메뉴 건너뛰기




Volumn 2, Issue 4, 2012, Pages 298-325

Tutorial on biological networks

Author keywords

[No Author keywords available]

Indexed keywords

DATA INTEGRATION; DATA VISUALIZATION; PROTEINS; SIGNALING; TOPOLOGY;

EID: 84873156585     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1061     Document Type: Review
Times cited : (11)

References (248)
  • 1
    • 67749140118 scopus 로고    scopus 로고
    • Scale-free networks: a decade and beyond
    • Barabasi AL. Scale-free networks: a decade and beyond. Science 2009, 325:412-413.
    • (2009) Science , vol.325 , pp. 412-413
    • Barabasi, A.L.1
  • 2
    • 67749102377 scopus 로고    scopus 로고
    • Revisiting the foundations of network analysis
    • Butts CT. Revisiting the foundations of network analysis. Science 2009, 325:414-416.
    • (2009) Science , vol.325 , pp. 414-416
    • Butts, C.T.1
  • 3
    • 67749099944 scopus 로고    scopus 로고
    • Disentangling the web of life
    • Bascompte J. Disentangling the web of life. Science 2009, 325:416-419.
    • (2009) Science , vol.325 , pp. 416-419
    • Bascompte, J.1
  • 4
    • 67749104823 scopus 로고    scopus 로고
    • A general framework for analyzing sustainability of social-ecological systems
    • Ostrom E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325:419-422.
    • (2009) Science , vol.325 , pp. 419-422
    • Ostrom, E.1
  • 5
    • 67749145794 scopus 로고    scopus 로고
    • Predicting the behavior of technosocial systems
    • Vespignani A. Predicting the behavior of technosocial systems. Science 2009, 325:425-428.
    • (2009) Science , vol.325 , pp. 425-428
    • Vespignani, A.1
  • 6
    • 33645732240 scopus 로고    scopus 로고
    • Modeling cellular machinery through biological network comparison
    • Sharan R, Ideker T. Modeling cellular machinery through biological network comparison. Nat Biotechnol 2006, 24:427-433.
    • (2006) Nat Biotechnol , vol.24 , pp. 427-433
    • Sharan, R.1    Ideker, T.2
  • 7
    • 20344379457 scopus 로고    scopus 로고
    • Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli.
    • Balazsi G, Barabasi AL, Oltvai ZN. Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci USA 2005, 102:7841-7846.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 7841-7846
    • Balazsi, G.1    Barabasi, A.L.2    Oltvai, Z.N.3
  • 8
    • 77249100734 scopus 로고    scopus 로고
    • Network inference and network response identification: moving genomescale data to the next level of biological discovery
    • Veiga DF, Dutta B, Balazsi G. Network inference and network response identification: moving genomescale data to the next level of biological discovery. Mol Biosyst 2010, 6:469-480.
    • (2010) Mol Biosyst , vol.6 , pp. 469-480
    • Veiga, D.F.1    Dutta, B.2    Balazsi, G.3
  • 9
    • 58149263701 scopus 로고    scopus 로고
    • Time-series integrated "omic" analyses to elucidate short-term stress-induced responses in plant liquid cultures
    • Dutta B, et al. Time-series integrated "omic" analyses to elucidate short-term stress-induced responses in plant liquid cultures. Biotechnol Bioeng 2009, 102:264-279.
    • (2009) Biotechnol Bioeng , vol.102 , pp. 264-279
    • Dutta, B.1
  • 10
    • 3042750616 scopus 로고    scopus 로고
    • Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana
    • Hirai MY, et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 2004, 101:10205-10210.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 10205-10210
    • Hirai, M.Y.1
  • 11
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang HY, et al. Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.
    • (2007) Mol Syst Biol , vol.3 , pp. 140
    • Chuang, H.Y.1
  • 12
    • 38549126643 scopus 로고    scopus 로고
    • KEGG for linking genomes to life and the environment
    • Kanehisa M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36(Database issue):D480-D484.
    • (2008) Nucleic Acids Res , vol.36 , Issue.DATABASE ISSUE
    • Kanehisa, M.1
  • 13
    • 75549090505 scopus 로고    scopus 로고
    • The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
    • Caspi R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2010, 38(Database issue):D473-D479.
    • (2010) Nucleic Acids Res , vol.38 , Issue.DATABASE ISSUE
    • Caspi, R.1
  • 14
    • 46049087782 scopus 로고    scopus 로고
    • The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation
    • Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 2008, 9:326-332.
    • (2008) Brief Bioinform , vol.9 , pp. 326-332
    • Wingender, E.1
  • 15
    • 38549087902 scopus 로고    scopus 로고
    • ORegAnno: an open-access community-driven resource for regulatory annotation
    • Griffith OL, et al. ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 2008, 36(Database issue):D107-D113.
    • (2008) Nucleic Acids Res , vol.36 , Issue.DATABASE ISSUE
    • Griffith, O.L.1
  • 16
    • 0036081347 scopus 로고    scopus 로고
    • MIPS: a database for genomes and protein sequences
    • Mewes HW, et al.MIPS: a database for genomes and protein sequences. Nucleic Acids Res 2002, 30:31-34.
    • (2002) Nucleic Acids Res , vol.30 , pp. 31-34
    • Mewes, H.W.1
  • 17
    • 0347755535 scopus 로고    scopus 로고
    • The Database of Interacting Proteins: 2004 update
    • Salwinski L, et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004, 32(Database issue):D449-D451.
    • (2004) Nucleic Acids Res , vol.32 , Issue.DATABASE ISSUE
    • Salwinski, L.1
  • 18
    • 0037138406 scopus 로고    scopus 로고
    • MINT: a Molecular INTeraction database
    • Zanzoni A, et al. MINT: a Molecular INTeraction database. FEBS Lett 2002, 513:135-140.
    • (2002) FEBS Lett , vol.513 , pp. 135-140
    • Zanzoni, A.1
  • 19
    • 33846047770 scopus 로고    scopus 로고
    • IntAct-open source resource for molecular interaction data
    • Kerrien S, et al. IntAct-open source resource for molecular interaction data. Nucleic Acids Res 2007, 35(Database issue):D561-D565.
    • (2007) Nucleic Acids Res , vol.35 , Issue.DATABASE ISSUE
    • Kerrien, S.1
  • 20
    • 38549173606 scopus 로고    scopus 로고
    • The BioGRID Interaction Database: 2008 update
    • Breitkreutz BJ, et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 2008, 36(Database issue):D637-D640.
