L., Eijkel J.C.T., van den Berg A. Multiphase flow in microfluidic systems - control and applications of droplets and interfaces. Adv. Colloid Interf. Sci. 2007, 133:35-49.
    • (2007) Adv. Colloid Interf. Sci. , vol.133 , pp. 35-49
    • Shui, L.1    Eijkel, J.C.T.2    Van Den Berg, A.3
  • 28
    • 84874688993 scopus 로고    scopus 로고
    • Chip in a lab: microfluidics for next generation life science research
    • Streets A.M., Huang Y. Chip in a lab: microfluidics for next generation life science research. Biomicrofluidics 2013, 7:11302-11323.
    • (2013) Biomicrofluidics , vol.7 , pp. 11302-11323
    • Streets, A.M.1    Huang, Y.2
  • 30
    • 34347256054 scopus 로고    scopus 로고
    • Microfluidic large-scale integration: the evolution of design rules for biological automation
    • Melin J., Quake S.R. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 2007, 36:213-231.
    • (2007) Annu. Rev. Biophys. Biomol. Struct. , vol.36 , pp. 213-231
    • Melin, J.1    Quake, S.R.2
  • 31
    • 78149268198 scopus 로고    scopus 로고
    • Biological applications of microfluidic gradient devices
    • Kim S., Kim H.J., Jeon N.L. Biological applications of microfluidic gradient devices. Integr. Biol. 2010, 2:584-603.
    • (2010) Integr. Biol. , vol.2 , pp. 584-603
    • Kim, S.1    Kim, H.J.2    Jeon, N.L.3
  • 32
    • 33645844551 scopus 로고    scopus 로고
    • PCR microfluidic devices for DNA amplification
    • Zhang C., Xu J., Ma W., Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006, 24:243-284.
    • (2006) Biotechnol. Adv. , vol.24 , pp. 243-284
    • Zhang, C.1    Xu, J.2    Ma, W.3    Zheng, W.4
  • 34
    • 77957019165 scopus 로고    scopus 로고
    • Micro-scale and microfluidic devices for neurobiology
    • Taylor A.M., Jeon N.L. Micro-scale and microfluidic devices for neurobiology. Curr. Opin. Neurobiol. 2010, 20:640-647.
    • (2010) Curr. Opin. Neurobiol. , vol.20 , pp. 640-647
    • Taylor, A.M.1    Jeon, N.L.2
  • 35
    • 8644241679 scopus 로고    scopus 로고
    • Computerized microfluidic cell culture using elastomeric channels and Braille displays
    • Gu W., Zhu X., Futai N., Cho B.S., Takayama S. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:15861-15866.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 15861-15866
    • Gu, W.1    Zhu, X.2    Futai, N.3    Cho, B.S.4    Takayama, S.5
  • 39
    • 79959736407 scopus 로고    scopus 로고
    • Microfluidic chips for point-of-care immunodiagnostics
    • Gervais L., de Rooij N., Delamarche E. Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 2011, 23:H151-H176.
    • (2011) Adv. Mater. , vol.23
    • Gervais, L.1    de Rooij, N.2    Delamarche, E.3
  • 42
    • 57449115750 scopus 로고    scopus 로고
    • Microfluidic crystallization
    • Leng J., Salmon J.B. Microfluidic crystallization. Lab Chip 2009, 9:24-34.
    • (2009) Lab Chip , vol.9 , pp. 24-34
    • Leng, J.1    Salmon, J.B.2
  • 43
    • 0031101583 scopus 로고    scopus 로고
    • Regular-sized cell creation in microchannel emulsification by visual microprocessing method
    • Kawakatsu T., Kikuchi Y., Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 1997, 74:317-321.
    • (1997) J. Am. Oil Chem. Soc. , vol.74 , pp. 317-321
    • Kawakatsu, T.1    Kikuchi, Y.2    Nakajima, M.3
  • 44
    • 0036706717 scopus 로고    scopus 로고
    • Silicon array of elongated through-holes for monodisperse emulsion droplets
    • Kobayashi I., Nakajima M., Chun K., Kikuchi Y., Fujita H. Silicon array of elongated through-holes for monodisperse emulsion droplets. AICHE J. 2002, 48:1639-1644.
    • (2002) AICHE J. , vol.48 , pp. 1639-1644
    • Kobayashi, I.1    Nakajima, M.2    Chun, K.3    Kikuchi, Y.4    Fujita, H.5
  • 45
    • 2542479139 scopus 로고    scopus 로고
    • Novel microreactors for functional polymer beads
    • Nisisako T., Torii T., Higuchi T. Novel microreactors for functional polymer beads. Chem. Eng. J. 2004, 101:23-29.
    • (2004) Chem. Eng. J. , vol.101 , pp. 23-29
    • Nisisako, T.1    Torii, T.2    Higuchi, T.3
  • 47
    • 0035505906 scopus 로고    scopus 로고
    • A fast prototyping process for fabrication of microfluidic systems on soda-lime glass
    • Lin C.H., Lee G.B., Lin Y.H., Chang G.L. A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J. Micromech. Microeng. 2001, 11:726.
    • (2001) J. Micromech. Microeng. , vol.11 , pp. 726
    • Lin, C.H.1    Lee, G.B.2    Lin, Y.H.3    Chang, G.L.4
  • 48
    • 9144257375 scopus 로고    scopus 로고
    • Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices
    • Okushima S., Nisisako T., Torii T., Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 2004, 20:9905-9908.
    • (2004) Langmuir , vol.20 , pp. 9905-9908
    • Okushima, S.1    Nisisako, T.2    Torii, T.3    Higuchi, T.4
  • 49
    • 33747265789 scopus 로고    scopus 로고
    • Design, fabrication and testing of a catalytic microreactor for hydrogen production
    • Kim T., Kwon S. Design, fabrication and testing of a catalytic microreactor for hydrogen production. J. Micromech. Microeng. 2006, 16:1760.
    • (2006) J. Micromech. Microeng. , vol.16 , pp. 1760
    • Kim, T.1    Kwon, S.2
  • 50
    • 84865259904 scopus 로고    scopus 로고
    • High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces
    • Nisisako T., Ando T., Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip 2012, 12:3426-3435.
    • (2012) Lab Chip , vol.12 , pp. 3426-3435
    • Nisisako, T.1    Ando, T.2    Hatsuzawa, T.3
  • 51
    • 0032508911 scopus 로고    scopus 로고
    • Development and applications of very high flux microfiltration membranes
    • Kuiper S., van Rijn C.J.M., Nijdam W., Elwenspoek M.C. Development and applications of very high flux microfiltration membranes. J. Membr. Sci. 1998, 150:1-8.
    • (1998) J. Membr. Sci. , vol.150 , pp. 1-8
    • Kuiper, S.1    van Rijn, C.J.M.2    Nijdam, W.3    Elwenspoek, M.C.4
  • 52
    • 84857362888 scopus 로고    scopus 로고
    • Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices
    • Jena R., Yue C.Y., Lam Y.C. Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsyst. Technol. 2012, 18:159-166.
    • (2012) Microsyst. Technol. , vol.18 , pp. 159-166
    • Jena, R.1    Yue, C.Y.2    Lam, Y.C.3
  • 53
    • 77955908299 scopus 로고    scopus 로고
    • Cyclic olefin polymers: emerging materials for lab-on-a-chip applications
    • Nunes P., Ohlsson P., Ordeig O., Kutter J. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid. Nanofluid. 2010, 9:145-161.
    • (2010) Microfluid. Nanofluid. , vol.9 , pp. 145-161
    • Nunes, P.1    Ohlsson, P.2    Ordeig, O.3    Kutter, J.4
  • 54
    • 20444412016 scopus 로고    scopus 로고
    • Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors
    • Nie Z., Xu S., Seo M., Lewis P.C., Kumacheva E. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc. 2005, 127:8058-8063.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 8058-8063
    • Nie, Z.1    Xu, S.2    Seo, M.3    Lewis, P.C.4    Kumacheva, E.5
  • 55
    • 4544366400 scopus 로고    scopus 로고
    • Dynamic pattern formation in a vesicle-generating microfluidic device
    • Thorsen T., Roberts R.W., Arnold F.H., Quake S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 2001, 86:4163-4166.
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 4163-4166
    • Thorsen, T.1    Roberts, R.W.2    Arnold, F.H.3    Quake, S.R.4
  • 56
    • 77955336135 scopus 로고    scopus 로고
    • Process robustness of hot embossing microfluidic devices
    • Eusner T., Hale M., Hardt D.E. Process robustness of hot embossing microfluidic devices. J. Manuf. Sci. Eng. 2010, 132:30920-30928.
    • (2010) J. Manuf. Sci. Eng. , vol.132 , pp. 30920-30928
    • Eusner, T.1    Hale, M.2    Hardt, D.E.3
  • 57
    • 23944481821 scopus 로고    scopus 로고
    • Effect of channel structure on preparation of a water-in-oil emulsion by polymer microchannels
    • Liu H., Nakajima M., Nishi T., Kimura T. Effect of channel structure on preparation of a water-in-oil emulsion by polymer microchannels. Eur. J. Lipid Sci. Technol. 2005, 107:481-487.
    • (2005) Eur. J. Lipid Sci. Technol. , vol.107 , pp. 481-487
    • Liu, H.1    Nakajima, M.2    Nishi, T.3    Kimura, T.4
  • 58
    • 0037789505 scopus 로고    scopus 로고
    • Droplet formation in a microchannel network
    • Nisisako T., Torii T., Higuchi T. Droplet formation in a microchannel network. Lab Chip 2002, 2:24-26.
    • (2002) Lab Chip , vol.2 , pp. 24-26
    • Nisisako, T.1    Torii, T.2    Higuchi, T.3
  • 59
    • 72149116438 scopus 로고    scopus 로고
    • Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures
    • Yeh C.H., Lin P.W., Lin Y.C. Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluid. Nanofluid. 2010, 8:115-121.
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 115-121
    • Yeh, C.H.1    Lin, P.W.2    Lin, Y.C.3
  • 60
    • 69549108398 scopus 로고    scopus 로고
    • Monodisperse semi-permeable microcapsules for continuous observation of cells
    • Morimoto Y., Tan W.H., Tsuda Y., Takeuchi S. Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab Chip 2009, 9:2217-2223.
    • (2009) Lab Chip , vol.9 , pp. 2217-2223
    • Morimoto, Y.1    Tan, W.H.2    Tsuda, Y.3    Takeuchi, S.4
  • 61
    • 33845773955 scopus 로고    scopus 로고
    • High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector
    • Kim K., Lee J.B. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst. Technol. 2007, 13:231-235.
    • (2007) Microsyst. Technol. , vol.13 , pp. 231-235
    • Kim, K.1    Lee, J.B.2
  • 64
    • 0031101583 scopus 로고    scopus 로고
    • Regular-sized cell creation in microchannel emulsification by visual microprocessing method
    • Kawakatsu T., Kikuchi Y., Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 1997, 74:317-321.
    • (1997) J. Am. Oil Chem. Soc. , vol.74 , pp. 317-321
    • Kawakatsu, T.1    Kikuchi, Y.2    Nakajima, M.3
  • 65
    • 0035314111 scopus 로고    scopus 로고
    • The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification
    • Kawakatsu T., Tragardh G., Tragardh C., Nakajima M., Oda N., Yonemoto T. The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloids Surf. A 2001, 179:29-37.
    • (2001) Colloids Surf. A , vol.179 , pp. 29-37
    • Kawakatsu, T.1    Tragardh, G.2    Tragardh, C.3    Nakajima, M.4    Oda, N.5    Yonemoto, T.6
  • 66
    • 67649388150 scopus 로고    scopus 로고
    • Production of monodisperse water-in-oil emulsions consisting of highly uniform droplets using asymmetric straight-through microchannel arrays
    • Kobayashi I., Murayama Y., Kuroiwa T., Uemura K., Nakajima M. Production of monodisperse water-in-oil emulsions consisting of highly uniform droplets using asymmetric straight-through microchannel arrays. Microfluid. Nanofluid. 2009, 7:107-119.
    • (2009) Microfluid. Nanofluid. , vol.7 , pp. 107-119
    • Kobayashi, I.1    Murayama, Y.2    Kuroiwa, T.3    Uemura, K.4    Nakajima, M.5
  • 70
    • 79953199826 scopus 로고    scopus 로고
    • Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
    • Wilson M.E., Kota N., Kim Y., Wang Y., Stolz D.B., LeDuc P.R., Ozdoganlar O.B. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 2011, 11:1550-1555.
    • (2011) Lab Chip , vol.11 , pp. 1550-1555
    • Wilson, M.E.1    Kota, N.2    Kim, Y.3    Wang, Y.4    Stolz, D.B.5    LeDuc, P.R.6    Ozdoganlar, O.B.7
  • 71
    • 78751469492 scopus 로고    scopus 로고
    • A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS)
    • Abdelgawad M., Wu C., Chien W.Y., Geddie W.R., Jewett M.A.S., Sun Y. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Lab Chip 2011, 11:545-551.
    • (2011) Lab Chip , vol.11 , pp. 545-551
    • Abdelgawad, M.1    Wu, C.2    Chien, W.Y.3    Geddie, W.R.4    Jewett, M.A.S.5    Sun, Y.6
  • 72
    • 2342574189 scopus 로고    scopus 로고
    • Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining
    • Zhao D.S., Roy B., McCormick M.T., Kuhr W.G., Brazill S.A. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining. Lab Chip 2003, 3:93-99.
    • (2003) Lab Chip , vol.3 , pp. 93-99
    • Zhao, D.S.1    Roy, B.2    McCormick, M.T.3    Kuhr, W.G.4    Brazill, S.A.5
  • 73
    • 84863461115 scopus 로고    scopus 로고
    • Microfluidic synthesis of polymer particles with non-conventional shapes
    • John Wiley & Sons, Chichester, UK, E. Kumacheva, P. Garstecki (Eds.)
    • Kumacheva E., Garstecki P. Microfluidic synthesis of polymer particles with non-conventional shapes. Microfluidic Reactors for Polymer Particles 2011, 192-214. John Wiley & Sons, Chichester, UK. E. Kumacheva, P. Garstecki (Eds.).
