-
1
-
-
1642351161
-
"Engineering flows in small devices: Microfluidics toward a lab-on-a-chip"
-
ARVFA30066-418910.1146/annurev.fluid.36.050802.122124
-
H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: Microfluidics toward a lab-on-a-chip," Annu. Rev. Fluid Mech.ARVFA30066-418910.1146/annurev.fluid.36.050802.122124 36, 381 (2004).
-
(2004)
Annu. Rev. Fluid Mech.
, vol.36
, pp. 381
-
-
Stone, H.A.1
Stroock, A.D.2
Ajdari, A.3
-
2
-
-
4344704303
-
"Theory and numerical simulation of droplet dynamics in complex flows-a review"
-
LCAHAM1473-019710.1039/b403226h
-
V. Cristini and Y. C. Tan, "Theory and numerical simulation of droplet dynamics in complex flows-a review," Lab ChipLCAHAM1473-019710.1039/b403226h 4, 257 (2004).
-
(2004)
Lab Chip
, vol.4
, pp. 257
-
-
Cristini, V.1
Tan, Y.C.2
-
3
-
-
4544366400
-
"Dynamic pattern formation in a vesicle-generating microfluidic device"
-
PRLTAO0031-900710.1103/PhysRevLett.86.4163
-
T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, "Dynamic pattern formation in a vesicle-generating microfluidic device," Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.86.4163 86, 4163 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 4163
-
-
Thorsen, T.1
Roberts, R.W.2
Arnold, F.H.3
Quake, S.R.4
-
4
-
-
0035807144
-
"Interfacial tension driven monodispersed droplet formation from microfabricated channel array"
-
LANGD50743-746310.1021/la010342y
-
S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, "Interfacial tension driven monodispersed droplet formation from microfabricated channel array," LangmuirLANGD50743-746310.1021/la010342y 17, 5562 (2001).
-
(2001)
Langmuir
, vol.17
, pp. 5562
-
-
Sugiura, S.1
Nakajima, M.2
Iwamoto, S.3
Seki, M.4
-
5
-
-
0242492537
-
"Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers"
-
LANGD50743-746310.1021/la030090w
-
J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, "Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers," LangmuirLANGD50743-746310.1021/ la030090w 19, 9127 (2003).
-
(2003)
Langmuir
, vol.19
, pp. 9127
-
-
Tice, J.D.1
Song, H.2
Lyon, A.D.3
Ismagilov, R.F.4
-
6
-
-
0033640011
-
"Monodisperse emulsion generation via drop break off in a coflowing stream"
-
LANGD50743-746310.1021/la990101e
-
P. B. Umbanhowar, V. Prasad, and D. A. Weitz, "Monodisperse emulsion generation via drop break off in a coflowing stream," LangmuirLANGD50743-746310.1021/la990101e 16, 347 (2000).
-
(2000)
Langmuir
, vol.16
, pp. 347
-
-
Umbanhowar, P.B.1
Prasad, V.2
Weitz, D.A.3
-
7
-
-
33846960112
-
"Microfluidic bubble logic"
-
SCIEAS0036-807510.1126/science.1136907
-
M. Prakash and N. Gershenfeld, "Microfluidic bubble logic," ScienceSCIEAS0036-807510.1126/science.1136907 315, 832 (2007).
-
(2007)
Science
, vol.315
, pp. 832
-
-
Prakash, M.1
Gershenfeld, N.2
-
8
-
-
1642351216
-
"Geometrically mediated breakup of drops in microfluidic device"
-
PRLTAO0031-900710.1103/PhysRevLett.92.054503
-
D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, "Geometrically mediated breakup of drops in microfluidic device," Phys. Rev. Lett.PRLTAO0031-900710.1103/ PhysRevLett.92.054503 92, 054503 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 054503
-
-
Link, D.R.1
Anna, S.L.2
Weitz, D.A.3
Stone, H.A.4
-
9
-
-
4344701435
-
"Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting"
-
LCAHAM1473-019710.1039/b403280m
-
Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. Phillip, "Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting," Lab ChipLCAHAM1473-019710.1039/b403280m 4, 292 (2004).