    • (2008) Nucleic Acids Res , vol.36 , Issue.DATABASE ISSUE
    • Breitkreutz, B.J.1
  • 21
    • 10744224197 scopus 로고    scopus 로고
    • Development of human protein reference database as an initial platform for approaching systems biology in humans
    • Peri S, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13:2363-2371.
    • (2003) Genome Res , vol.13 , pp. 2363-2371
    • Peri, S.1
  • 22
    • 54949120007 scopus 로고    scopus 로고
    • DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions
    • Yu J, et al. DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 2008, 9:461.
    • (2008) BMC Genomics , vol.9 , pp. 461
    • Yu, J.1
  • 23
    • 38549151156 scopus 로고    scopus 로고
    • Bacteriome.org-an integrated protein interaction database for E. coli
    • Su C, et al. Bacteriome.org-an integrated protein interaction database for E. coli. Nucleic Acids Res 2008, 36(Database issue):D632-D636.
    • (2008) Nucleic Acids Res , vol.36 , Issue.DATABASE ISSUE
    • Su, C.1
  • 24
    • 18744376914 scopus 로고    scopus 로고
    • Online predicted human interaction database
    • Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics 2005, 21:2076-2082.
    • (2005) Bioinformatics , vol.21 , pp. 2076-2082
    • Brown, K.R.1    Jurisica, I.2
  • 25
    • 75549091259 scopus 로고    scopus 로고
    • DRYGIN: a database of quantitative genetic interaction networks in yeast
    • Koh JL, et al. DRYGIN: a database of quantitative genetic interaction networks in yeast. Nucleic Acids Res 2010, 38(Database issue):D502-D507.
    • (2010) Nucleic Acids Res , vol.38 , Issue.DATABASE ISSUE
    • Koh, J.L.1
  • 27
    • 58549108388 scopus 로고    scopus 로고
    • Reconstruction of biochemical networks in microorganisms
    • Feist AM, et al. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009, 7:129-143.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 129-143
    • Feist, A.M.1
  • 28
    • 77956649528 scopus 로고    scopus 로고
    • Metabolic reconstruction, constraintbased analysis and game theory to probe genomescale metabolic networks
    • Ruppin E, et al. Metabolic reconstruction, constraintbased analysis and game theory to probe genomescale metabolic networks. Curr Opin Biotechnol 2010, 21:502-510.
    • (2010) Curr Opin Biotechnol , vol.21 , pp. 502-510
    • Ruppin, E.1
  • 29
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 30
    • 0346494819 scopus 로고    scopus 로고
    • MetaCyc: a multiorganism database of metabolic pathways and enzymes
    • Krieger CJ, et al.MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004, 32(Database issue):D438-D442.
    • (2004) Nucleic Acids Res , vol.32 , Issue.DATABASE ISSUE
    • Krieger, C.J.1
  • 31
    • 78651317908 scopus 로고    scopus 로고
    • Entrez Gene: gene-centered information at NCBI
    • Maglott D, et al. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2007, 39(Database issue):D52-D57.
    • (2007) Nucleic Acids Res , vol.39 , Issue.DATABASE ISSUE
    • Maglott, D.1
  • 32
    • 0032893434 scopus 로고    scopus 로고
    • The EMBL Nucleotide Sequence Database
    • Stoesser G, et al. The EMBL Nucleotide Sequence Database. Nucleic Acids Res 1999, 27:18-24.
    • (1999) Nucleic Acids Res , vol.27 , pp. 18-24
    • Stoesser, G.1
  • 33
    • 0036330798 scopus 로고    scopus 로고
    • Genome-scale metabolic model of Helicobacter pylori 26695
    • Schilling CH, et al. Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 2002, 184:4582-4593.
    • (2002) J Bacteriol , vol.184 , pp. 4582-4593
    • Schilling, C.H.1
  • 34
    • 0035017810 scopus 로고    scopus 로고
    • Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints
    • Ramakrishna R, et al. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol Regul Integr Comp Physiol 2001, 280:R695-R704.
    • (2001) Am J Physiol Regul Integr Comp Physiol , vol.280
    • Ramakrishna, R.1
  • 35
    • 0027909387 scopus 로고
    • Biochemical production capabilities of Escherichia coli
    • Varma A, Boesch BW, Palsson BO. Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 1993, 42:59-73.
    • (1993) Biotechnol Bioeng , vol.42 , pp. 59-73
    • Varma, A.1    Boesch, B.W.2    Palsson, B.O.3
  • 36
    • 34347258175 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
    • Becker SA, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007, 2:727-738.
    • (2007) Nat Protoc , vol.2 , pp. 727-738
    • Becker, S.A.1
  • 39
    • 70349312354 scopus 로고    scopus 로고
    • ChIP-seq: advantages and challenges of a maturing technology
    • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009, 10:669-680.
    • (2009) Nat Rev Genet , vol.10 , pp. 669-680
    • Park, P.J.1
  • 40
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee WP, Tzou WS. Computational methods for discovering gene networks from expression data. Brief Bioinform 2009, 10:408-423.
    • (2009) Brief Bioinform , vol.10 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 41
    • 0041592528 scopus 로고    scopus 로고
    • MeKE: discovering the functions of gene products from biomedical literature via sentence alignment
    • Chiang JH, Yu HC. MeKE: discovering the functions of gene products from biomedical literature via sentence alignment. Bioinformatics 2003, 19:1417-1422.
    • (2003) Bioinformatics , vol.19 , pp. 1417-1422
    • Chiang, J.H.1    Yu, H.C.2
  • 42
    • 3042799574 scopus 로고    scopus 로고
    • A computational algebra approach to the reverse engineering of gene regulatory networks
    • Laubenbacher R, Stigler B. A computational algebra approach to the reverse engineering of gene regulatory networks. J Theor Biol 2004, 229:523-537.
    • (2004) J Theor Biol , vol.229 , pp. 523-537
    • Laubenbacher, R.1    Stigler, B.2
  • 43
    • 6044247613 scopus 로고    scopus 로고
    • A Boolean algorithm for reconstructing the structure of regulatory networks
    • Mehra S, Hu WS, Karypis G. A Boolean algorithm for reconstructing the structure of regulatory networks. Metab Eng 2004, 6:326-339.
    • (2004) Metab Eng , vol.6 , pp. 326-339
    • Mehra, S.1    Hu, W.S.2    Karypis, G.3
  • 44
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    • Li P, et al. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 2007, 8(Suppl 7):S13.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL 7
    • Li, P.1
  • 45
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink AJ, et al. Combining location and expression data for principled discovery of genetic regulatory network models. Pac Symp Biocomput 2002, 437-449.