    • (2011) Microfluidic Reactors for Polymer Particles , pp. 192-214
    • Kumacheva, E.1    Garstecki, P.2
  • 77
    • 1242333042 scopus 로고    scopus 로고
    • Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane)
    • Hillborg H., Tomczak N., Olàh A., Schönherr H., Vancso G.J. Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane). Langmuir 2003, 20:785-794.
    • (2003) Langmuir , vol.20 , pp. 785-794
    • Hillborg, H.1    Tomczak, N.2    Olàh, A.3    Schönherr, H.4    Vancso, G.J.5
  • 78
    • 41149120044 scopus 로고    scopus 로고
    • Glass coating for PDMS microfluidic channels by sol-gel methods
    • Abate A.R., Lee D., Do T., Holtze C., Weitz D.A. Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip 2008, 8:516-518.
    • (2008) Lab Chip , vol.8 , pp. 516-518
    • Abate, A.R.1    Lee, D.2    Do, T.3    Holtze, C.4    Weitz, D.A.5
  • 79
    • 77954116553 scopus 로고    scopus 로고
    • Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions
    • Bauer W.-A.C., Fischlechner M., Abell C., Huck W.T.S. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 2010, 10:1814-1819.
    • (2010) Lab Chip , vol.10 , pp. 1814-1819
    • Bauer, W.-A.C.1    Fischlechner, M.2    Abell, C.3    Huck, W.T.S.4
  • 80
    • 34547373189 scopus 로고    scopus 로고
    • Screening of the effect of surface energy of microchannels on microfluidic emulsification
    • Li W., Nie Z., Zhang H., Paquet C., Seo M., Garstecki P., Kumacheva E. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Langmuir 2007, 23:8010-8014.
    • (2007) Langmuir , vol.23 , pp. 8010-8014
    • Li, W.1    Nie, Z.2    Zhang, H.3    Paquet, C.4    Seo, M.5    Garstecki, P.6    Kumacheva, E.7
  • 81
    • 73449143825 scopus 로고    scopus 로고
    • Recent developments in PDMS surface modification for microfluidic devices
    • Zhou J., Ellis A.V., Voelcker N.H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010, 31:2-16.
    • (2010) Electrophoresis , vol.31 , pp. 2-16
    • Zhou, J.1    Ellis, A.V.2    Voelcker, N.H.3
  • 83
    • 4544233318 scopus 로고    scopus 로고
    • A new masking technology for deep glass etching and its microfluidic application
    • Bu M., Melvin T., Ensell G.J., Wilkinson J.S., Evans A.G.R. A new masking technology for deep glass etching and its microfluidic application. Sens. Actuators A 2004, 115:476-482.
    • (2004) Sens. Actuators A , vol.115 , pp. 476-482
    • Bu, M.1    Melvin, T.2    Ensell, G.J.3    Wilkinson, J.S.4    Evans, A.G.R.5
  • 84
    • 0035128005 scopus 로고    scopus 로고
    • Deep reactive ion etching of Pyrex glass using SF6 plasma
    • Li X., Abe T., Esashi M. Deep reactive ion etching of Pyrex glass using SF6 plasma. Sens. Actuators A 2001, 87:139-145.
    • (2001) Sens. Actuators A , vol.87 , pp. 139-145
    • Li, X.1    Abe, T.2    Esashi, M.3
  • 85
    • 70350648879 scopus 로고    scopus 로고
    • Fabrication of microfluidic mixers with varying topography in glass using the powder blasting process
    • Sayah A., Thivolle P.A., Parashar V.K., Gijs M.A.M. Fabrication of microfluidic mixers with varying topography in glass using the powder blasting process. J. Micromech. Microeng. 2009, 19:085024.
    • (2009) J. Micromech. Microeng. , vol.19 , pp. 085024
    • Sayah, A.1    Thivolle, P.A.2    Parashar, V.K.3    Gijs, M.A.M.4
  • 87
    • 3042600829 scopus 로고    scopus 로고
    • Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass
    • Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl. Phys. A 2004, 79:605-612.
    • (2004) Appl. Phys. A , vol.79 , pp. 605-612
  • 89
    • 84866080629 scopus 로고    scopus 로고
    • Fabrication of microfluidics structures on different glasses by simplified imprinting technique
    • Chen Q., Chen Q., Maccioni G. Fabrication of microfluidics structures on different glasses by simplified imprinting technique. Curr. Appl. Phys. 2013, 13:256-261.
    • (2013) Curr. Appl. Phys. , vol.13 , pp. 256-261
    • Chen, Q.1    Chen, Q.2    Maccioni, G.3
  • 90
    • 17644415370 scopus 로고    scopus 로고
    • Monodisperse double emulsions generated from a microcapillary device
    • Utada A., Lorenceau E., Link D., Kaplan P., Stone H.W., Weitz D.A. Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308:537-541.
    • (2005) Science , vol.308 , pp. 537-541
    • Utada, A.1    Lorenceau, E.2    Link, D.3    Kaplan, P.4    Stone, H.W.5    Weitz, D.A.6
  • 92
    • 84887606380 scopus 로고    scopus 로고
    • Inkjet Printing Head and Inkjet Printing Head Manufacturing Method, in: US (Ed.)
    • H. Hotomi, Inkjet Printing Head and Inkjet Printing Head Manufacturing Method, in: US (Ed.), 2001.
    • (2001)
    • Hotomi, H.1
  • 93
    • 70450228575 scopus 로고    scopus 로고
    • Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing
    • Lin C.H., Jiang L., Chai Y.H., Xiao H., Chen S.J., Tsai H.L. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing. Appl. Phys. A 2009, 97:751-757.
    • (2009) Appl. Phys. A , vol.97 , pp. 751-757
    • Lin, C.H.1    Jiang, L.2    Chai, Y.H.3    Xiao, H.4    Chen, S.J.5    Tsai, H.L.6
  • 95
    • 75749115166 scopus 로고    scopus 로고
    • Research on microchannel of PMMA microfluidic chip under various injection molding parameters
    • Jiang B., Liu Y., Chu C., Qiu Q. Research on microchannel of PMMA microfluidic chip under various injection molding parameters. Adv. Mater. Res. 2010, 87-88:381-386.
    • (2010) Adv. Mater. Res. , pp. 381-386
    • Jiang, B.1    Liu, Y.2    Chu, C.3    Qiu, Q.4
  • 96
    • 33748535152 scopus 로고    scopus 로고
    • Preparation of highly monodisperse droplet in a T-junction microfluidic device
    • Xu J.H., Li S.W., Tan J., Wang Y.J., Luo G.S. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AICHE J. 2006, 52:3005-3010.
    • (2006) AICHE J. , vol.52 , pp. 3005-3010
    • Xu, J.H.1    Li, S.W.2    Tan, J.3    Wang, Y.J.4    Luo, G.S.5
  • 99
    • 49949102039 scopus 로고    scopus 로고
    • High-aspect-ratio through-hole array microfabricated in a PMMA plate for monodisperse emulsion production
    • Kobayashi I., Hirose S., Katoh T., Zhang Y., Uemura K., Nakajima M. High-aspect-ratio through-hole array microfabricated in a PMMA plate for monodisperse emulsion production. Microsyst. Technol. 2008, 14:1349-1357.
    • (2008) Microsyst. Technol. , vol.14 , pp. 1349-1357
    • Kobayashi, I.1    Hirose, S.2    Katoh, T.3    Zhang, Y.4    Uemura, K.5    Nakajima, M.6
  • 100
    • 27744503369 scopus 로고    scopus 로고
    • Highly selective methanation by the use of a microchannel reactor
    • Görke O., Pfeifer P., Schubert K. Highly selective methanation by the use of a microchannel reactor. Catal. Today 2005, 110:132-139.
    • (2005) Catal. Today , vol.110 , pp. 132-139
    • Görke, O.1    Pfeifer, P.2    Schubert, K.3
  • 101
    • 27744540198 scopus 로고    scopus 로고
    • Gas phase catalytic partial oxidation of toluene in a microchannel reactor
    • Ge H., Chen G., Yuan Q., Li H. Gas phase catalytic partial oxidation of toluene in a microchannel reactor. Catal. Today 2005, 110:171-178.
    • (2005) Catal. Today , vol.110 , pp. 171-178
    • Ge, H.1    Chen, G.2    Yuan, Q.3    Li, H.4
  • 102
    • 84866762229 scopus 로고    scopus 로고
    • Microchannel emulsification using stainless-steel chips: oil droplet generation characteristics
    • Kobayashi I., Wada Y., Hori Y., Neves M.A., Uemura K., Nakajima M. Microchannel emulsification using stainless-steel chips: oil droplet generation characteristics. Chem. Eng. Technol. 2012, 35:1865-1871.
    • (2012) Chem. Eng. Technol. , vol.35 , pp. 1865-1871
    • Kobayashi, I.1    Wada, Y.2    Hori, Y.3    Neves, M.A.4    Uemura, K.5    Nakajima, M.6
  • 103
    • 52949093842 scopus 로고    scopus 로고
    • Generation of uniform drops via through-hole arrays micromachined in stainless-steel plates
    • Kobayashi I., Wada Y., Uemura K., Nakajima M. Generation of uniform drops via through-hole arrays micromachined in stainless-steel plates. Microfluid. Nanofluid. 2008, 5:677-687.
    • (2008) Microfluid. Nanofluid. , vol.5 , pp. 677-687
    • Kobayashi, I.1    Wada, Y.2    Uemura, K.3    Nakajima, M.4
  • 104
    • 84866108686 scopus 로고    scopus 로고
    • Emulsion templating of poly(lactic acid) particles: droplet formation behavior
    • Vladisavljević G.T., Duncanson W.J., Shum H.C., Weitz D.A. Emulsion templating of poly(lactic acid) particles: droplet formation behavior. Langmuir 2012, 28:12948-12954.
    • (2012) Langmuir , vol.28 , pp. 12948-12954
    • Vladisavljević, G.T.1    Duncanson, W.J.2    Shum, H.C.3    Weitz, D.A.4
  • 106
    • 15444376608 scopus 로고    scopus 로고
    • Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets
    • He M., Edgar J.S., Jeffries G.D.M., Lorenz R.M., Shelby J.P., Chiu D.T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 2005, 77:1539-1544.
    • (2005) Anal. Chem. , vol.77 , pp. 1539-1544
    • He, M.1    Edgar, J.S.2    Jeffries, G.D.M.3    Lorenz, R.M.4    Shelby, J.P.5    Chiu, D.T.6
  • 108
    • 15844392396 scopus 로고    scopus 로고
    • Controlled synthesis of nonspherical microparticles using microfluidics
    • Dendukuri D., Tsoi K., Hatton T.A., Doyle P.S. Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 2005, 21:2113-2116.
    • (2005) Langmuir , vol.21 , pp. 2113-2116
    • Dendukuri, D.1    Tsoi, K.2    Hatton, T.A.3    Doyle, P.S.4
  • 110
    • 33644648479 scopus 로고    scopus 로고
    • Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up
    • Garstecki P., Fuerstman M.J., Stone H.A., Whitesides G.M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 2006, 6:437-446.
    • (2006) Lab Chip , vol.6 , pp. 437-446
    • Garstecki, P.1    Fuerstman, M.J.2    Stone, H.A.3    Whitesides, G.M.4
  • 111
    • 54149097192 scopus 로고    scopus 로고
    • Geometry-controlled droplet generation in head-on microfluidic devices
    • 153113-1-153113-3
    • Shui L., Mugele F., van den Berg A., Eijkel J.C.T. Geometry-controlled droplet generation in head-on microfluidic devices. Appl. Phys. Lett. 2008, 93:153113-1-153113-3.
    • (2008) Appl. Phys. Lett. , vol.93
    • Shui, L.1    Mugele, F.2    Van Den Berg, A.3    Eijkel, J.C.T.4
  • 112
    • 78650993711 scopus 로고    scopus 로고
    • Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices
    • Wang K., Lu Y.C., Xu J.H., Tan J., Luo G.S. Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices. AICHE J. 2011, 57:299-306.
    • (2011) AICHE J. , vol.57 , pp. 299-306
    • Wang, K.1    Lu, Y.C.2    Xu, J.H.3    Tan, J.4    Luo, G.S.5
  • 113
    • 63649132933 scopus 로고    scopus 로고
    • Liquid-liquid micro-dispersion in a double-pore T-shaped microfluidic device
    • Wang K., Lu Y.C., Xu J.H., Tan J., Luo G.S. Liquid-liquid micro-dispersion in a double-pore T-shaped microfluidic device. Microfluid. Nanofluid. 2009, 6:557-564.
    • (2009) Microfluid. Nanofluid. , vol.6 , pp. 557-564
    • Wang, K.1    Lu, Y.C.2    Xu, J.H.3    Tan, J.4    Luo, G.S.5
  • 114
    • 73849138839 scopus 로고    scopus 로고
    • Capillary instability, squeezing, and shearing in head-on microfluidic devices
    • Shui L., van den Berg A., Eijkel J.C.T. Capillary instability, squeezing, and shearing in head-on microfluidic devices. J. Appl. Phys. 2009, 106:124305-124307.
    • (2009) J. Appl. Phys. , vol.106 , pp. 124305-124307
    • Shui, L.1    Van Den Berg, A.2    Eijkel, J.C.T.3
  • 115
    • 61849139040 scopus 로고    scopus 로고
    • Interfacial tension controlled W/O and O/W 2-phase flows in microchannel
    • Shui L., van den Berg A., Eijkel J.C.T. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab Chip 2009, 9:795-801.
    • (2009) Lab Chip , vol.9 , pp. 795-801
    • Shui, L.1    Van Den Berg, A.2    Eijkel, J.C.T.3
  • 116
    • 33748764124 scopus 로고    scopus 로고
    • Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device
    • Xu J.H., Li S.W., Tan J., Wang Y.J., Luo G.S. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir 2006, 22:7943-7946.
    • (2006) Langmuir , vol.22 , pp. 7943-7946
    • Xu, J.H.1    Li, S.W.2    Tan, J.3    Wang, Y.J.4    Luo, G.S.5
  • 117
    • 38049105986 scopus 로고    scopus 로고
    • Transition from squeezing to dripping in a microfluidic T-shaped junction
    • De Menech M., Garstecki P., Jousse F., Stone H.A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 2008, 595:141-161.