-
(2004)
Lab Chip
, vol.4
, pp. 292
-
-
Tan, Y.C.1
Fisher, J.S.2
Lee, A.I.3
Cristini, V.4
Phillip, A.5
-
10
-
-
33644648479
-
"Formation of droplets and bubbles in a microfluidic T-junction-Scaling and mechanism of break-up"
-
CAHAM1473-019710.1039/b510841a
-
P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction-Scaling and mechanism of break-up," Lab ChipLCAHAM1473-019710.1039/b510841a 6, 437 (2006).
-
(2006)
Lab ChipL
, vol.6
, pp. 437
-
-
Garstecki, P.1
Fuerstman, M.J.2
Stone, H.A.3
Whitesides, G.M.4
-
11
-
-
38549179308
-
"Role of the channel geometry on the bubble pinch-off in flow-focusing devices"
-
PRLTAO0031-900710.1103/PhysRevLett.100.034504
-
B. Dollet, W. van Hoeve, J.-P. Raven, P. Marmottant, and M. Versluis, "Role of the channel geometry on the bubble pinch-off in flow-focusing devices," Phys. Rev. Lett.PRLTAO0031-900710.1103/ PhysRevLett.100.034504 100, 034504 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 034504
-
-
Dollet, B.1
van Hoeve, W.2
Raven, J.-P.3
Marmottant, P.4
Versluis, M.5
-
12
-
-
0000352893
-
"Critical behavior of droplet breakup in axisymmetric viscous flow"
-
PHFLE61070-663110.1063/1.869971
-
Y. Navot, "Critical behavior of droplet breakup in axisymmetric viscous flow," Phys. FluidsPHFLE61070-663110.1063/1.869971 11, 990 (1999).
-
(1999)
Phys. Fluids
, vol.11
, pp. 990
-
-
Navot, Y.1
-
13
-
-
61849088243
-
"Numerical simulations of drops in microchannels"
-
M.S. thesis, Technion
-
P. Urbant, "Numerical simulations of drops in microchannels," M.S. thesis, Technion, 2006.
-
(2006)
-
-
Urbant, P.1
-
14
-
-
44249086409
-
"On the forced convective heat transport in a droplet-laden flow in microchannels"
-
MNIAAR1613-498210.1007/s10404-007-0211-2
-
P. Urbant, A. Leshansky, and Yu. Halupovich, "On the forced convective heat transport in a droplet-laden flow in microchannels," Microfluid. Nanofluid.MNIAAR1613-498210.1007/ s10404-007-0211-2 4, 533 (2008).
-
(2008)
Microfluid. Nanofluid.
, vol.4
, pp. 533
-
-
Urbant, P.1
Leshansky, A.2
Halupovich, Yu.3
-
16
-
-
61849176298
-
"Droplet break-up in microfluidic T-junction at small capillary numbers"
-
Recent experimental work [M.-J. Tsang M. Ching, M.-C. Jullien, C. Cohen, L. Menetrier and P. Tabeling (unpublished)] suggests that for small capillary numbers, Ca <10-3, the breakup is intrinsically dynamic, as the droplet ruptures before reaching a steady shape. In this sense, the theory described in the present paper refers to the regime they identify as "shear-driven breakup."
-
Recent experimental work [M.-J. Tsang M. Ching, M.-C. Jullien, C. Cohen, L. Menetrier and P. Tabeling, "Droplet break-up in microfluidic T-junction at small capillary numbers," Phys Fluids (unpublished)] suggests that for small capillary numbers, Ca <10-3, the breakup is intrinsically dynamic, as the droplet ruptures before reaching a steady shape. In this sense, the theory described in the present paper refers to the regime they identify as "shear-driven breakup."
-
Phys Fluids
-
-
-
17
-
-
84855585199
-
"The motion of long bubbles in tubes"
-
JFLSA70022-112010.1017/S0022112061000160
-
F. Bretherton, "The motion of long bubbles in tubes," J. Fluid Mech.JFLSA70022-112010.1017/S0022112061000160 10, 166 (1961).
-
(1961)
J. Fluid Mech.
, vol.10
, pp. 166
-
-
Bretherton, F.1
-
18
-
-
61849110159
-
-
The capillary number, as defined in this paper, is based on the average velocity in the outlet channel. Note that usually it is based on average velocity in the inlet channel
-
The capillary number, as defined in this paper, is based on the average velocity in the outlet channel. Note that usually it is based on average velocity in the inlet channel.
-
-
-
|