    • (2002) Pac Symp Biocomput , pp. 437-449
    • Hartemink, A.J.1
  • 46
    • 79953890868 scopus 로고    scopus 로고
    • What does biologically meaningful mean? A perspective on gene regulatory network validation
    • Walhout AJ. What does biologically meaningful mean? A perspective on gene regulatory network validation. Genome Biol 2011, 12:109.
    • (2011) Genome Biol , vol.12 , pp. 109
    • Walhout, A.J.1
  • 47
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Microbiol 2010, 8:717-729.
    • (2010) Nat Rev Microbiol , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 48
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths andweaknesses of methods for gene network inference
    • MarbachD, et al. Revealing strengths andweaknesses of methods for gene network inference. Proc Natl Acad Sci USA 2010, 107:6286-6291.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 50
    • 0035895513 scopus 로고    scopus 로고
    • Gene number. What if there are only 30,000 human genes?
    • Claverie JM. Gene number. What if there are only 30,000 human genes? Science 2001, 291:1255-1257.
    • (2001) Science , vol.291 , pp. 1255-1257
    • Claverie, J.M.1
  • 51
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5:101-113.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 52
    • 41649119247 scopus 로고    scopus 로고
    • Protein networks in disease
    • Ideker T, Sharan R. Protein networks in disease. Genome Res 2008, 18:644-652.
    • (2008) Genome Res , vol.18 , pp. 644-652
    • Ideker, T.1    Sharan, R.2
  • 53
    • 58149234807 scopus 로고    scopus 로고
    • Cost-effective strategies for completing the interactome
    • Schwartz AS, et al. Cost-effective strategies for completing the interactome. NatMethods 2009, 6:55-61.
    • (2009) NatMethods , vol.6 , pp. 55-61
    • Schwartz, A.S.1
  • 54
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of largescale data sets of protein-protein interactions
    • vonMering C, et al. Comparative assessment of largescale data sets of protein-protein interactions. Nature 2002, 417:399-403.
    • (2002) Nature , vol.417 , pp. 399-403
    • vonMering, C.1
  • 55
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001, 98:4569-4574.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 4569-4574
    • Ito, T.1
  • 56
    • 0033974688 scopus 로고    scopus 로고
    • Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
    • Ito T, et al. Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 2000, 97:1143-1147.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 1143-1147
    • Ito, T.1
  • 57
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
    • Uetz P, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
    • (2000) Nature , vol.403 , pp. 623-627
    • Uetz, P.1
  • 58
    • 9144264169 scopus 로고    scopus 로고
    • A map of the interactome network of the metazoan C. elegans
    • Li S, et al. A map of the interactome network of the metazoan C. elegans. Science 2004, 303:540-543.
    • (2004) Science , vol.303 , pp. 540-543
    • Li, S.1
  • 59
    • 0035843145 scopus 로고    scopus 로고
    • The protein-protein interaction map of Helicobacter pylori
    • Rain JC, et al. The protein-protein interaction map of Helicobacter pylori. Nature 2001, 409:211-215.
    • (2001) Nature , vol.409 , pp. 211-215
    • Rain, J.C.1
  • 60
    • 25144498379 scopus 로고    scopus 로고
    • A human protein-protein interaction network: a resource for annotating the proteome
    • Stelzl U, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122:957-968.
    • (2005) Cell , vol.122 , pp. 957-968
    • Stelzl, U.1
  • 61
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin AC, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415:141-147.
    • (2002) Nature , vol.415 , pp. 141-147
    • Gavin, A.C.1
  • 62
    • 13444283630 scopus 로고    scopus 로고
    • Interaction network containing conserved and essential protein complexes in Escherichia coli
    • Butland G, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 2005, 433:531-537.
    • (2005) Nature , vol.433 , pp. 531-537
    • Butland, G.1
  • 63
    • 0035860499 scopus 로고    scopus 로고
    • Global analysis of protein activities using proteome chips
    • ZhuH, et al. Global analysis of protein activities using proteome chips. Science 2001, 293:2101-2105.
    • (2001) Science , vol.293 , pp. 2101-2105
    • Zhu, H.1
  • 64
    • 20144372620 scopus 로고    scopus 로고
    • High-throughput mapping of a dynamic signaling network in mammalian cells
    • Barrios-Rodiles M, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005, 307:1621-1625.
    • (2005) Science , vol.307 , pp. 1621-1625
    • Barrios-Rodiles, M.1
  • 65
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • Ho Y, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415:180-183.
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1
  • 66
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • Hughes TR, et al. Functional discovery via a compendium of expression profiles. Cell 2000, 102:109-126.
    • (2000) Cell , vol.102 , pp. 109-126
    • Hughes, T.R.1
  • 67
    • 0032828715 scopus 로고    scopus 로고
    • A generic protein purification method for protein complex characterization and proteome exploration
    • Rigaut G, et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999, 17:1030-1032.
    • (1999) Nat Biotechnol , vol.17 , pp. 1030-1032
    • Rigaut, G.1
  • 68
    • 45849110261 scopus 로고    scopus 로고
    • An in vivo map of the yeast protein interactome
    • Tarassov K, et al. An in vivo map of the yeast protein interactome. Science 2008, 320:1465-1470.
    • (2008) Science , vol.320 , pp. 1465-1470
    • Tarassov, K.1
  • 69
    • 34548394483 scopus 로고    scopus 로고
    • Human protein-protein interaction networks and the value for drug discovery
    • Ruffner H, Bauer A, Bouwmeester T. Human protein-protein interaction networks and the value for drug discovery. Drug Discov Today 2007, 12:709-716.
    • (2007) Drug Discov Today , vol.12 , pp. 709-716
    • Ruffner, H.1    Bauer, A.2    Bouwmeester, T.3
  • 70
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L, et al. A protein interaction map of Drosophila melanogaster. Science 2003, 302:1727-1736.
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1
  • 72
    • 33947219266 scopus 로고    scopus 로고
    • Large-scale mapping of human protein-protein interactions by mass spectrometry
    • Ewing RM, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 2007, 3:89.
    • (2007) Mol Syst Biol , vol.3 , pp. 89
    • Ewing, R.M.1
  • 73
    • 0032169271 scopus 로고    scopus 로고
    • Conservation of gene order: a fingerprint of proteins that physically interact
    • Dandekar T, et al. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 1998, 23:324-328.