    • (2008) J. Fluid Mech. , vol.595 , pp. 141-161
    • De Menech, M.1    Garstecki, P.2    Jousse, F.3    Stone, H.A.4
  • 119
    • 54849413967 scopus 로고    scopus 로고
    • Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping
    • Xu J.H., Li S.W., Tan J., Luo G.S. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluid. 2008, 5:711-717.
    • (2008) Microfluid. Nanofluid. , vol.5 , pp. 711-717
    • Xu, J.H.1    Li, S.W.2    Tan, J.3    Luo, G.S.4
  • 120
    • 59649121953 scopus 로고    scopus 로고
    • Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction
    • Murshed S.M.S., Tan S., Nguyen N., Wong T., Yobas L. Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluid. Nanofluid. 2009, 6:253-259.
    • (2009) Microfluid. Nanofluid. , vol.6 , pp. 253-259
    • Murshed, S.M.S.1    Tan, S.2    Nguyen, N.3    Wong, T.4    Yobas, L.5
  • 121
    • 58149344958 scopus 로고    scopus 로고
    • On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves
    • Lin B.C., Su Y.C. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves. J. Microelectromech. Syst. 2008, 18:115005.
    • (2008) J. Microelectromech. Syst. , vol.18 , pp. 115005
    • Lin, B.C.1    Su, Y.C.2
  • 122
    • 69249206726 scopus 로고    scopus 로고
    • Predictive model on micro droplet generation through mechanical cutting
    • Lee W.S., Jambovane S., Kim D., Hong J. Predictive model on micro droplet generation through mechanical cutting. Microfluid. Nanofluid. 2009, 7:431-438.
    • (2009) Microfluid. Nanofluid. , vol.7 , pp. 431-438
    • Lee, W.S.1    Jambovane, S.2    Kim, D.3    Hong, J.4
  • 124
    • 45749106469 scopus 로고
    • On the instability of jets
    • Rayleigh L. On the instability of jets. Proc. Lond. Math. Soc. 1879, 10:4-13.
    • (1879) Proc. Lond. Math. Soc. , vol.10 , pp. 4-13
    • Rayleigh, L.1
  • 125
    • 33244490039 scopus 로고    scopus 로고
    • Monodispersed microfluidic droplet generation by shear focusing microfluidic device
    • Tan Y.C., Cristini V., Lee A.P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens. Actuators B 2006, 114:350-356.
    • (2006) Sens. Actuators B , vol.114 , pp. 350-356
    • Tan, Y.C.1    Cristini, V.2    Lee, A.P.3
  • 126
    • 38649098775 scopus 로고    scopus 로고
    • Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up
    • Tan J., Xu J.H., Li S.W., Luo G.S. Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem. Eng. J. 2008, 136:306-311.
    • (2008) Chem. Eng. J. , vol.136 , pp. 306-311
    • Tan, J.1    Xu, J.H.2    Li, S.W.3    Luo, G.S.4
  • 127
    • 78650325724 scopus 로고    scopus 로고
    • One-step formation of multiple emulsions in microfluidics
    • Abate A.R., Thiele J., Weitz D.A. One-step formation of multiple emulsions in microfluidics. Lab Chip 2011, 11:253-258.
    • (2011) Lab Chip , vol.11 , pp. 253-258
    • Abate, A.R.1    Thiele, J.2    Weitz, D.A.3
  • 128
    • 65249118438 scopus 로고    scopus 로고
    • Characterization of emulsification at flat microchannel Y junctions
    • Steegmans M.L.J., Schroën K.G.P.H., Boom R.M. Characterization of emulsification at flat microchannel Y junctions. Langmuir 2009, 25:3396-3401.
    • (2009) Langmuir , vol.25 , pp. 3396-3401
    • Steegmans, M.L.J.1    Schroën, K.G.P.H.2    Boom, R.M.3
  • 131
    • 0002873918 scopus 로고    scopus 로고
    • Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors)
    • Weigl B.H., Kriebel J., Mayes K.J., Bui T., Yager P. Whole blood diagnostics in standard gravity and microgravity by use of microfluidic structures (T-sensors). Microchim. Acta 1999, 131:75-83.
    • (1999) Microchim. Acta , vol.131 , pp. 75-83
    • Weigl, B.H.1    Kriebel, J.2    Mayes, K.J.3    Bui, T.4    Yager, P.5
  • 132
    • 24344492069 scopus 로고    scopus 로고
    • Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system
    • Nisisako T., Okushima S., Torii T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 2005, 1:23-27.
    • (2005) Soft Matter , vol.1 , pp. 23-27
    • Nisisako, T.1    Okushima, S.2    Torii, T.3
  • 134
    • 0033516506 scopus 로고    scopus 로고
    • Microfabrication inside capillaries using multiphase laminar flow patterning
    • Kenis P., Ismagilov R., Whitesides G. Microfabrication inside capillaries using multiphase laminar flow patterning. Science 1999, 285:83-85.
    • (1999) Science , vol.285 , pp. 83-85
    • Kenis, P.1    Ismagilov, R.2    Whitesides, G.3
  • 135
    • 10644260619 scopus 로고    scopus 로고
    • Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes
    • Jeong W., Kim J., Kim S., Lee S., Mensing G., Beebe D.J. Hydrodynamic microfabrication via "on the fly" photopolymerization of microscale fibers and tubes. Lab Chip 2004, 4:576-580.
    • (2004) Lab Chip , vol.4 , pp. 576-580
    • Jeong, W.1    Kim, J.2    Kim, S.3    Lee, S.4    Mensing, G.5    Beebe, D.J.6
  • 136
    • 0033640011 scopus 로고    scopus 로고
    • Monodisperse emulsion generation via drop break off in a coflowing stream
    • Umbanhowar P.B., Prasad V., Weitz D.A. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 1999, 16:347-351.
    • (1999) Langmuir , vol.16 , pp. 347-351
    • Umbanhowar, P.B.1    Prasad, V.2    Weitz, D.A.3
  • 138
    • 84870693495 scopus 로고    scopus 로고
    • Control over the shell thickness of core/shell drops in three-phase glass capillary devices
    • Vladisavljević G., Shum H., Weitz D. Control over the shell thickness of core/shell drops in three-phase glass capillary devices. Progr. Colloid Polym. Sci. 2012, 139:115-118.
    • (2012) Progr. Colloid Polym. Sci. , vol.139 , pp. 115-118
    • Vladisavljević, G.1    Shum, H.2    Weitz, D.3
  • 139
    • 33748280664 scopus 로고    scopus 로고
    • Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid
    • Suryo R., Basaran O.A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 2006, 18:82102-82113.
    • (2006) Phys. Fluids , vol.18 , pp. 82102-82113
    • Suryo, R.1    Basaran, O.A.2
  • 140
    • 19944401559 scopus 로고    scopus 로고
    • Continuous synthesis of copolymer particles in microfluidic reactors
    • Lewis P., Graham R., Nie Z., Xu S., Seo M., Kumacheva E. Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecular 2005, 38:4536-4538.
    • (2005) Macromolecular , vol.38 , pp. 4536-4538
    • Lewis, P.1    Graham, R.2    Nie, Z.3    Xu, S.4    Seo, M.5    Kumacheva, E.6
  • 141
    • 9744278257 scopus 로고    scopus 로고
    • The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device
    • Xu Q., Nakajima M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Appl. Phys. Lett. 2004, 85:3726-3728.
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 3726-3728
    • Xu, Q.1    Nakajima, M.2
  • 142
    • 0037455351 scopus 로고    scopus 로고
    • Formation of dispersions using "flow focusing" in microchannels
    • Anna S.L., Bontoux N., Stone H.A. Formation of dispersions using "flow focusing" in microchannels. Appl. Phys. Lett. 2003, 82:364-366.
    • (2003) Appl. Phys. Lett. , vol.82 , pp. 364-366
    • Anna, S.L.1    Bontoux, N.2    Stone, H.A.3
  • 143
    • 79960433300 scopus 로고    scopus 로고
    • Effects of chemical and physical parameters in the generation of microspheres by hydrodynamic flow focusing
    • Schneider T., Chapman G.H., Häfeli U.O. Effects of chemical and physical parameters in the generation of microspheres by hydrodynamic flow focusing. Colloids Surf. B 2011, 87:361-368.
    • (2011) Colloids Surf. B , vol.87 , pp. 361-368
    • Schneider, T.1    Chapman, G.H.2    Häfeli, U.O.3
  • 144
    • 34848885717 scopus 로고    scopus 로고
    • Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device
    • 133106-1-133106-3
    • Kim H., Luo D., Link D., Weitz D.A., Marquez M., Cheng Z. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl. Phys. Lett. 2007, 91:133106-1-133106-3.
    • (2007) Appl. Phys. Lett. , vol.91
    • Kim, H.1    Luo, D.2    Link, D.3    Weitz, D.A.4    Marquez, M.5    Cheng, Z.6
  • 145
    • 33845516424 scopus 로고    scopus 로고
    • Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip
    • Chen C.T., Lee G.B. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J. Microelectromech. Syst. 2006, 15:1492-1498.
    • (2006) J. Microelectromech. Syst. , vol.15 , pp. 1492-1498
    • Chen, C.T.1    Lee, G.B.2
  • 146
    • 34249689751 scopus 로고    scopus 로고
    • A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids
    • Lee C.H., Hsiung S.K., Lee G.B. A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J. Micromech. Microeng. 2007, 17:1121.
    • (2007) J. Micromech. Microeng. , vol.17 , pp. 1121
    • Lee, C.H.1    Hsiung, S.K.2    Lee, G.B.3
  • 147
    • 33846084175 scopus 로고    scopus 로고
    • Microscale tip streaming in a microfluidic flow focusing device
    • Anna S.L., Mayer H.C. Microscale tip streaming in a microfluidic flow focusing device. Phys. Fluids 2006, 18.
    • (2006) Phys. Fluids , vol.18
    • Anna, S.L.1    Mayer, H.C.2
  • 148
    • 18144420092 scopus 로고    scopus 로고
    • Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions
    • Garstecki P., Stone H.A., Whitesides G.M. Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys. Rev. Lett. 2005, 94:164501.
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 164501
    • Garstecki, P.1    Stone, H.A.2    Whitesides, G.M.3
  • 149
    • 33749249744 scopus 로고    scopus 로고
    • Formation of simple and compound drops in microfluidic devices
    • Zhou C., Yue P., Feng J.J. Formation of simple and compound drops in microfluidic devices. Phys. Fluids 2006, 18:92105-92114.
    • (2006) Phys. Fluids , vol.18 , pp. 92105-92114
    • Zhou, C.1    Yue, P.2    Feng, J.J.3
  • 151
    • 26844449347 scopus 로고    scopus 로고
    • Experimental and theoretical approaches on droplet formation from a micrometer screen hole
    • Xu J.H., Luo G.S., Chen G.G., Wang J.D. Experimental and theoretical approaches on droplet formation from a micrometer screen hole. J. Membr. Sci. 2005, 266:121-131.
    • (2005) J. Membr. Sci. , vol.266 , pp. 121-131
    • Xu, J.H.1    Luo, G.S.2    Chen, G.G.3    Wang, J.D.4
  • 152
    • 0032216166 scopus 로고    scopus 로고
    • Controlled production of emulsions using a crossflow membrane: part I: droplet formation from a dingle pore
    • Peng S.J., Williams R.A. Controlled production of emulsions using a crossflow membrane: part I: droplet formation from a dingle pore. Chem. Eng. Res. Des. 1998, 76:894-901.
    • (1998) Chem. Eng. Res. Des. , vol.76 , pp. 894-901
    • Peng, S.J.1    Williams, R.A.2
  • 153
    • 71449093186 scopus 로고    scopus 로고
    • High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane
    • Wagdare N.A., Marcelis A.T.M., Ho O.B., Boom R.M., van Rijn C.J.M. High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. J. Membr. Sci. 2010, 347:1-7.
    • (2010) J. Membr. Sci. , vol.347 , pp. 1-7
    • Wagdare, N.A.1    Marcelis, A.T.M.2    Ho, O.B.3    Boom, R.M.4    van Rijn, C.J.M.5
  • 154
    • 14644389460 scopus 로고    scopus 로고
    • Recent developments in manufacturing emulsions and particulate products using membranes
    • Vladisavljević G.T., Williams R.A. Recent developments in manufacturing emulsions and particulate products using membranes. Adv. Colloid Interf. Sci. 2005, 113:1-20.
    • (2005) Adv. Colloid Interf. Sci. , vol.113 , pp. 1-20
    • Vladisavljević, G.T.1    Williams, R.A.2
  • 156
    • 33747170667 scopus 로고    scopus 로고
    • Manufacture of large uniform droplets using rotating membrane emulsification
    • Vladisavljević G.T., Williams R.A. Manufacture of large uniform droplets using rotating membrane emulsification. J. Colloid Interface Sci. 2006, 299:396-402.
    • (2006) J. Colloid Interface Sci. , vol.299 , pp. 396-402
    • Vladisavljević, G.T.1    Williams, R.A.2
  • 157
    • 33144457629 scopus 로고    scopus 로고
    • Continuous membrane emulsification by using a membrane system with controlled pore distance
    • Schadler V., Windhab E.J. Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination 2006, 189:130-135.
    • (2006) Desalination , vol.189 , pp. 130-135
    • Schadler, V.1    Windhab, E.J.2
  • 158
    • 84862924376 scopus 로고    scopus 로고
    • Production of solid-stabilised emulsions through rotational membrane emulsification: influence of particle adsorption kinetics
    • Manga M.S., Cayre O.J., Williams R.A., Biggs S., York D.W. Production of solid-stabilised emulsions through rotational membrane emulsification: influence of particle adsorption kinetics. Soft Matter 2012, 8:1532-1538.
    • (2012) Soft Matter , vol.8 , pp. 1532-1538
    • Manga, M.S.1    Cayre, O.J.2    Williams, R.A.3    Biggs, S.4    York, D.W.5
  • 159
    • 24044541383 scopus 로고    scopus 로고
    • Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes
    • Zhu J., Barrow D. Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes. J. Membr. Sci. 2005, 261:136-144.
    • (2005) J. Membr. Sci. , vol.261 , pp. 136-144
    • Zhu, J.1    Barrow, D.2
  • 161
    • 0037068864 scopus 로고    scopus 로고
    • Characterization of spontaneous transformation-based droplet formation during microchannel emulsification
    • Sugiura S., Nakajima M., Kumazawa N., Iwamoto S., Seki M. Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. J. Phys. Chem. B 2002, 106:9405-9409.
    • (2002) J. Phys. Chem. B , vol.106 , pp. 9405-9409
    • Sugiura, S.1    Nakajima, M.2    Kumazawa, N.3    Iwamoto, S.4    Seki, M.5
  • 162
    • 0037076620 scopus 로고    scopus 로고
    • Prediction of droplet diameter for microchannel emulsification
    • Sugiura S., Nakajima M., Seki M. Prediction of droplet diameter for microchannel emulsification. Langmuir 2002, 18:3854-3859.
    • (2002) Langmuir , vol.18 , pp. 3854-3859
    • Sugiura, S.1    Nakajima, M.2    Seki, M.3
  • 163
    • 33746372109 scopus 로고    scopus 로고
    • Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions
    • Kobayashi I., Mukataka S., Nakajima M. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Langmuir 2005, 21:7629-7632.
    • (2005) Langmuir , vol.21 , pp. 7629-7632
    • Kobayashi, I.1    Mukataka, S.2    Nakajima, M.3
  • 164
    • 0345305354 scopus 로고    scopus 로고
    • Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification
    • Kobayashi I., Nakajima M., Mukataka S. Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids Surf. A 2003, 229:33-41.
    • (2003) Colloids Surf. A , vol.229 , pp. 33-41
    • Kobayashi, I.1    Nakajima, M.2    Mukataka, S.3
  • 165
    • 3042701171 scopus 로고    scopus 로고
    • Drop formation in a co-flowing ambient fluid
    • Cramer C., Fischer P., Windhab E.J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 2004, 59:3045-3058.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 3045-3058
    • Cramer, C.1    Fischer, P.2    Windhab, E.J.3
  • 167
    • 34547207654 scopus 로고    scopus 로고
    • Microfluidic consecutive flow-focusing droplet generators
    • Seo M., Paquet C., Nie Z., Xu S., Kumacheva E. Microfluidic consecutive flow-focusing droplet generators. Soft Matter 2007, 3:986-992.
    • (2007) Soft Matter , vol.3 , pp. 986-992
    • Seo, M.1    Paquet, C.2    Nie, Z.3    Xu, S.4    Kumacheva, E.5
  • 169
    • 80052192113 scopus 로고    scopus 로고
    • Double-emulsion drops with ultra-thin shells for capsule templates
    • Kim S.H., Kim J.W., Cho J.C., Weitz D.A. Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 2011, 11:3162-3166.
    • (2011) Lab Chip , vol.11 , pp. 3162-3166
    • Kim, S.H.1    Kim, J.W.2    Cho, J.C.3    Weitz, D.A.4
  • 170
    • 84881060502 scopus 로고    scopus 로고
    • Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells
    • Chen R., Dong P.F., Xu J.H., Wang Y.D., Luo G.S. Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells. Lab Chip 2012, 12:3858-3860.
    • (2012) Lab Chip , vol.12 , pp. 3858-3860
    • Chen, R.1    Dong, P.F.2    Xu, J.H.3    Wang, Y.D.4    Luo, G.S.5
  • 171
    • 34250889306 scopus 로고    scopus 로고
    • Fabrication of monodisperse gel shells and functional microgels in microfluidic devices
    • Kim J.W., Utada A.S., Fernández-Nieves A., Hu Z., Weitz D.A. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed. 2007, 46:1819-1822.
    • (2007) Angew. Chem. Int. Ed. , vol.46 , pp. 1819-1822
    • Kim, J.W.1    Utada, A.S.2    Fernández-Nieves, A.3    Hu, Z.4    Weitz, D.A.5
  • 172
    • 77955372898 scopus 로고    scopus 로고
    • Smart thermo-triggered squirting capsules for nanoparticle delivery
    • Liu L., Wang W., Ju X.J., Xie R., Chu L.Y. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 2010, 6:3759-3763.
    • (2010) Soft Matter , vol.6 , pp. 3759-3763
    • Liu, L.1    Wang, W.2    Ju, X.J.3    Xie, R.4    Chu, L.Y.5
  • 173
    • 78649843477 scopus 로고    scopus 로고
    • Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths
    • Kanai T., Lee D., Shum H.C., Shah R.K., Weitz D.A. Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. Adv. Mater. 2010, 22:4998-5002.
    • (2010) Adv. Mater. , vol.22 , pp. 4998-5002
    • Kanai, T.1    Lee, D.2    Shum, H.C.3    Shah, R.K.4    Weitz, D.A.5
  • 174
    • 77955721106 scopus 로고    scopus 로고
    • Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer
    • Ye C., Chen A., Colombo P., Martinez C. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. J. R. Soc. Interface 2010, 7:S461-S473.
    • (2010) J. R. Soc. Interface , vol.7
    • Ye, C.1    Chen, A.2    Colombo, P.3    Martinez, C.4
  • 175
    • 72149102452 scopus 로고    scopus 로고
    • Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite
    • Shum H.C., Bandyopadhyay A., Bose S., Weitz D.A. Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem. Mater. 2009, 21:5548-5555.
    • (2009) Chem. Mater. , vol.21 , pp. 5548-5555
    • Shum, H.C.1    Bandyopadhyay, A.2    Bose, S.3    Weitz, D.A.4
  • 176
    • 49649113480 scopus 로고    scopus 로고
    • Double emulsion templated monodisperse phospholipid vesicles
    • Shum H.C., Lee D., Yoon I., Kodger T., Weitz D.A. Double emulsion templated monodisperse phospholipid vesicles. Langmuir 2008, 24:7651-7653.
    • (2008) Langmuir , vol.24 , pp. 7651-7653
    • Shum, H.C.1    Lee, D.2    Yoon, I.3    Kodger, T.4    Weitz, D.A.5
  • 178
    • 80053074605 scopus 로고    scopus 로고
    • Multiple polymersomes for programmed release of multiple components
    • Kim S.H., Shum H.C., Kim J.W., Cho J.C., Weitz D.A. Multiple polymersomes for programmed release of multiple components. J. Am. Chem. Soc. 2011, 133:15165-15171.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 15165-15171
    • Kim, S.H.1    Shum, H.C.2    Kim, J.W.3    Cho, J.C.4    Weitz, D.A.5
  • 179
    • 54949087867 scopus 로고    scopus 로고
    • Double emulsion-templated nanoparticle colloidosomes with selective permeability
    • Lee D., Weitz D.A. Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv. Mater. 2008, 20:3498-3503.
    • (2008) Adv. Mater. , vol.20 , pp. 3498-3503
    • Lee, D.1    Weitz, D.A.2
  • 181
    • 79954446006 scopus 로고    scopus 로고
    • Controllable microfluidic production of multicomponent multiple emulsions
    • Wang W., Xie R., Ju X.-J., Luo T., Liu L., Weitz D.A., Chu L.-Y. Controllable microfluidic production of multicomponent multiple emulsions. Lab Chip 2011, 11:1587-1592.
    • (2011) Lab Chip , vol.11 , pp. 1587-1592
    • Wang, W.1    Xie, R.2    Ju, X.-J.3    Luo, T.4    Liu, L.5    Weitz, D.A.6    Chu, L.-Y.7
  • 183
    • 79956361644 scopus 로고    scopus 로고
    • Faster multiple emulsification with drop splitting
    • Abate A.R., Weitz D.A. Faster multiple emulsification with drop splitting. Lab Chip 2011, 11:1911-1915.
    • (2011) Lab Chip , vol.11 , pp. 1911-1915
    • Abate, A.R.1    Weitz, D.A.2
  • 184
    • 70349449536 scopus 로고    scopus 로고
    • High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics
    • Abate A.R., Weitz D.A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 2009, 5:2030-2032.
    • (2009) Small , vol.5 , pp. 2030-2032
    • Abate, A.R.1    Weitz, D.A.2
  • 185
    • 77955548483 scopus 로고    scopus 로고
    • Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer
    • Saeki D., Sugiura S., Kanamori T., Sato S., Ichikawa S. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab Chip 2010, 10:2292-2295.
    • (2010) Lab Chip , vol.10 , pp. 2292-2295
    • Saeki, D.1    Sugiura, S.2    Kanamori, T.3    Sato, S.4    Ichikawa, S.5
  • 186
    • 75149144315 scopus 로고    scopus 로고
    • Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer
    • Saeki D., Sugiura S., Kanamori T., Sato S., Ichikawa S. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab Chip 2010, 10:357-362.
    • (2010) Lab Chip , vol.10 , pp. 357-362
    • Saeki, D.1    Sugiura, S.2    Kanamori, T.3    Sato, S.4    Ichikawa, S.5
  • 187
    • 4444257582 scopus 로고    scopus 로고
    • Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays
    • Zheng B., Tice J.D., Ismagilov R.F. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 2004, 76:4977-4982.
    • (2004) Anal. Chem. , vol.76 , pp. 4977-4982
    • Zheng, B.1    Tice, J.D.2    Ismagilov, R.F.3
  • 188
    • 79959511522 scopus 로고    scopus 로고
    • Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions
    • Pompano R.R., Liu W., Du W., Ismagilov R.F. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu. Rev. Anal. Chem. 2011, 4:59-81.
    • (2011) Annu. Rev. Anal. Chem. , vol.4 , pp. 59-81
    • Pompano, R.R.1    Liu, W.2    Du, W.3    Ismagilov, R.F.4
  • 189
    • 79151469953 scopus 로고    scopus 로고
    • Microfluidic melt emulsification for encapsulation and release of actives
    • Sun B.J., Shum H.C., Holtze C., Weitz D.A. Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl. Mater. Interface 2010, 2:3411-3416.
    • (2010) ACS Appl. Mater. Interface , vol.2 , pp. 3411-3416
    • Sun, B.J.1    Shum, H.C.2    Holtze, C.3    Weitz, D.A.4
  • 190
    • 54949098454 scopus 로고    scopus 로고
    • Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles
    • Wan J., Bick A., Sullivan M., Stone H.A. Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles. Adv. Mater. 2008, 20:3314-3318.
    • (2008) Adv. Mater. , vol.20 , pp. 3314-3318
    • Wan, J.1    Bick, A.2    Sullivan, M.3    Stone, H.A.4
  • 191
    • 1642351216 scopus 로고    scopus 로고
    • Geometrically mediated breakup of drops in microfluidic devices
    • Link D.R., Anna S.L., Weitz D.A., Stone H.A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 2004, 92:054503.
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 054503
    • Link, D.R.1    Anna, S.L.2    Weitz, D.A.3    Stone, H.A.4
  • 192
    • 79951485843 scopus 로고    scopus 로고
    • Hydrodynamically mediated breakup of droplets in microchannels
    • Che Z., Nguyen N.T., Wong T.N. Hydrodynamically mediated breakup of droplets in microchannels. Appl. Phys. Lett. 2011, 98:54102-54103.
    • (2011) Appl. Phys. Lett. , vol.98 , pp. 54102-54103
    • Che, Z.1    Nguyen, N.T.2    Wong, T.N.3
  • 193
    • 2542451148 scopus 로고    scopus 로고
    • Digital reaction technology by micro segmented flow - components, concepts and applications
    • Köhler J.M., Henkel T., Grodrian A., Kirner T., Roth M., Martin K., Metze J. Digital reaction technology by micro segmented flow - components, concepts and applications. Chem. Eng. J. 2004, 101:201-216.
    • (2004) Chem. Eng. J. , vol.101 , pp. 201-216
    • Köhler, J.M.1    Henkel, T.2    Grodrian, A.3    Kirner, T.4    Roth, M.5    Martin, K.6    Metze, J.7
  • 194
    • 33751408598 scopus 로고    scopus 로고
    • Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device
    • Liu K., Ding H.J., Liu J., Chen Y., Zhao X.Z. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 2006, 22:9453-9457.
    • (2006) Langmuir , vol.22 , pp. 9453-9457
    • Liu, K.1    Ding, H.J.2    Liu, J.3    Chen, Y.4    Zhao, X.Z.5
  • 196
    • 43449117216 scopus 로고    scopus 로고
    • Spherical and cylindrical microencapsulation of living cells using microfluidic devices
    • Hong J.S., Shin S.J., Lee S.H., Wong E., Cooper-White J. Spherical and cylindrical microencapsulation of living cells using microfluidic devices. Korea-Aust. Rheol. J. 2007, 19:157-164.
    • (2007) Korea-Aust. Rheol. J. , vol.19 , pp. 157-164
    • Hong, J.S.1    Shin, S.J.2    Lee, S.H.3    Wong, E.4    Cooper-White, J.5
  • 198
    • 77957674086 scopus 로고    scopus 로고
    • Passive self-synchronized two-droplet generation
    • Hong J., Choi M., Edel J.B., deMello A.J. Passive self-synchronized two-droplet generation. Lab Chip 2010, 10:2702-2709.
    • (2010) Lab Chip , vol.10 , pp. 2702-2709
    • Hong, J.1    Choi, M.2    Edel, J.B.3    deMello, A.J.4
  • 200
    • 33645527584 scopus 로고    scopus 로고
    • Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis
    • Hung L.H., Choi K.M., Tseng W.Y., Tan Y.C., Shea K.J., Lee A.P. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 2006, 6:174-178.
    • (2006) Lab Chip , vol.6 , pp. 174-178
    • Hung, L.H.1    Choi, K.M.2    Tseng, W.Y.3    Tan, Y.C.4    Shea, K.J.5    Lee, A.P.6
  • 201
    • 34347387164 scopus 로고    scopus 로고
    • Droplet coalescence by geometrically mediated flow in microfluidic channels
    • Tan Y.C., Ho Y., Lee A. Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid. Nanofluid. 2007, 3:495-499.
    • (2007) Microfluid. Nanofluid. , vol.3 , pp. 495-499
    • Tan, Y.C.1    Ho, Y.2    Lee, A.3
  • 202
    • 4344701435 scopus 로고    scopus 로고
    • Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting
    • Tan Y.C., Fisher J.S., Lee A.I., Cristini V., Lee A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 2004, 4:292-298.