    • (1998) Trends Biochem Sci , vol.23 , pp. 324-328
    • Dandekar, T.1
  • 74
    • 0036799752 scopus 로고    scopus 로고
    • Inferring domain-domain interactions from protein-protein interactions
    • Deng M, et al. Inferring domain-domain interactions from protein-protein interactions. Genome Res 2002, 12:1540-1548.
    • (2002) Genome Res , vol.12 , pp. 1540-1548
    • Deng, M.1
  • 75
    • 0033523989 scopus 로고    scopus 로고
    • Protein interaction maps for complete genomes based on gene fusion events
    • Enright AJ, et al. Protein interaction maps for complete genomes based on gene fusion events. Nature 1999, 402:86-90.
    • (1999) Nature , vol.402 , pp. 86-90
    • Enright, A.J.1
  • 76
    • 0032387685 scopus 로고    scopus 로고
    • Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census
    • Gerstein M. Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins 1998, 33:518-534.
    • (1998) Proteins , vol.33 , pp. 518-534
    • Gerstein, M.1
  • 77
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen R, et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 2003, 302:449-453.
    • (2003) Science , vol.302 , pp. 449-453
    • Jansen, R.1
  • 78
    • 33745327144 scopus 로고    scopus 로고
    • An integrated approach to the prediction of domain-domain interactions
    • Lee H, et al. An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics 2006, 7:269.
    • (2006) BMC Bioinformatics , vol.7 , pp. 269
    • Lee, H.1
  • 79
    • 0033618555 scopus 로고    scopus 로고
    • Detecting protein function and protein-protein interactions from genome sequences
    • Marcotte EM, et al. Detecting protein function and protein-protein interactions from genome sequences. Science 1999, 285:751-753.
    • (1999) Science , vol.285 , pp. 751-753
    • Marcotte, E.M.1
  • 80
    • 48349138497 scopus 로고    scopus 로고
    • Computational methods for predicting protein-protein interactions
    • Pitre S, et al. Computational methods for predicting protein-protein interactions. Adv Biochem Eng Biotechnol 2008, 110:247-267.
    • (2008) Adv Biochem Eng Biotechnol , vol.110 , pp. 247-267
    • Pitre, S.1
  • 81
    • 34248371273 scopus 로고    scopus 로고
    • Predicting protein-protein interactions based only on sequences information
    • Shen J, et al. Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci USA 2007, 104:4337-4341.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 4337-4341
    • Shen, J.1
  • 82
    • 0036601150 scopus 로고    scopus 로고
    • Computational methods for the prediction of protein interactions
    • Valencia A, Pazos F. Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 2002, 12:368-373.
    • (2002) Curr Opin Struct Biol , vol.12 , pp. 368-373
    • Valencia, A.1    Pazos, F.2
  • 83
    • 41849115573 scopus 로고    scopus 로고
    • InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale
    • Wang H, et al. InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Genome Biol 2007, 8:R192.
    • (2007) Genome Biol , vol.8
    • Wang, H.1
  • 84
    • 53349117774 scopus 로고    scopus 로고
    • High-quality binary protein interaction map of the yeast interactome network
    • Yu H, et al. High-quality binary protein interaction map of the yeast interactome network. Science 2008, 322:104-110.
    • (2008) Science , vol.322 , pp. 104-110
    • Yu, H.1
  • 85
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan NJ, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006, 440:637-643.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1
  • 86
    • 34147121646 scopus 로고    scopus 로고
    • Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae
    • Collins SR, et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 2007, 6:439-450.
    • (2007) Mol Cell Proteomics , vol.6 , pp. 439-450
    • Collins, S.R.1
  • 87
    • 67649641077 scopus 로고    scopus 로고
    • A complex-based reconstruction of the Saccharomyces cerevisiae interactome
    • Wang H, et al. A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Mol Cell Proteomics 2009, 8:1361-1381.
    • (2009) Mol Cell Proteomics , vol.8 , pp. 1361-1381
    • Wang, H.1
  • 88
    • 70349658775 scopus 로고    scopus 로고
    • A novel scoring approach for protein copurification data reveals high interaction specificity
    • Yu X, et al. A novel scoring approach for protein copurification data reveals high interaction specificity. PLoS Comput Biol 2009, 5:e1000515.
    • (2009) PLoS Comput Biol , vol.5
    • Yu, X.1
  • 89
    • 79958010110 scopus 로고    scopus 로고
    • Inferring physical protein contacts from large-scale purification data of protein complexes
    • Schelhorn SE, et al. Inferring physical protein contacts from large-scale purification data of protein complexes. Mol Cell Proteomics 2011.
    • (2011) Mol Cell Proteomics
    • Schelhorn, S.E.1
  • 90
    • 58149213932 scopus 로고    scopus 로고
    • Literature-curated protein interaction datasets
    • Cusick ME, et al. Literature-curated protein interaction datasets. Nat Methods 2009, 6:39-46.
    • (2009) Nat Methods , vol.6 , pp. 39-46
    • Cusick, M.E.1
  • 91
    • 58149218155 scopus 로고    scopus 로고
    • Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network
    • Simonis N, et al. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 2009, 6:47-54.
    • (2009) Nat Methods , vol.6 , pp. 47-54
    • Simonis, N.1
  • 92
    • 58149305794 scopus 로고    scopus 로고
    • An empirical framework for binary interactome mapping
    • Venkatesan K, et al. An empirical framework for binary interactome mapping. NatMethods 2009, 6:83-90.
    • (2009) NatMethods , vol.6 , pp. 83-90
    • Venkatesan, K.1
  • 93
    • 34047168855 scopus 로고    scopus 로고
    • Comparison of human protein-protein interaction maps
    • Futschik ME, Chaurasia G, Herzel H. Comparison of human protein-protein interaction maps. Bioinformatics 2007, 23:605-611.
    • (2007) Bioinformatics , vol.23 , pp. 605-611
    • Futschik, M.E.1    Chaurasia, G.2    Herzel, H.3
  • 96
    • 42149137884 scopus 로고    scopus 로고
    • Defining genetic interaction
    • Mani R, et al. Defining genetic interaction. Proc Natl Acad Sci USA 2008, 105:3461-3466.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 3461-3466
    • Mani, R.1
  • 97
    • 22844450110 scopus 로고    scopus 로고
    • Systematic interpretation of genetic interactions using protein networks
    • Kelley R, Ideker T. Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 2005, 23:561-566.