    • (2004) Lab Chip , vol.4 , pp. 292-298
    • Tan, Y.C.1    Fisher, J.S.2    Lee, A.I.3    Cristini, V.4    Lee, A.P.5
  • 203
    • 54349106182 scopus 로고    scopus 로고
    • Pillar-induced droplet merging in microfluidic circuits
    • Niu X., Gulati S., Edel J.B., deMello A.J. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 2008, 8:1837-1841.
    • (2008) Lab Chip , vol.8 , pp. 1837-1841
    • Niu, X.1    Gulati, S.2    Edel, J.B.3    deMello, A.J.4
  • 204
    • 77956585398 scopus 로고    scopus 로고
    • Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels
    • Zagnoni M., Le Lain G., Cooper J.M. Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels. Langmuir 2010, 26:14443-14449.
    • (2010) Langmuir , vol.26 , pp. 14443-14449
    • Zagnoni, M.1    Le Lain, G.2    Cooper, J.M.3
  • 205
    • 69749107133 scopus 로고    scopus 로고
    • Electro-coalescence of digitally controlled droplets
    • Niu X., Gielen F., deMello A.J., Edel J.B. Electro-coalescence of digitally controlled droplets. Anal. Chem. 2009, 81:7321-7325.
    • (2009) Anal. Chem. , vol.81 , pp. 7321-7325
    • Niu, X.1    Gielen, F.2    deMello, A.J.3    Edel, J.B.4
  • 206
    • 1642544614 scopus 로고    scopus 로고
    • Droplet-based chemistry on a programmable micro-chip
    • Schwartz J.A., Vykoukal J.V., Gascoyne P.R.C. Droplet-based chemistry on a programmable micro-chip. Lab Chip 2004, 4:11-17.
    • (2004) Lab Chip , vol.4 , pp. 11-17
    • Schwartz, J.A.1    Vykoukal, J.V.2    Gascoyne, P.R.C.3
  • 207
    • 84859363539 scopus 로고    scopus 로고
    • Temperature-induced droplet coalescence in microchannels
    • Xu B., Nguyen N.T., Wong T.N. Temperature-induced droplet coalescence in microchannels. Biomicrofluidics 2012, 6:12811-12818.
    • (2012) Biomicrofluidics , vol.6 , pp. 12811-12818
    • Xu, B.1    Nguyen, N.T.2    Wong, T.N.3
  • 208
    • 84863335797 scopus 로고    scopus 로고
    • Thermocoalescence of microdroplets in a microfluidic chamber
    • 254105-1-254105-3
    • Luong T.D., Nguyen N.T., Sposito A. Thermocoalescence of microdroplets in a microfluidic chamber. Appl. Phys. Lett. 2012, 100:254105-1-254105-3.
    • (2012) Appl. Phys. Lett. , vol.100
    • Luong, T.D.1    Nguyen, N.T.2    Sposito, A.3
  • 209
    • 0038466224 scopus 로고    scopus 로고
    • Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media
    • Taniguchi T., Torii T., Higuchi T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip 2002, 2:19-23.
    • (2002) Lab Chip , vol.2 , pp. 19-23
    • Taniguchi, T.1    Torii, T.2    Higuchi, T.3
  • 210
    • 34248198752 scopus 로고    scopus 로고
    • Microfluidic devices for the synthesis of nanoparticles and biomaterials
    • Hung L., Lee A. Microfluidic devices for the synthesis of nanoparticles and biomaterials. J. Med. Biol. Eng. 2007, 27:1-6.
    • (2007) J. Med. Biol. Eng. , vol.27 , pp. 1-6
    • Hung, L.1    Lee, A.2
  • 211
    • 77953138778 scopus 로고    scopus 로고
    • Flow chemistry using milli- and microstructured reactors - from conventional to novel process windows
    • Illg T., Löb P., Hessel V. Flow chemistry using milli- and microstructured reactors - from conventional to novel process windows. Bioorg. Med. Chem. 2010, 18:3707-3719.
    • (2010) Bioorg. Med. Chem. , vol.18 , pp. 3707-3719
    • Illg, T.1    Löb, P.2    Hessel, V.3
  • 212
    • 82955168402 scopus 로고    scopus 로고
    • Controllable preparation of particles with microfluidics
    • Luo G., Du L., Wang Y., Lu Y., Xu J. Controllable preparation of particles with microfluidics. Particuology 2011, 9:545-558.
    • (2011) Particuology , vol.9 , pp. 545-558
    • Luo, G.1    Du, L.2    Wang, Y.3    Lu, Y.4    Xu, J.5
  • 213
    • 33644777646 scopus 로고    scopus 로고
    • Lab-on-a-chip: microfluidics in drug discovery
    • Dittrich P.S., Manz A. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006, 5:210-218.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , pp. 210-218
    • Dittrich, P.S.1    Manz, A.2
  • 214
    • 34548152794 scopus 로고    scopus 로고
    • Multiphase flow in microfluidic systems - control and applications of droplets and interfaces
    • Shui L., Eijkel J.C.T., van den Berg A. Multiphase flow in microfluidic systems - control and applications of droplets and interfaces. Adv. Colloid Interf. Sci. 2007, 133:35-49.
    • (2007) Adv. Colloid Interf. Sci. , vol.133 , pp. 35-49
    • Shui, L.1    Eijkel, J.C.T.2    Van Den Berg, A.3
  • 215
    • 33846201265 scopus 로고    scopus 로고
    • Multiphase microfluidics: from flow characteristics to chemical and materials synthesis
    • Gunther A., Jensen K.F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 2006, 6:1487-1503.
    • (2006) Lab Chip , vol.6 , pp. 1487-1503
    • Gunther, A.1    Jensen, K.F.2
  • 219
    • 24944475525 scopus 로고    scopus 로고
    • Application of a capillary microreactor for selective hydrogenation of α, β-unsaturated aldehydes in aqueous multiphase catalysis
    • Önal Y., Lucas M., Claus P. Application of a capillary microreactor for selective hydrogenation of α, β-unsaturated aldehydes in aqueous multiphase catalysis. Chem. Eng. Technol. 2005, 28:972-978.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 972-978
    • Önal, Y.1    Lucas, M.2    Claus, P.3
  • 225
    • 1642351161 scopus 로고    scopus 로고
    • Engineering flows in small devices: microfluidics toward a lab-on-a-chip
    • Stone H.A., Stroock A.D., Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36:381-411.
    • (2004) Annu. Rev. Fluid Mech. , vol.36 , pp. 381-411
    • Stone, H.A.1    Stroock, A.D.2    Ajdari, A.3
  • 226
    • 33645531094 scopus 로고    scopus 로고
    • Mixing with bubbles: a practical technology for use with portable microfluidic devices
    • Garstecki P., Fuerstman M.J., Fischbach M.A., Sia S.K., Whitesides G.M. Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab Chip 2006, 6:207-212.
    • (2006) Lab Chip , vol.6 , pp. 207-212
    • Garstecki, P.1    Fuerstman, M.J.2    Fischbach, M.A.3    Sia, S.K.4    Whitesides, G.M.5
  • 227
    • 33144472118 scopus 로고    scopus 로고
    • Characterization of liquid flows in microfluidic systems
    • Bayraktar T., Pidugu S.B. Characterization of liquid flows in microfluidic systems. Int. J. Heat Mass Transfer. 2006, 49:815-824.
    • (2006) Int. J. Heat Mass Transfer. , vol.49 , pp. 815-824
    • Bayraktar, T.1    Pidugu, S.B.2
  • 228
    • 33644651003 scopus 로고    scopus 로고
    • Miniaturized continuous flow reaction vessels: influence on chemical reactions
    • Brivio M., Verboom W., Reinhoudt D.N. Miniaturized continuous flow reaction vessels: influence on chemical reactions. Lab Chip 2006, 6:329-344.
    • (2006) Lab Chip , vol.6 , pp. 329-344
    • Brivio, M.1    Verboom, W.2    Reinhoudt, D.N.3
  • 229
    • 84867081375 scopus 로고    scopus 로고
    • Formation of droplets and bubbles in microfluidic systems
    • Springer, Netherlands, S. Kakaç, B. Kosoy, D. Li, A. Pramuanjaroenkij (Eds.)
    • Garstecki P. Formation of droplets and bubbles in microfluidic systems. Microfluidics Based Microsystems 2010, 163-181. Springer, Netherlands. S. Kakaç, B. Kosoy, D. Li, A. Pramuanjaroenkij (Eds.).
    • (2010) Microfluidics Based Microsystems , pp. 163-181
    • Garstecki, P.1
  • 231
    • 1542786313 scopus 로고    scopus 로고
    • Micro-electro-mechanical-systems (MEMS) and fluid flows
    • Ho C.M., Tai Y.C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 1998, 30:579-612.
    • (1998) Annu. Rev. Fluid Mech. , vol.30 , pp. 579-612
    • Ho, C.M.1    Tai, Y.C.2
  • 234
    • 0034087285 scopus 로고    scopus 로고
    • Thermohydrodynamic characteristics of two-phase flow in a heated capillary
    • Peles Y.P., Yarin L.P., Hetsroni G. Thermohydrodynamic characteristics of two-phase flow in a heated capillary. Int. J. Multiphase Flow 2000, 26:1063-1093.
    • (2000) Int. J. Multiphase Flow , vol.26 , pp. 1063-1093
    • Peles, Y.P.1    Yarin, L.P.2    Hetsroni, G.3
  • 236
    • 70349337714 scopus 로고    scopus 로고
    • Neuro-optical microfluidic platform to study injury and regeneration of single axons
    • Kim Y.T., Karthikeyan K., Chirvi S., Dave D.P. Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip 2009, 9:2576-2581.
    • (2009) Lab Chip , vol.9 , pp. 2576-2581
    • Kim, Y.T.1    Karthikeyan, K.2    Chirvi, S.3    Dave, D.P.4
  • 237
    • 33644844676 scopus 로고    scopus 로고
    • Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties
    • Xu J.H., Luo G.S., Li S.W., Chen G.G. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab Chip 2006, 6:131-136.
    • (2006) Lab Chip , vol.6 , pp. 131-136
    • Xu, J.H.1    Luo, G.S.2    Li, S.W.3    Chen, G.G.4
  • 238
    • 0034000453 scopus 로고    scopus 로고
    • Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
    • Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65:271-284.
    • (2000) J. Control. Release , vol.65 , pp. 271-284
    • Maeda, H.1    Wu, J.2    Sawa, T.3    Matsumura, Y.4    Hori, K.5
  • 239
    • 0141629826 scopus 로고    scopus 로고
    • Liposomal anthracyclines for breast cancer: overview
    • O'Shaughnessy J. Liposomal anthracyclines for breast cancer: overview. Oncologist 2003, 8:1-2.
    • (2003) Oncologist , vol.8 , pp. 1-2
    • O'Shaughnessy, J.1
  • 240
    • 0036680012 scopus 로고    scopus 로고
    • Dendritic polymer macromolecular carriers for drug delivery
    • Patri A.K., Majoros I.J., Baker J.R. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 2002, 6:466-471.
    • (2002) Curr. Opin. Chem. Biol. , vol.6 , pp. 466-471
    • Patri, A.K.1    Majoros, I.J.2    Baker, J.R.3
  • 241
    • 34548482374 scopus 로고    scopus 로고
    • Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential
    • Immordino M.L., Dosio F., Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 2006, 1:297-315.
    • (2006) Int. J. Nanomedicine , vol.1 , pp. 297-315
    • Immordino, M.L.1    Dosio, F.2    Cattel, L.3
  • 242
    • 0034580371 scopus 로고    scopus 로고
    • The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices
    • Jain R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21:2475-2490.
    • (2000) Biomaterials , vol.21 , pp. 2475-2490
    • Jain, R.A.1
  • 243
    • 33745512962 scopus 로고    scopus 로고
    • Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles
    • Huang K.-S., Lai T.-H., Lin Y.-C. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 2006, 6:954-957.
    • (2006) Lab Chip , vol.6 , pp. 954-957
    • Huang, K.-S.1    Lai, T.-H.2    Lin, Y.-C.3
  • 244
    • 84893687916 scopus 로고    scopus 로고
    • Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules
    • Yeh C.-H., Chen K.-R., Lin Y.-C. Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluid. Nanofluid. 2013, 1-10.
    • (2013) Microfluid. Nanofluid. , pp. 1-10
    • Yeh, C.-H.1    Chen, K.-R.2    Lin, Y.-C.3
  • 245
    • 34147124963 scopus 로고    scopus 로고
    • Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip
    • Yang C.-H., Huang K.-S., Chang J.-Y. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed. Microdevices 2007, 9:253-259.
    • (2007) Biomed. Microdevices , vol.9 , pp. 253-259
    • Yang, C.-H.1    Huang, K.-S.2    Chang, J.-Y.3
  • 246
    • 79953276775 scopus 로고    scopus 로고
    • Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles
    • Ogonczyk D., Siek M., Garstecki P. Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 2011, 5:13405-13412.
    • (2011) Biomicrofluidics , vol.5 , pp. 13405-13412
    • Ogonczyk, D.1    Siek, M.2    Garstecki, P.3
  • 247
    • 79955614470 scopus 로고    scopus 로고
    • Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation
    • Eun Y.-J., Utada A.S., Copeland M.F., Takeuchi S., Weibel D.B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 2010, 6:260-266.
    • (2010) ACS Chem. Biol. , vol.6 , pp. 260-266
    • Eun, Y.-J.1    Utada, A.S.2    Copeland, M.F.3    Takeuchi, S.4    Weibel, D.B.5
  • 249
    • 33746887011 scopus 로고    scopus 로고
    • Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors
    • Koh W.-G., Pishko M. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal. Bioanal. Chem. 2006, 385:1389-1397.
    • (2006) Anal. Bioanal. Chem. , vol.385 , pp. 1389-1397
    • Koh, W.-G.1    Pishko, M.2
  • 250
    • 82555202738 scopus 로고    scopus 로고
    • Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering
    • Chung B.G., Lee K.-H., Khademhosseini A., Lee S.-H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 2012, 12:45-59.
    • (2012) Lab Chip , vol.12 , pp. 45-59
    • Chung, B.G.1    Lee, K.-H.2    Khademhosseini, A.3    Lee, S.-H.4
  • 251
    • 33846584507 scopus 로고    scopus 로고
    • Editorial: tissue engineering: perspectives, challenges, and future directions
    • Langer R. Editorial: tissue engineering: perspectives, challenges, and future directions. Tissue Eng. 2007, 13:1-2.
    • (2007) Tissue Eng. , vol.13 , pp. 1-2
    • Langer, R.1
  • 252
    • 69949147260 scopus 로고    scopus 로고
    • High-throughput and combinatorial technologies for tissue engineering applications
    • Peters A., Brey D., Burdick J. High-throughput and combinatorial technologies for tissue engineering applications. Tissue Eng. B Rev. 2009, 15:225-239.
    • (2009) Tissue Eng. B Rev. , vol.15 , pp. 225-239
    • Peters, A.1    Brey, D.2    Burdick, J.3
  • 253
    • 84861975527 scopus 로고    scopus 로고
    • Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device
    • Capretto L., Mazzitelli S., Nastruzzi C. Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device. J. Control. Release 2012, 160:409-417.
    • (2012) J. Control. Release , vol.160 , pp. 409-417
    • Capretto, L.1    Mazzitelli, S.2    Nastruzzi, C.3
  • 255
    • 41149121698 scopus 로고    scopus 로고
    • Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology
    • Capretto L., Mazzitelli S., Balestra C., Tosi A., Nastruzzi C. Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 2008, 8:617-621.
    • (2008) Lab Chip , vol.8 , pp. 617-621
    • Capretto, L.1    Mazzitelli, S.2    Balestra, C.3    Tosi, A.4    Nastruzzi, C.5
  • 256
    • 35649016583 scopus 로고    scopus 로고
    • Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device
    • Choi C.H., Jung J.H., Rhee Y.W., Kim D.P., Shim S.E., Lee C.S. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed. Microdevices 2007, 9:855-862.
    • (2007) Biomed. Microdevices , vol.9 , pp. 855-862
    • Choi, C.H.1    Jung, J.H.2    Rhee, Y.W.3    Kim, D.P.4    Shim, S.E.5    Lee, C.S.6
  • 257
    • 67349199958 scopus 로고    scopus 로고
    • Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules
    • Huang K.-S., Lu K., Yeh C.-S., Chung S.-R., Lin C.-H., Yang C.-H., Dong Y.-S. Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J. Control. Release 2009, 137:15-19.
    • (2009) J. Control. Release , vol.137 , pp. 15-19
    • Huang, K.-S.1    Lu, K.2    Yeh, C.-S.3    Chung, S.-R.4    Lin, C.-H.5    Yang, C.-H.6    Dong, Y.-S.7
  • 258
    • 84856754852 scopus 로고    scopus 로고
    • Controlled release of drugs from gradient hydrogels for high-throughput analysis of cell-drug interactions
    • Ostrovidov S., Annabi N., Seidi A., Ramalingam M., Dehghani F., Kaji H., Khademhosseini A. Controlled release of drugs from gradient hydrogels for high-throughput analysis of cell-drug interactions. Anal. Chem. 2011, 84:1302-1309.
    • (2011) Anal. Chem. , vol.84 , pp. 1302-1309
    • Ostrovidov, S.1    Annabi, N.2    Seidi, A.3    Ramalingam, M.4    Dehghani, F.5    Kaji, H.6    Khademhosseini, A.7
  • 260
    • 34748902324 scopus 로고    scopus 로고
    • Microengineered hydrogels for tissue engineering
    • Khademhosseini A., Langer R. Microengineered hydrogels for tissue engineering. Biomaterials 2007, 28:5087-5092.
    • (2007) Biomaterials , vol.28 , pp. 5087-5092
    • Khademhosseini, A.1    Langer, R.2
  • 265
    • 69549135015 scopus 로고    scopus 로고
    • Beating Poisson encapsulation statistics using close-packed ordering
    • Abate A.R., Chen C.H., Agresti J.J., Weitz D.A. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 2009, 9:2628-2631.
    • (2009) Lab Chip , vol.9 , pp. 2628-2631
    • Abate, A.R.1    Chen, C.H.2    Agresti, J.J.3    Weitz, D.A.4
  • 266
    • 42149135990 scopus 로고    scopus 로고
    • Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells
    • Chabert M., Viovy J.-L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:3191-3196.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 3191-3196
    • Chabert, M.1    Viovy, J.-L.2
  • 267
    • 77952472317 scopus 로고    scopus 로고
    • Continuous separation of cells and particles in microfluidic systems
    • Lenshof A., Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 2010, 39:1203-1217.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 1203-1217
    • Lenshof, A.1    Laurell, T.2
  • 268
    • 70350464298 scopus 로고    scopus 로고
    • Inertial microfluidics
    • Di Carlo D. Inertial microfluidics. Lab Chip 2009, 9:3038-3046.
    • (2009) Lab Chip , vol.9 , pp. 3038-3046
    • Di Carlo, D.1
  • 269
    • 84874488132 scopus 로고    scopus 로고
    • From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology
    • Tran T.M., Lan F., Thompson C.S., Abate A.R. From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology. J. Phys. D Appl. Phys. 2013, 46:114004.
    • (2013) J. Phys. D Appl. Phys. , vol.46 , pp. 114004
    • Tran, T.M.1    Lan, F.2    Thompson, C.S.3    Abate, A.R.4
  • 270
    • 0037133087 scopus 로고    scopus 로고
    • PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties
    • Avgoustakis K., Beletsi A., Panagi Z., Klepetsanis P., Karydas A.G., Ithakissios D.S. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release 2002, 79:123-135.
    • (2002) J. Control. Release , vol.79 , pp. 123-135
    • Avgoustakis, K.1    Beletsi, A.2    Panagi, Z.3    Klepetsanis, P.4    Karydas, A.G.5    Ithakissios, D.S.6
  • 271
    • 0034907767 scopus 로고    scopus 로고
    • Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake
    • Fontana G., Licciardi M., Mansueto S., Schillaci D., Giammona G. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 2001, 22:2857-2865.
    • (2001) Biomaterials , vol.22 , pp. 2857-2865
    • Fontana, G.1    Licciardi, M.2    Mansueto, S.3    Schillaci, D.4    Giammona, G.5
  • 272
    • 0036324712 scopus 로고    scopus 로고
    • Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery
    • Panyam J., Zhou W.Z., Prabha S., Sahoo S.K., Labhasetwar V. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002, 16:1217-1226.
    • (2002) FASEB J. , vol.16 , pp. 1217-1226
    • Panyam, J.1    Zhou, W.Z.2    Prabha, S.3    Sahoo, S.K.4    Labhasetwar, V.5
  • 274
    • 0033635054 scopus 로고    scopus 로고
    • Protein instability in poly(lactic-co-glycolic acid) microparticles
    • van de Weert M., Hennink W., Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 2000, 17:1159-1167.
    • (2000) Pharm. Res. , vol.17 , pp. 1159-1167
    • van de Weert, M.1    Hennink, W.2    Jiskoot, W.3
  • 275
    • 33748785425 scopus 로고    scopus 로고
    • Droplet breakup in microfluidic junctions of arbitrary angles
    • Ménétrier-Deremble L., Tabeling P. Droplet breakup in microfluidic junctions of arbitrary angles. Phys. Rev. E 2006, 74:035303.
    • (2006) Phys. Rev. E , vol.74 , pp. 035303
    • Ménétrier-Deremble, L.1    Tabeling, P.2
  • 276
    • 61849116125 scopus 로고    scopus 로고
    • Breakup of drops in a microfluidic T junction
    • Leshansky A.M., Pismen L.M. Breakup of drops in a microfluidic T junction. Phys. Fluids 2009, 21:23303-23306.
    • (2009) Phys. Fluids , vol.21 , pp. 23303-23306
    • Leshansky, A.M.1    Pismen, L.M.2
  • 277
    • 68949085152 scopus 로고    scopus 로고
    • High-viscosity fluid threads in weakly diffusive microfluidic systems
    • Cubaud T., Mason T.G. High-viscosity fluid threads in weakly diffusive microfluidic systems. New J. Phys. 2009, 11:075029.
    • (2009) New J. Phys. , vol.11 , pp. 075029
    • Cubaud, T.1    Mason, T.G.2
  • 278
    • 79951485843 scopus 로고    scopus 로고
    • Hydrodynamically mediated breakup of droplets in microchannels
    • Che Z., Nguyen N.-T., Wong T.N. Hydrodynamically mediated breakup of droplets in microchannels. Appl. Phys. Lett. 2011, 98:54102-54103.
    • (2011) Appl. Phys. Lett. , vol.98 , pp. 54102-54103
    • Che, Z.1    Nguyen, N.-T.2    Wong, T.N.3
  • 280
    • 77955630835 scopus 로고    scopus 로고
    • Microfluidic technologies for temporal perturbations of chemotaxis
    • Irimia D. Microfluidic technologies for temporal perturbations of chemotaxis. Annu. Rev. Biomed. Eng. 2010, 12:259-284.
    • (2010) Annu. Rev. Biomed. Eng. , vol.12 , pp. 259-284
    • Irimia, D.1
  • 281
    • 72849143548 scopus 로고    scopus 로고
    • Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient
    • Park J.Y., Kim S.-K., Woo D.-H., Lee E.-J., Kim J.-H., Lee S.-H. Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 2009, 27:2646-2654.
    • (2009) Stem Cells , vol.27 , pp. 2646-2654
    • Park, J.Y.1    Kim, S.-K.2    Woo, D.-H.3    Lee, E.-J.4    Kim, J.-H.5    Lee, S.-H.6
  • 282
  • 283
    • 84872323256 scopus 로고    scopus 로고
    • Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs)
    • Capretto L., Mazzitelli S., Colombo G., Piva R., Penolazzi L., Vecchiatini R., Zhang X., Nastruzzi C. Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs). Int. J. Pharm. 2013, 440:195-206.
    • (2013) Int. J. Pharm. , vol.440 , pp. 195-206
    • Capretto, L.1    Mazzitelli, S.2    Colombo, G.3    Piva, R.4    Penolazzi, L.5    Vecchiatini, R.6    Zhang, X.7    Nastruzzi, C.8
  • 286
    • 84878719193 scopus 로고    scopus 로고
    • A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles
    • Sun J., Xianyu Y., Li M., Liu W., Zhang L., Liu D., Liu C., Hu G., Jiang X. A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles. Nanoscale 2013, 5:5262-5265.
    • (2013) Nanoscale , vol.5 , pp. 5262-5265
    • Sun, J.1    Xianyu, Y.2    Li, M.3    Liu, W.4    Zhang, L.5    Liu, D.6    Liu, C.7    Hu, G.8    Jiang, X.9
  • 288
    • 84877789912 scopus 로고    scopus 로고
    • Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers
    • Hood R., Shao C., Omiatek D., Vreeland W., DeVoe D. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm. Res. 2013, 30:1597-1607.
    • (2013) Pharm. Res. , vol.30 , pp. 1597-1607
    • Hood, R.1    Shao, C.2    Omiatek, D.3    Vreeland, W.4    DeVoe, D.5
  • 291
    • 23944432417 scopus 로고    scopus 로고
    • Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode
    • Kikutani Y., Ueno M., Hisamoto H., Tokeshi M., Kitamori T. Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode. QSAR Comb. Sci. 2005, 24:742-757.
    • (2005) QSAR Comb. Sci. , vol.24 , pp. 742-757
    • Kikutani, Y.1    Ueno, M.2    Hisamoto, H.3    Tokeshi, M.4    Kitamori, T.5
  • 292
    • 0442312891 scopus 로고    scopus 로고
    • Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system
    • Garcia-Egido E., Spikmans V., Wong S.Y.F., Warrington B.H. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 2003, 3:73-76.
    • (2003) Lab Chip , vol.3 , pp. 73-76
    • Garcia-Egido, E.1    Spikmans, V.2    Wong, S.Y.F.3    Warrington, B.H.4
  • 293
    • 85026443640 scopus 로고    scopus 로고
    • Application of microreactors in medicine and biomedicine
    • Šalić A., Tušek A., Zelić B. Application of microreactors in medicine and biomedicine. J. Appl. Biomed. 2012, 10:137.
    • (2012) J. Appl. Biomed. , vol.10 , pp. 137
    • Šalić, A.1    Tušek, A.2    Zelić, B.3
  • 294
  • 295
    • 34248573033 scopus 로고    scopus 로고
    • Microfluidic biochip for blood cell lysis
    • Chen X., Cui D., Liu C., Cai H. Microfluidic biochip for blood cell lysis. Chin. J. Anal. Chem. 2006, 34:1656-1660.
    • (2006) Chin. J. Anal. Chem. , vol.34 , pp. 1656-1660
    • Chen, X.1    Cui, D.2    Liu, C.3    Cai, H.4
  • 296
    • 84856468378 scopus 로고    scopus 로고
    • Microfluidics for single cell analysis
    • Yin H., Marshall D. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 2012, 23:110-119.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 110-119
    • Yin, H.1    Marshall, D.2
  • 297
    • 12144270895 scopus 로고    scopus 로고
    • Non-destructive on-chip cell sorting system with real-time microscopic image processing
    • Takahashi K., Hattori A., Suzuki I., Ichiki T., Yasuda K. Non-destructive on-chip cell sorting system with real-time microscopic image processing. J. Nanobiotechnol. 2004, 2:5.
    • (2004) J. Nanobiotechnol. , vol.2 , pp. 5
    • Takahashi, K.1    Hattori, A.2    Suzuki, I.3    Ichiki, T.4    Yasuda, K.5
  • 298
    • 80755175428 scopus 로고    scopus 로고
    • A scalable microfluidic chip for bacterial suspension culture
    • Gan M., Su J., Wang J., Wu H., Chen L. A scalable microfluidic chip for bacterial suspension culture. Lab Chip 2011, 11:4087-4092.
    • (2011) Lab Chip , vol.11 , pp. 4087-4092
    • Gan, M.1    Su, J.2    Wang, J.3    Wu, H.4    Chen, L.5
  • 303
    • 77951826110 scopus 로고    scopus 로고
    • Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography
    • Hughes A.J., Herr A.E. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography. Anal. Chem. 2010, 82:3803-3811.