    • (2005) Nat Biotechnol , vol.23 , pp. 561-566
    • Kelley, R.1    Ideker, T.2
  • 98
    • 0035830860 scopus 로고    scopus 로고
    • Principles for the buffering of genetic variation
    • Hartman JLT, Garvik B, Hartwell L. Principles for the buffering of genetic variation. Science 2001, 291:1001-1004.
    • (2001) Science , vol.291 , pp. 1001-1004
    • Hartman, J.L.T.1    Garvik, B.2    Hartwell, L.3
  • 99
    • 79952674000 scopus 로고    scopus 로고
    • Interactome networks and human disease
    • Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell 2011, 144:986-998.
    • (2011) Cell , vol.144 , pp. 986-998
    • Vidal, M.1    Cusick, M.E.2    Barabasi, A.L.3
  • 100
    • 0035861532 scopus 로고    scopus 로고
    • Systematic genetic analysis with ordered arrays of yeast deletion mutants
    • Tong AH, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001, 294:2364-2368.
    • (2001) Science , vol.294 , pp. 2364-2368
    • Tong, A.H.1
  • 101
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong AH, et al. Global mapping of the yeast genetic interaction network. Science 2004, 303:808-813.
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.1
  • 102
    • 0242298316 scopus 로고    scopus 로고
    • DNAhelicase gene interaction network defined using synthetic lethality analyzed by microarray
    • Ooi SL, Shoemaker DD, Boeke JD, DNAhelicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 2003, 35:277-286.
    • (2003) Nat Genet , vol.35 , pp. 277-286
    • Ooi, S.L.1    Shoemaker, D.D.2    Boeke, J.D.3
  • 103
    • 26844489762 scopus 로고    scopus 로고
    • Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
    • Schuldiner M, et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 2005, 123:507-519.
    • (2005) Cell , vol.123 , pp. 507-519
    • Schuldiner, M.1
  • 104
    • 55949101858 scopus 로고    scopus 로고
    • Kinase requirements in human cells III. Altered kinase requirements in VHL-/-cancer cells detected in a pilot synthetic lethal screen
    • Bommi-Reddy A, et al. Kinase requirements in human cells. III. Altered kinase requirements in VHL-/-cancer cells detected in a pilot synthetic lethal screen. Proc Natl Acad Sci USA 2008, 105:16484-16489.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 16484-16489
    • Bommi-Reddy, A.1
  • 105
    • 33746525415 scopus 로고    scopus 로고
    • Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways
    • Lehner B, et al. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 2006, 38:896-903.
    • (2006) Nat Genet , vol.38 , pp. 896-903
    • Lehner, B.1
  • 106
    • 47349125915 scopus 로고    scopus 로고
    • Inhibition of casein kinase 1-epsilon induces cancer-cell-selective PERIOD2-dependent growth arrest
    • Yang WS, Stockwell BR. Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol 2008, 9:R92.
    • (2008) Genome Biol , vol.9
    • Yang, W.S.1    Stockwell, B.R.2
  • 107
    • 56349121125 scopus 로고    scopus 로고
    • An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer
    • Zender L, et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 2008, 135:852-864.
    • (2008) Cell , vol.135 , pp. 852-864
    • Zender, L.1
  • 108
    • 77949773550 scopus 로고    scopus 로고
    • Towards genome-scale signalling network reconstructions
    • Hyduke DR, Palsson BO. Towards genome-scale signalling network reconstructions. Nat Rev Genet 2010, 11:297-307.
    • (2010) Nat Rev Genet , vol.11 , pp. 297-307
    • Hyduke, D.R.1    Palsson, B.O.2
  • 109
    • 0037212568 scopus 로고    scopus 로고
    • Understanding complex signaling networks through models and metaphors
    • Bhalla US. Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol 2003, 81:45-65.
    • (2003) Prog Biophys Mol Biol , vol.81 , pp. 45-65
    • Bhalla, U.S.1
  • 110
    • 33745463739 scopus 로고    scopus 로고
    • A comprehensive map of the Tolllike receptor signaling network
    • Oda K, Kitano H. A comprehensive map of the Tolllike receptor signaling network. Mol Syst Biol 2006, 2:2006.0015.
    • (2006) Mol Syst Biol 2006 , vol.2 , pp. 0015
    • Oda, K.1    Kitano, H.2
  • 111
    • 84866383034 scopus 로고    scopus 로고
    • WikiPathways: building research communities on biological pathways
    • Kelder T, et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res 2011
    • (2011) Nucleic Acids Res
    • Kelder, T.1
  • 112
    • 58149177166 scopus 로고    scopus 로고
    • Reactome knowledgebase of human biological pathways and processes
    • Matthews L, et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 2009, 37(Database issue):D619-D622.
    • (2009) Nucleic Acids Res , vol.37 , Issue.DATABASE ISSUE
    • Matthews, L.1
  • 113
    • 62649096826 scopus 로고    scopus 로고
    • Designing new cellular signaling pathways
    • Pryciak PM. Designing new cellular signaling pathways. Chem Biol 2009, 16:249-254.
    • (2009) Chem Biol , vol.16 , pp. 249-254
    • Pryciak, P.M.1
  • 114
    • 67149113654 scopus 로고    scopus 로고
    • Engineering key components in a synthetic eukaryotic signal transduction pathway
    • Antunes MS, et al. Engineering key components in a synthetic eukaryotic signal transduction pathway. Mol Syst Biol 2009, 5:270.
    • (2009) Mol Syst Biol , vol.5 , pp. 270
    • Antunes, M.S.1
  • 115
    • 62549083590 scopus 로고    scopus 로고
    • Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression
    • Nevozhay D, et al. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci USA 2009, 106:5123-5128.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 5123-5128
    • Nevozhay, D.1
  • 116
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • Duarte NC, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 2007, 104:1777-1782.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1777-1782
    • Duarte, N.C.1
  • 117
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
    • Herrgard MJ, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008, 26:1155-1160.
    • (2008) Nat Biotechnol , vol.26 , pp. 1155-1160
    • Herrgard, M.J.1
  • 118
    • 61449134182 scopus 로고    scopus 로고
    • Identification of potential pathway mediation targets in Toll-like receptor signaling
    • Li F, et al. Identification of potential pathway mediation targets in Toll-like receptor signaling. PLoS Comput Biol 2009, 5:e1000292.
    • (2009) PLoS Comput Biol , vol.5
    • Li, F.1
  • 119
    • 33646337667 scopus 로고    scopus 로고
    • A methodology for the structural and functional analysis of signaling and regulatory networks
    • Klamt S, et al. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 2006, 7:56.