    • (2010) Anal. Chem. , vol.82 , pp. 3803-3811
    • Hughes, A.J.1    Herr, A.E.2
  • 304
    • 79751471817 scopus 로고    scopus 로고
    • Fundamentals and applications of immobilized microfluidic enzymatic reactors
    • Matosevic S., Szita N., Baganz F. Fundamentals and applications of immobilized microfluidic enzymatic reactors. J. Chem. Technol. Biotechnol. 2011, 86:325-334.
    • (2011) J. Chem. Technol. Biotechnol. , vol.86 , pp. 325-334
    • Matosevic, S.1    Szita, N.2    Baganz, F.3
  • 307
    • 4043057432 scopus 로고    scopus 로고
    • An optimised split-and-recombine micro-mixer with uniform 'chaotic' mixing
    • Schonfeld F., Hessel V., Hofmann C. An optimised split-and-recombine micro-mixer with uniform 'chaotic' mixing. Lab Chip 2004, 4:65-69.
    • (2004) Lab Chip , vol.4 , pp. 65-69
    • Schonfeld, F.1    Hessel, V.2    Hofmann, C.3
  • 308
    • 84856361376 scopus 로고    scopus 로고
    • Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: experiment and CFD simulation
    • Zhendong L., Yangcheng L., Jiawei W., Guangsheng L. Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: experiment and CFD simulation. Chem. Eng. J. 2012, 181-182:597-606.
    • (2012) Chem. Eng. J. , pp. 597-606
    • Zhendong, L.1    Yangcheng, L.2    Jiawei, W.3    Guangsheng, L.4
  • 311
    • 77249156123 scopus 로고    scopus 로고
    • Applications of micromixing technology
    • Jeong G.S., Chung S., Kim C.-B., Lee S.-H. Applications of micromixing technology. Analyst 2010, 135:460-473.
    • (2010) Analyst , vol.135 , pp. 460-473
    • Jeong, G.S.1    Chung, S.2    Kim, C.-B.3    Lee, S.-H.4
  • 313
    • 0002003927 scopus 로고    scopus 로고
    • Static micromixers based on large-scale industrial mixer geometry
    • Bertsch A., Heimgartner S., Cousseau P., Renaud P. Static micromixers based on large-scale industrial mixer geometry. Lab Chip 2001, 1:56-60.
    • (2001) Lab Chip , vol.1 , pp. 56-60
    • Bertsch, A.1    Heimgartner, S.2    Cousseau, P.3    Renaud, P.4
  • 314
    • 79951566390 scopus 로고    scopus 로고
    • Single-phase fluid flow and mixing in microchannels
    • Kumar V., Paraschivoiu M., Nigam K.D.P. Single-phase fluid flow and mixing in microchannels. Chem. Eng. Sci. 2011, 66:1329-1373.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 1329-1373
    • Kumar, V.1    Paraschivoiu, M.2    Nigam, K.D.P.3
  • 316
    • 84862231072 scopus 로고    scopus 로고
    • Commercialization of microfluidic point-of-care diagnostic devices
    • Chin C.D., Linder V., Sia S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12:2118-2134.
    • (2012) Lab Chip , vol.12 , pp. 2118-2134
    • Chin, C.D.1    Linder, V.2    Sia, S.K.3
  • 318
    • 84984991223 scopus 로고    scopus 로고
    • Infectious disease management through point-of-care personalized medicine molecular diagnostic technologies
    • Bissonnette L., Bergeron M.G. Infectious disease management through point-of-care personalized medicine molecular diagnostic technologies. J. Pers. Med. 2012, 2:50-70.
    • (2012) J. Pers. Med. , vol.2 , pp. 50-70
    • Bissonnette, L.1    Bergeron, M.G.2
  • 319
    • 40449109054 scopus 로고    scopus 로고
    • Electrochemical glucose biosensors
    • Wang J. Electrochemical glucose biosensors. Chem. Rev. 2007, 108:814-825.
    • (2007) Chem. Rev. , vol.108 , pp. 814-825
    • Wang, J.1
  • 320
    • 84876099601 scopus 로고    scopus 로고
    • Advances in microfluidic materials, functions, integration, and applications
    • Nge P.N., Rogers C.I., Woolley A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113:2550-2583.
    • (2013) Chem. Rev. , vol.113 , pp. 2550-2583
    • Nge, P.N.1    Rogers, C.I.2    Woolley, A.T.3
  • 321
  • 322
    • 77952499476 scopus 로고    scopus 로고
    • Fundamentals of microfluidic cell culture in controlled microenvironments
    • Young E.W.K., Beebe D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 2010, 39:1036-1048.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 1036-1048
    • Young, E.W.K.1    Beebe, D.J.2
  • 323
    • 2942709867 scopus 로고    scopus 로고
    • Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes
    • Leclerc E., Sakai Y., Fujii T. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol. Prog. 2004, 20:750-755.
    • (2004) Biotechnol. Prog. , vol.20 , pp. 750-755
    • Leclerc, E.1    Sakai, Y.2    Fujii, T.3
  • 324
    • 55249096780 scopus 로고    scopus 로고
    • Microfluidic single-cell analysis of intracellular compounds
    • Chao T.-C., Ros A. Microfluidic single-cell analysis of intracellular compounds. J. Roy. Soc. Interface 2008, 5:S139-S150.
    • (2008) J. Roy. Soc. Interface , vol.5
    • Chao, T.-C.1    Ros, A.2
  • 325
    • 77955618032 scopus 로고    scopus 로고
    • Microfluidic platforms for single-cell analysis
    • Zare R.N., Kim S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 2010, 12:187-201.
    • (2010) Annu. Rev. Biomed. Eng. , vol.12 , pp. 187-201
    • Zare, R.N.1    Kim, S.2
  • 326
  • 327
    • 33747090983 scopus 로고    scopus 로고
    • Control and detection of chemical reactions in microfluidic systems
    • deMello A.J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442:394-402.
    • (2006) Nature , vol.442 , pp. 394-402
    • deMello, A.J.1
  • 333
    • 33644648070 scopus 로고    scopus 로고
    • Microfluidic arrays for logarithmically perfused embryonic stem cell culture
    • Kim L., Vahey M.D., Lee H.-Y., Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 2006, 6:394-406.
    • (2006) Lab Chip , vol.6 , pp. 394-406
    • Kim, L.1    Vahey, M.D.2    Lee, H.-Y.3    Voldman, J.4
  • 336
    • 84855961937 scopus 로고    scopus 로고
    • Microfluidic DNA hybridization assays
    • Weng X., Jiang H., Li D. Microfluidic DNA hybridization assays. Microfluid. Nanofluid. 2011, 11:367-383.
    • (2011) Microfluid. Nanofluid. , vol.11 , pp. 367-383
    • Weng, X.1    Jiang, H.2    Li, D.3
  • 337
    • 84857503889 scopus 로고    scopus 로고
    • Rapid DNA hybridization in microfluidics, TrAC
    • Henry O.Y.F., O'Sullivan C.K. Rapid DNA hybridization in microfluidics, TrAC. Trends Anal. Chem. 2012, 33:9-22.
    • (2012) Trends Anal. Chem. , vol.33 , pp. 9-22
    • Henry, O.Y.F.1    O'Sullivan, C.K.2
  • 338
    • 77952512357 scopus 로고    scopus 로고
    • A microfluidic oligonucleotide synthesizer
    • Lee C.C., Snyder T.M., Quake S.R. A microfluidic oligonucleotide synthesizer. Nucleic Acid Res. 2010, 38:2514-2521.
    • (2010) Nucleic Acid Res. , vol.38 , pp. 2514-2521
    • Lee, C.C.1    Snyder, T.M.2    Quake, S.R.3
  • 340
    • 64049093709 scopus 로고    scopus 로고
    • Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device
    • Li C., Dong X., Qin J., Lin B. Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device. Anal. Chim. Acta 2009, 640:93-99.
    • (2009) Anal. Chim. Acta , vol.640 , pp. 93-99
    • Li, C.1    Dong, X.2    Qin, J.3    Lin, B.4
  • 342
    • 80053584632 scopus 로고    scopus 로고
    • Proteomic reactors and their applications in biology
    • Zhou H., Ning Z., Wang F., Seebun D., Figeys D. Proteomic reactors and their applications in biology. FEBS J. 2011, 278:3796-3806.
    • (2011) FEBS J. , vol.278 , pp. 3796-3806
    • Zhou, H.1    Ning, Z.2    Wang, F.3    Seebun, D.4    Figeys, D.5
  • 344
    • 10644263725 scopus 로고    scopus 로고
    • Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter
    • Puckett L.G., Dikici E., Lai S., Madou M., Bachas L.G., Daunert S. Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Anal. Chem. 2004, 76:7263-7268.
    • (2004) Anal. Chem. , vol.76 , pp. 7263-7268
    • Puckett, L.G.1    Dikici, E.2    Lai, S.3    Madou, M.4    Bachas, L.G.5    Daunert, S.6
  • 345
    • 60649107650 scopus 로고    scopus 로고
    • Electrode array detector for microchip capillary electrophoresis
    • Holcomb R.E., Kraly J.R., Henry C.S. Electrode array detector for microchip capillary electrophoresis. Analyst 2009, 134:486-492.
    • (2009) Analyst , vol.134 , pp. 486-492
    • Holcomb, R.E.1    Kraly, J.R.2    Henry, C.S.3
  • 347
    • 79960527448 scopus 로고    scopus 로고
    • The role of body-on-a-chip devices in drug and toxicity studies
    • Esch M.B., King T.L., Shuler M.L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 2011, 13:55-72.
    • (2011) Annu. Rev. Biomed. Eng. , vol.13 , pp. 55-72
    • Esch, M.B.1    King, T.L.2    Shuler, M.L.3
  • 348
    • 1142293800 scopus 로고    scopus 로고
    • The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors
    • Sin A., Chin K.C., Jamil M.F., Kostov Y., Rao G., Shuler M.L. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 2004, 20:338-345.
    • (2004) Biotechnol. Prog. , vol.20 , pp. 338-345
    • Sin, A.1    Chin, K.C.2    Jamil, M.F.3    Kostov, Y.4    Rao, G.5    Shuler, M.L.6
  • 349
    • 33746554814 scopus 로고    scopus 로고
    • High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets
    • Yobas L., Martens S., Ong W.-L., Ranganathan N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 2006, 6:1073-1079.
    • (2006) Lab Chip , vol.6 , pp. 1073-1079
    • Yobas, L.1    Martens, S.2    Ong, W.-L.3    Ranganathan, N.4
  • 350
    • 79956132842 scopus 로고    scopus 로고
    • Effect of dispersed phase viscosity on maximum droplet generation frequency in microchannel emulsification using asymmetric straight-through channels
    • Vladisavljević G., Kobayashi I., Nakajima M. Effect of dispersed phase viscosity on maximum droplet generation frequency in microchannel emulsification using asymmetric straight-through channels. Microfluid. Nanofluid. 2011, 10:1199-1209.
    • (2011) Microfluid. Nanofluid. , vol.10 , pp. 1199-1209
    • Vladisavljević, G.1    Kobayashi, I.2    Nakajima, M.3
  • 351
    • 22944432509 scopus 로고    scopus 로고
    • Production of monodisperse oil-in-water emulsions using a large silicon straight-through microchannel plate
    • Kobayashi I., Mukataka S., Nakajima M. Production of monodisperse oil-in-water emulsions using a large silicon straight-through microchannel plate. Ind. Eng. Chem. Res. 2005, 44:5852-5856.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5852-5856
    • Kobayashi, I.1    Mukataka, S.2    Nakajima, M.3
  • 352
    • 0037162610 scopus 로고    scopus 로고
    • Effect of channel structure on microchannel emulsification
    • Sugiura S., Nakajima M., Seki M. Effect of channel structure on microchannel emulsification. Langmuir 2002, 18:5708-5712.
    • (2002) Langmuir , vol.18 , pp. 5708-5712
    • Sugiura, S.1    Nakajima, M.2    Seki, M.3
  • 353
    • 0034235184 scopus 로고    scopus 로고
    • Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique
    • Sugiura S., Nakajima M., Tong J., Nabetani H., Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J. Colloid Interface Sci. 2000, 227:95-103.
    • (2000) J. Colloid Interface Sci. , vol.227 , pp. 95-103
    • Sugiura, S.1    Nakajima, M.2    Tong, J.3    Nabetani, H.4    Seki, M.5
  • 354
    • 4143102559 scopus 로고    scopus 로고
    • Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation
    • Nakagawa K., Iwamoto S., Nakajima M., Shono A., Satoh K. Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. J. Colloid Interface Sci. 2004, 278:198-205.
    • (2004) J. Colloid Interface Sci. , vol.278 , pp. 198-205
    • Nakagawa, K.1    Iwamoto, S.2    Nakajima, M.3    Shono, A.4    Satoh, K.5
  • 355
    • 0035536824 scopus 로고    scopus 로고
    • Synthesis of polymeric microspheres with narrow size distributions employing microchannel emulsification
    • Sugiura S., Nakajima M., Itou H., Seki M. Synthesis of polymeric microspheres with narrow size distributions employing microchannel emulsification. Macromol. Rapid Commun. 2001, 22:773-778.
    • (2001) Macromol. Rapid Commun. , vol.22 , pp. 773-778
    • Sugiura, S.1    Nakajima, M.2    Itou, H.3    Seki, M.4
  • 356
    • 77649237831 scopus 로고    scopus 로고
    • Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip
    • Kobayashi I., Wada Y., Uemura K., Nakajima M. Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip. Microfluid. Nanofluid. 2010, 8:255-262.
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 255-262
    • Kobayashi, I.1    Wada, Y.2    Uemura, K.3    Nakajima, M.4
  • 357
    • 0032855274 scopus 로고    scopus 로고
    • Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate
    • Kawakatsu T., Komori H., Nakajima M., Kikuchi Y., Komori H., Yonemoto Y. Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate. Chem. Eng. J. 1999, 32:241-244.
    • (1999) Chem. Eng. J. , vol.32 , pp. 241-244
    • Kawakatsu, T.1    Komori, H.2    Nakajima, M.3    Kikuchi, Y.4    Komori, H.5    Yonemoto, Y.6
  • 359
    • 4544349792 scopus 로고    scopus 로고
    • Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels
    • Kobayashi I., Mukataka S., Nakajima M. Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. J. Colloid Interface Sci. 2004, 279:277-280.
    • (2004) J. Colloid Interface Sci. , vol.279 , pp. 277-280
    • Kobayashi, I.1    Mukataka, S.2    Nakajima, M.3
  • 360
    • 77953622369 scopus 로고    scopus 로고
    • Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification
    • Dijke K., Kobayashi I., Schroën K., Uemura K., Nakajima M., Boom R. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluid. Nanofluid. 2010, 9:77-85.
    • (2010) Microfluid. Nanofluid. , vol.9 , pp. 77-85
    • Dijke, K.1    Kobayashi, I.2    Schroën, K.3    Uemura, K.4    Nakajima, M.5    Boom, R.6
  • 361
    • 68149136682 scopus 로고    scopus 로고
    • Effect of channel and operation parameters on emulsion production using oblong straight-through microchannels, Japan
    • Kobayashi I., Wada Y., Uemura K., Nakajima M. Effect of channel and operation parameters on emulsion production using oblong straight-through microchannels, Japan. J. Food Eng. 2009, 10:69-75.
    • (2009) J. Food Eng. , vol.10 , pp. 69-75
    • Kobayashi, I.1    Wada, Y.2    Uemura, K.3    Nakajima, M.4
  • 362
    • 51849114556 scopus 로고    scopus 로고
    • Formulation of controlled size PUFA-loaded oil-in-water emulsions by microchannel emulsification using β-carotene-rich palm oil
    • Neves M.A., Ribeiro H.S., Fujiu K.B., Kobayashi I., Nakajima M. Formulation of controlled size PUFA-loaded oil-in-water emulsions by microchannel emulsification using β-carotene-rich palm oil. Ind. Eng. Chem. Res. 2008, 47:6405-6411.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 6405-6411
    • Neves, M.A.1    Ribeiro, H.S.2    Fujiu, K.B.3    Kobayashi, I.4    Nakajima, M.5
  • 363
    • 40149098685 scopus 로고    scopus 로고
    • Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: Effect of emulsifier and oil types
    • Vladisavljević G.T., Kobayashi I., Nakajima M. Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: Effect of emulsifier and oil types. Powder Technol. 2008, 183:37-45.
    • (2008) Powder Technol. , vol.183 , pp. 37-45
    • Vladisavljević, G.T.1    Kobayashi, I.2    Nakajima, M.3
  • 364
    • 38649123681 scopus 로고    scopus 로고
    • Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size
    • Kobayashi I., Takano T., Maeda R., Wada Y., Uemura K., Nakajima M. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid. Nanofluid. 2008, 4:167-177.
    • (2008) Microfluid. Nanofluid. , vol.4 , pp. 167-177
    • Kobayashi, I.1    Takano, T.2    Maeda, R.3    Wada, Y.4    Uemura, K.5    Nakajima, M.6
  • 365
    • 80052815049 scopus 로고    scopus 로고
    • CFD analysis of microchannel emulsification: droplet generation process and size effect of asymmetric straight flow-through microchannels
    • Kobayashi I., Vladisavljević G.T., Uemura K., Nakajima M. CFD analysis of microchannel emulsification: droplet generation process and size effect of asymmetric straight flow-through microchannels. Chem. Eng. Sci. 2011, 66:5556-5565.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5556-5565
    • Kobayashi, I.1    Vladisavljević, G.T.2    Uemura, K.3    Nakajima, M.4
  • 366
    • 35248876205 scopus 로고    scopus 로고
    • Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices
    • Hashimoto M., Garstecki P., Whitesides G.M. Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices. Small 2007, 3:1792-1802.
    • (2007) Small , vol.3 , pp. 1792-1802
    • Hashimoto, M.1    Garstecki, P.2    Whitesides, G.M.3
  • 368
    • 84855916774 scopus 로고    scopus 로고
    • Generation of droplets with different concentrations using gradient-microfluidic droplet generator
    • Yeh C.H., Chen Y.C., Lin Y.C. Generation of droplets with different concentrations using gradient-microfluidic droplet generator. Microfluid. Nanofluid. 2011, 11:245-253.
    • (2011) Microfluid. Nanofluid. , vol.11 , pp. 245-253
    • Yeh, C.H.1    Chen, Y.C.2    Lin, Y.C.3
  • 371
    • 3142679740 scopus 로고    scopus 로고
    • Tree network channels as fluid distributors constructing double-staircase polymer electrolyte fuel cells
    • Senn S.M., Poulikakos D. Tree network channels as fluid distributors constructing double-staircase polymer electrolyte fuel cells. J. Appl. Phys. 2004, 96:842-852.
    • (2004) J. Appl. Phys. , vol.96 , pp. 842-852
    • Senn, S.M.1    Poulikakos, D.2
  • 372
    • 69549105562 scopus 로고    scopus 로고
    • Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles
    • Li W., Greener J., Voicu D., Kumacheva E. Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab Chip 2009, 9:2715-2721.
    • (2009) Lab Chip , vol.9 , pp. 2715-2721
    • Li, W.1    Greener, J.2    Voicu, D.3    Kumacheva, E.4
  • 373
    • 84865148047 scopus 로고    scopus 로고
    • Scaled-up production of monodisperse, dual layer microbubbles using multi-array microfluidic module for medical imaging and drug delivery
    • Kendall M.R., Bardin D., Shih R., Dayton P.A., Lee A.P. Scaled-up production of monodisperse, dual layer microbubbles using multi-array microfluidic module for medical imaging and drug delivery. Bubble Sci. Eng. Technol. 2012, 4:12-20.
    • (2012) Bubble Sci. Eng. Technol. , vol.4 , pp. 12-20
    • Kendall, M.R.1    Bardin, D.2    Shih, R.3    Dayton, P.A.4    Lee, A.P.5
  • 376
    • 33745266376 scopus 로고    scopus 로고
    • The microreactor: a systematic and efficient tool for the transition from batch to continuous process?
    • Lomel S., Falk L., Commenge J.M., Houzelot J.L., Ramdani K. The microreactor: a systematic and efficient tool for the transition from batch to continuous process?. Chem. Eng. Res. Des. 2006, 84:363-369.
    • (2006) Chem. Eng. Res. Des. , vol.84 , pp. 363-369
    • Lomel, S.1    Falk, L.2    Commenge, J.M.3    Houzelot, J.L.4    Ramdani, K.5
  • 377
    • 77953138778 scopus 로고    scopus 로고
    • Flow chemistry using milli- and microstructured reactors - from conventional to novel process windows
    • Illg T., Löb P., Hessel V. Flow chemistry using milli- and microstructured reactors - from conventional to novel process windows. Bioorg. Med. Chem. 2010, 18:3707-3719.
    • (2010) Bioorg. Med. Chem. , vol.18 , pp. 3707-3719
    • Illg, T.1    Löb, P.2    Hessel, V.3
  • 378
    • 77952935876 scopus 로고    scopus 로고
    • Continuous flow organic synthesis under high-temperature/pressure conditions
    • Razzaq T., Kappe C.O. Continuous flow organic synthesis under high-temperature/pressure conditions. Chem. Asian J. 2010, 5:1274-1289.
    • (2010) Chem. Asian J. , vol.5 , pp. 1274-1289
    • Razzaq, T.1    Kappe, C.O.2
  • 380
    • 34547491744 scopus 로고    scopus 로고
    • Conceptual design of a mass parallelized PEF microreactor
    • Fox M.B., Esveld D.C., Boom R.M. Conceptual design of a mass parallelized PEF microreactor. Trends Food Sci. Technol. 2007, 18:484-491.
    • (2007) Trends Food Sci. Technol. , vol.18 , pp. 484-491
    • Fox, M.B.1    Esveld, D.C.2    Boom, R.M.3
  • 382
    • 79952441408 scopus 로고    scopus 로고
    • Scale-up concept of single-channel microreactors from process development to industrial production
    • Kockmann N., Gottsponer M., Roberge D.M. Scale-up concept of single-channel microreactors from process development to industrial production. Chem. Eng. J. 2011, 167:718-726.
    • (2011) Chem. Eng. J. , vol.167 , pp. 718-726
    • Kockmann, N.1    Gottsponer, M.2    Roberge, D.M.3
  • 383
    • 84876264906 scopus 로고    scopus 로고
    • Up-scaled microfluidic fuel cells with porous flow-through electrodes
    • Fuerth D., Bazylak A. Up-scaled microfluidic fuel cells with porous flow-through electrodes. J. Fluids Eng. 2013, 135:021102.
    • (2013) J. Fluids Eng. , vol.135 , pp. 021102
    • Fuerth, D.1    Bazylak, A.2
  • 384
    • 34247603942 scopus 로고    scopus 로고
    • Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes
    • Kjeang E., McKechnie J., Sinton D., Djilali N. Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. J. Power Sources 2007, 168:379-390.
    • (2007) J. Power Sources , vol.168 , pp. 379-390
    • Kjeang, E.1    McKechnie, J.2    Sinton, D.3    Djilali, N.4
  • 386
    • 0037131390 scopus 로고    scopus 로고
    • Microfluidic large-scale integration
    • Thorsen T., Maerkl S.J., Quake S.R. Microfluidic large-scale integration. Science 2002, 298:580-584.
    • (2002) Science , vol.298 , pp. 580-584
    • Thorsen, T.1    Maerkl, S.J.2    Quake, S.R.3
  • 387
  • 389
    • 77954541844 scopus 로고    scopus 로고
    • Single-cell NF-[kgr]B dynamics reveal digital activation and analogue information processing
    • Tay S., Hughey J.J., Lee T.K., Lipniacki T., Quake S.R., Covert M.W. Single-cell NF-[kgr]B dynamics reveal digital activation and analogue information processing. Nature 2010, 466:267-271.
    • (2010) Nature , vol.466 , pp. 267-271
    • Tay, S.1    Hughey, J.J.2    Lee, T.K.3    Lipniacki, T.4    Quake, S.R.5    Covert, M.W.6
  • 390
    • 35348873762 scopus 로고    scopus 로고
    • Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution
    • Rohde C.B., Zeng F., Gonzalez-Rubio R., Angel M., Yanik M.F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. U S. A. 2007, 104:13891-13895.
    • (2007) Proc. Natl. Acad. Sci. U S. A. , vol.104 , pp. 13891-13895
    • Rohde, C.B.1    Zeng, F.2    Gonzalez-Rubio, R.3    Angel, M.4    Yanik, M.F.5
  • 391
    • 77950995360 scopus 로고    scopus 로고
    • A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans
    • Ma H., Jiang L., Shi W., Qin J., Lin B. A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans. Biomicrofluidics 2009, 3:44114-44118.
    • (2009) Biomicrofluidics , vol.3 , pp. 44114-44118
    • Ma, H.1    Jiang, L.2    Shi, W.3    Qin, J.4    Lin, B.5
  • 393
    • 46249092235 scopus 로고    scopus 로고
    • Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans
    • Chung K., Crane M.M., Lu H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods 2008, 5:637-643.
    • (2008) Nat. Methods , vol.5 , pp. 637-643
    • Chung, K.1    Crane, M.M.2    Lu, H.3
  • 395
  • 396
    • 84864258558 scopus 로고    scopus 로고
    • Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm
    • Wang J., Fan H.C., Behr B., Quake Stephen R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 2012, 150:402-412.
    • (2012) Cell , vol.150 , pp. 402-412
    • Wang, J.1    Fan, H.C.2    Behr, B.3    Quake, S.R.4
  • 398
    • 82055190186 scopus 로고    scopus 로고
    • Microengineering methods for cell-based microarrays and high-throughput drug-screening applications
    • Feng X., JinHui W., ShuQi W., Naside Gozde D., Umut Atakan G., Utkan D. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 2011, 3:034101.
    • (2011) Biofabrication , vol.3 , pp. 034101
    • Feng, X.1    JinHui, W.2    ShuQi, W.3    Naside Gozde, D.4    Umut Atakan, G.5    Utkan, D.6
  • 400
    • 79955612530 scopus 로고    scopus 로고
    • A parallel microfluidic flow cytometer for high-content screening
    • McKenna B.K., Evans J.G., Cheung M.C., Ehrlich D.J. A parallel microfluidic flow cytometer for high-content screening. Nat. Methods 2011, 8:401-403.
    • (2011) Nat. Methods , vol.8 , pp. 401-403
    • McKenna, B.K.1    Evans, J.G.2    Cheung, M.C.3    Ehrlich, D.J.4
  • 401
    • 70350447157 scopus 로고    scopus 로고
    • High-throughput flow alignment of barcoded hydrogel microparticles
    • Chapin S.C., Pregibon D.C., Doyle P.S. High-throughput flow alignment of barcoded hydrogel microparticles. Lab Chip 2009, 9:3100-3109.
    • (2009) Lab Chip , vol.9 , pp. 3100-3109
    • Chapin, S.C.1    Pregibon, D.C.2    Doyle, P.S.3
  • 403
    • 5144223105 scopus 로고    scopus 로고
    • Systematic investigation of protein phase behavior with a microfluidic formulator
    • Hansen C.L., Sommer M.O.A., Quake S.R. Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:14431-14436.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 14431-14436
    • Hansen, C.L.1    Sommer, M.O.A.2    Quake, S.R.3
  • 404
    • 0037168508 scopus 로고    scopus 로고
    • A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion
    • Hansen C.L., Skordalakes E., Berger J.M., Quake S.R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:16531-16536.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 16531-16536
    • Hansen, C.L.1    Skordalakes, E.2    Berger, J.M.3    Quake, S.R.4
  • 406
    • 84856194886 scopus 로고    scopus 로고
    • Fully automated cellular-resolution vertebrate screening platform with parallel animal processing
    • Chang T.-Y., Pardo-Martin C., Allalou A., Wahlby C., Yanik M.F. Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab Chip 2012, 12:711-716.
    • (2012) Lab Chip , vol.12 , pp. 711-716
    • Chang, T.-Y.1    Pardo-Martin, C.2    Allalou, A.3    Wahlby, C.4    Yanik, M.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.