    • (2006) BMC Bioinformatics , vol.7 , pp. 56
    • Klamt, S.1
  • 120
    • 1442335464 scopus 로고    scopus 로고
    • Topological analysis of massbalanced signaling networks: a framework to obtain network properties including crosstalk
    • Papin JA, Palsson BO. Topological analysis of massbalanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol 2004, 227:283-297.
    • (2004) J Theor Biol , vol.227 , pp. 283-297
    • Papin, J.A.1    Palsson, B.O.2
  • 121
    • 41049102359 scopus 로고    scopus 로고
    • Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks
    • Oliveira AP, Patil KR, Nielsen J. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol 2008, 2:17.
    • (2008) BMC Syst Biol , vol.2 , pp. 17
    • Oliveira, A.P.1    Patil, K.R.2    Nielsen, J.3
  • 122
    • 40149109180 scopus 로고    scopus 로고
    • Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction
    • Franke R, et al. Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol 2008, 2:4.
    • (2008) BMC Syst Biol , vol.2 , pp. 4
    • Franke, R.1
  • 123
    • 1542287343 scopus 로고    scopus 로고
    • Superfamilies of evolved and designed networks
    • Milo R, et al. Superfamilies of evolved and designed networks. Science 2004, 303:1538-1542.
    • (2004) Science , vol.303 , pp. 1538-1542
    • Milo, R.1
  • 124
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: simple building blocks of complex networks
    • Milo R, et al. Network motifs: simple building blocks of complex networks. Science 2002, 298:824-827.
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1
  • 126
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi AL, Albert R. Emergence of scaling in random networks. Science 1999, 286:509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 127
    • 0037423828 scopus 로고    scopus 로고
    • How the global structure of protein interaction networks evolves
    • Wagner A. How the global structure of protein interaction networks evolves. Proc Biol Sci 2003, 270:457-466.
    • (2003) Proc Biol Sci , vol.270 , pp. 457-466
    • Wagner, A.1
  • 128
    • 1842580761 scopus 로고    scopus 로고
    • Functional and topological characterization of protein interaction networks
    • Yook SH, Oltvai ZN, Barabasi AL. Functional and topological characterization of protein interaction networks. Proteomics 2004, 4:928-942.
    • (2004) Proteomics , vol.4 , pp. 928-942
    • Yook, S.H.1    Oltvai, Z.N.2    Barabasi, A.L.3
  • 129
    • 24944565272 scopus 로고    scopus 로고
    • Some protein interaction data do not exhibit power law statistics
    • Tanaka R, Yi TM, Doyle J. Some protein interaction data do not exhibit power law statistics. FEBS Lett 2005, 579:5140-5144.
    • (2005) FEBS Lett , vol.579 , pp. 5140-5144
    • Tanaka, R.1    Yi, T.M.2    Doyle, J.3
  • 130
    • 70049102739 scopus 로고    scopus 로고
    • A geometric preferential attachment model of networks
    • Abraham F, Frieze A, Vera J. A geometric preferential attachment model of networks. Internet Math 2006, 3.
    • (2006) Internet Math , pp. 3
    • Abraham, F.1    Frieze, A.2    Vera, J.3
  • 131
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'smallworld' networks
    • Watts DJ, Strogatz SH. Collective dynamics of 'smallworld' networks. Nature 1998, 393:440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 132
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: scale-free or geometric?
    • Przulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or geometric? Bioinformatics 2004, 20:3508-3515.
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Przulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 133
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman MEJ. The structure and function of complex networks. SIAM Rev 2003, 45:167-256.
    • (2003) SIAM Rev , vol.45 , pp. 167-256
    • Newman, M.E.J.1
  • 134
    • 33645803834 scopus 로고    scopus 로고
    • Efficient estimation of graphlet frequency distributions in protein-protein interaction networks
    • Przulj N, Corneil DG, Jurisica I. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks. Bioinformatics 2006, 22:974-80.
    • (2006) Bioinformatics , vol.22 , pp. 974-980
    • Przulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 135
    • 33745712594 scopus 로고    scopus 로고
    • Why do hubs tend to be essential in protein networks?
    • He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet 2006, 2:e88.
    • (2006) PLoS Genet , vol.2
    • He, X.1    Zhang, J.2
  • 136
    • 0035799707 scopus 로고    scopus 로고
    • Lethality and centrality in protein networks
    • Jeong H, et al. Lethality and centrality in protein networks. Nature 2001, 411:41-42.
    • (2001) Nature , vol.411 , pp. 41-42
    • Jeong, H.1
  • 137
    • 50949092459 scopus 로고    scopus 로고
    • Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality
    • Zotenko E, et al. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 2008, 4:e1000140.
    • (2008) PLoS Comput Biol , vol.4
    • Zotenko, E.1
  • 138
    • 43749096790 scopus 로고    scopus 로고
    • Predicting cancer involvement of genes from heterogeneous data
    • Aragues R, Sander C, Oliva B. Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics 2008, 9:172.
    • (2008) BMC Bioinformatics , vol.9 , pp. 172
    • Aragues, R.1    Sander, C.2    Oliva, B.3
  • 139
    • 47349128648 scopus 로고    scopus 로고
    • An integrated approach to inferring gene-disease associations in humans
    • Radivojac P, et al. An integrated approach to inferring gene-disease associations in humans. Proteins 2008, 72:1030-1037.
    • (2008) Proteins , vol.72 , pp. 1030-1037
    • Radivojac, P.1
  • 140
    • 34250345292 scopus 로고    scopus 로고
    • Confirmation of organized modularity in the yeast interactome
    • Bertin N, et al. Confirmation of organized modularity in the yeast interactome. PLoS Biol 2007, 5: e153.
    • (2007) PLoS Biol , vol.5
    • Bertin, N.1
  • 141
    • 3042848952 scopus 로고    scopus 로고
    • Evidence for dynamically organized modularity in the yeast protein-protein interaction network
    • Han JD, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430:88-93.
    • (2004) Nature , vol.430 , pp. 88-93
    • Han, J.D.1
  • 142
    • 33750238153 scopus 로고    scopus 로고
    • Stratus not altocumulus: a new view of the yeast protein interaction network
    • Batada NN, et al. Stratus not altocumulus: a new view of the yeast protein interaction network. PLoS Biol 2006, 4:e317.
    • (2006) PLoS Biol , vol.4
    • Batada, N.N.1
  • 143
    • 34250361148 scopus 로고    scopus 로고
    • Still stratus not altocumulus: further evidence against the date/party hub distinction
    • Batada NN, et al. Still stratus not altocumulus: further evidence against the date/party hub distinction. PLoS Biol 2007, 5:e154.
    • (2007) PLoS Biol , vol.5
    • Batada, N.N.1
  • 144
    • 70449769325 scopus 로고    scopus 로고
    • Protein-protein interaction networks: how can a hub protein bind so many different partners?
    • Tsai CJ, Ma B, Nussinov R. Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 2009, 34:594-600.
    • (2009) Trends Biochem Sci , vol.34 , pp. 594-600
    • Tsai, C.J.1    Ma, B.2    Nussinov, R.3
  • 145
    • 49649109285 scopus 로고    scopus 로고
    • Uncovering biological network function via graphlet degree signatures
    • Milenkovic T, Przulj N. Uncovering biological network function via graphlet degree signatures. Cancer Inform 2008, 6:257-273.
    • (2008) Cancer Inform , vol.6 , pp. 257-273
    • Milenkovic, T.1    Przulj, N.2
  • 146
    • 77953430024 scopus 로고    scopus 로고
    • Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets
    • Ho H, et al. Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets. BMC Syst Biol 2010, 4:84.
    • (2010) BMC Syst Biol , vol.4 , pp. 84
    • Ho, H.1
  • 147
    • 76049094356 scopus 로고    scopus 로고
    • Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data
    • Milenkovic T, et al. Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J R Soc Interface 2009, 7:423-437.
    • (2009) J R Soc Interface , vol.7 , pp. 423-437
    • Milenkovic, T.1
  • 148
    • 40549110559 scopus 로고    scopus 로고
    • Protein networking: insights into global functional organization of proteomes
    • Pieroni E, et al. Protein networking: insights into global functional organization of proteomes. Proteomics 2008, 8:799-816.
    • (2008) Proteomics , vol.8 , pp. 799-816
    • Pieroni, E.1
  • 149
    • 77649338567 scopus 로고    scopus 로고
    • Generalized walks-based centrality measures for complex biological networks
    • Estrada E. Generalized walks-based centrality measures for complex biological networks. J Theor Biol 2010, 263:556-565.
    • (2010) J Theor Biol , vol.263 , pp. 556-565
    • Estrada, E.1
  • 151
    • 33748706765 scopus 로고    scopus 로고
    • Global topological features of cancer proteins in the human interactome
    • Jonsson PF, Bates PA. Global topological features of cancer proteins in the human interactome. Bioinformatics 2006, 22:2291-2297.
    • (2006) Bioinformatics , vol.22 , pp. 2291-2297
    • Jonsson, P.F.1    Bates, P.A.2
  • 152
    • 78649682830 scopus 로고    scopus 로고
    • A comparative study of cancer proteins in the human protein-protein interaction network
    • Sun J, Zhao Z. A comparative study of cancer proteins in the human protein-protein interaction network. BMC Genomics 2010, 11(Suppl 3):S5.
    • (2010) BMC Genomics , vol.11 , Issue.SUPPL 3
    • Sun, J.1    Zhao, Z.2
  • 153
    • 35148838537 scopus 로고    scopus 로고
    • Drug-target network
    • Yildirim MA, et al. Drug-target network. Nat Biotechnol 2007, 25:1119-1126.
    • (2007) Nat Biotechnol , vol.25 , pp. 1119-1126
    • Yildirim, M.A.1
  • 154
    • 0346725930 scopus 로고    scopus 로고
    • Unraveling protein interaction networks with near-optimal efficiency
    • Lappe M, Holm L. Unraveling protein interaction networks with near-optimal efficiency. Nat Biotechnol 2004, 22:98-103.
    • (2004) Nat Biotechnol , vol.22 , pp. 98-103
    • Lappe, M.1    Holm, L.2
  • 155
    • 70049106408 scopus 로고    scopus 로고
    • Geometric de-noising of protein-protein interaction networks
    • Kuchaiev O, et al. Geometric de-noising of protein-protein interaction networks. PLoS Comput Biol 2009, 5:e1000454.
    • (2009) PLoS Comput Biol , vol.5
    • Kuchaiev, O.1
  • 156
    • 0001540595 scopus 로고
    • On random graphs
    • Erdos P, Renyi A. On random graphs. Publ Math 1959, 6290-297.
    • (1959) Publ Math , pp. 6290-6297
    • Erdos, P.1    Renyi, A.2
  • 157
    • 49249088964 scopus 로고    scopus 로고
    • Revealing unique properties of the ribosome using a network based analysis
    • David-Eden H, Mandel-Gutfreund Y. Revealing unique properties of the ribosome using a network based analysis. Nucleic Acids Res 2008, 36:4641-4652.
    • (2008) Nucleic Acids Res , vol.36 , pp. 4641-4652
    • David-Eden, H.1    Mandel-Gutfreund, Y.2
  • 158
    • 41949139082 scopus 로고    scopus 로고
    • Fitting a geometric graph to a protein-protein interaction network
    • Higham DJ, Rasajski M, Przulj N. Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 2008, 24:1093-1099.
    • (2008) Bioinformatics , vol.24 , pp. 1093-1099
    • Higham, D.J.1    Rasajski, M.2    Przulj, N.3
  • 159
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics 2007, 23:e177-e183.
    • (2007) Bioinformatics , vol.23
    • Przulj, N.1
  • 160
    • 40949147767 scopus 로고    scopus 로고
    • Evidence of probabilistic behaviour in protein interaction networks
    • Ivanic J, Wallqvist A, Reifman J. Evidence of probabilistic behaviour in protein interaction networks. BMC Syst Biol 2008, 2:11.
    • (2008) BMC Syst Biol , vol.2 , pp. 11
    • Ivanic, J.1    Wallqvist, A.2    Reifman, J.3
  • 161
    • 48249147450 scopus 로고    scopus 로고
    • Probing the extent of randomness in protein interaction networks
    • Ivanic J, Wallqvist A, Reifman J. Probing the extent of randomness in protein interaction networks. PLoS Comput Biol 2008, 4:e1000114.
    • (2008) PLoS Comput Biol , vol.4
    • Ivanic, J.1    Wallqvist, A.2    Reifman, J.3
  • 162
    • 33750630691 scopus 로고    scopus 로고
    • Modelling protein-protein interaction networks via a stickiness index
    • Przulj N, Higham DJ. Modelling protein-protein interaction networks via a stickiness index. J R Soc Interface 2006, 3:711-716.
    • (2006) J R Soc Interface , vol.3 , pp. 711-716
    • Przulj, N.1    Higham, D.J.2
  • 164
    • 0013173298 scopus 로고    scopus 로고
    • Modeling of protein interaction networks
    • Vazquez A, et al. Modeling of protein interaction networks. ComPlexUs 2001, 38-44.
    • (2001) ComPlexUs , pp. 38-44
    • Vazquez, A.1
  • 165
    • 0000432228 scopus 로고
    • Networks of scientific papers
    • Price DJdS. Networks of scientific papers. Science 1965, 510-515.
    • (1965) Science , pp. 510-515
    • Price, D.J.D.S.1
  • 166
    • 27744432926 scopus 로고    scopus 로고
    • Revisiting scale-free networks
    • Keller EF. Revisiting "scale-free" networks. Bioessays 2005, 27:1060-1068.
    • (2005) Bioessays , vol.27 , pp. 1060-1068
    • Keller, E.F.1
  • 167
    • 33748257786 scopus 로고    scopus 로고
    • Graemlin: general and robust alignment of multiple large interaction networks
    • Flannick J, et al. Graemlin: general and robust alignment of multiple large interaction networks. Genome Res 2006, 16:1169-1181.
    • (2006) Genome Res , vol.16 , pp. 1169-1181
    • Flannick, J.1
  • 168
    • 79955751671 scopus 로고    scopus 로고
    • Integrative network alignment reveals large regions of global network similarity in yeast and human
    • Kuchaiev O, Przulj N. Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 2011, 27:1390-136.
    • (2011) Bioinformatics , vol.27 , pp. 1390-2136
    • Kuchaiev, O.1    Przulj, N.2
  • 169
    • 6944240088 scopus 로고    scopus 로고
    • Local graph alignment and motif search in biological networks
    • Berg J, Lassig M. Local graph alignment and motif search in biological networks. Proc Natl Acad Sci USA 2004, 101:14689-14694.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 14689-14694
    • Berg, J.1    Lassig, M.2
  • 170
    • 33746616867 scopus 로고    scopus 로고
    • Cross-species analysis of biological networks by Bayesian alignment
    • Berg J, Lassig M. Cross-species analysis of biological networks by Bayesian alignment. Proc Natl Acad Sci USA 2006, 103:10967-10972.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10967-10972
    • Berg, J.1    Lassig, M.2
  • 171
    • 47249149365 scopus 로고    scopus 로고
    • Automatic parameter learning for multiple network alignment
    • Flannick J, et al. Automatic parameter learning for multiple network alignment. RECOMB 2010, 214-231.
    • (2010) RECOMB , pp. 214-231
    • Flannick, J.1
  • 172
    • 39149087720 scopus 로고    scopus 로고
    • NetworkBLAST: comparative analysis of protein networks
    • Kalaev M, et al. NetworkBLAST: comparative analysis of protein networks. Bioinformatics 2008, 24:594-596.
    • (2008) Bioinformatics , vol.24 , pp. 594-596
    • Kalaev, M.1
  • 173
    • 3442886313 scopus 로고    scopus 로고
    • PathBLAST: a tool for alignment of protein interaction networks
    • Kelley BP, et al. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res 2004, 32(Web Server issue):W83-W88.
    • (2004) Nucleic Acids Res , vol.32 , Issue.WEB SERVER ISSUE
    • Kelley, B.P.1
  • 174
    • 33645985807 scopus 로고    scopus 로고
    • Pairwise alignment of protein interaction networks
    • Koyuturk M, et al. Pairwise alignment of protein interaction networks. J Comput Biol 2006, 13:182-199.
    • (2006) J Comput Biol , vol.13 , pp. 182-199
    • Koyuturk, M.1
  • 175
    • 33748661458 scopus 로고    scopus 로고
    • NetAlign: a Web-based tool for comparison of protein interaction networks
    • Liang Z, et al. NetAlign: a Web-based tool for comparison of protein interaction networks. Bioinformatics 2006, 22:2175-2177.
    • (2006) Bioinformatics , vol.22 , pp. 2175-2177
    • Liang, Z.1
  • 176
    • 33750726771 scopus 로고    scopus 로고
    • Comparison of protein interaction networks reveals species conservation and divergence
    • Liang Z, et al. Comparison of protein interaction networks reveals species conservation and divergence. BMC Bioinformatics 2006, 7:457.
    • (2006) BMC Bioinformatics , vol.7 , pp. 457
    • Liang, Z.1
  • 177
    • 66349108229 scopus 로고    scopus 로고
    • IsoRankN: spectral methods for global alignment of multiple protein networks
    • Liao CS, et al. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 2009, 25:i253-i258.
    • (2009) Bioinformatics , vol.25
    • Liao, C.S.1
  • 178
    • 34547416529 scopus 로고    scopus 로고
    • Pairwise global alignment of protein interaction networks by matching neighborhood topology
    • Singh R, Xu J, Berger B. Pairwise global alignment of protein interaction networks by matching neighborhood topology. Res Comput Mol Biol 2007:16-31.
    • (2007) Res Comput Mol Biol , pp. 16-31
    • Singh, R.1    Xu, J.2    Berger, B.3
  • 179
    • 40549129437 scopus 로고    scopus 로고
    • Global alignment of multiple protein interaction networks
    • Singh R, Xu J, Berger B. Global alignment of multiple protein interaction networks 2008. Proc Pacific Symp Biocomput 2008:303-314.
    • (2008) Proc Pacific Symp Biocomput , vol.2008 , pp. 303-314
    • Singh, R.1    Xu, J.2    Berger, B.3
  • 180
    • 77956576710 scopus 로고    scopus 로고
    • Topological network alignment uncovers biological function and phylogeny
    • Kuchaiev O, et al. Topological network alignment uncovers biological function and phylogeny. J R Soc Interface 2010, 7:1341-1354.
    • (2010) J R Soc Interface , vol.7 , pp. 1341-1354
    • Kuchaiev, O.1
  • 181
    • 33947252154 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol 2007, 3:88.
    • (2007) Mol Syst Biol , vol.3 , pp. 88
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 182
    • 78650596454 scopus 로고    scopus 로고
    • 2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses
    • 2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses. BMC Syst Biol 2010, 4:177.
    • (2010) BMC Syst Biol , vol.4 , pp. 177
    • Kanani, H.1    Dutta, B.2    Klapa, M.I.3
  • 183
    • 34548024598 scopus 로고    scopus 로고
    • Integrating physical and genetic maps: from genomes to interaction networks
    • Beyer A, Bandyopadhyay S, Ideker T. Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 2007, 8:699-710.
    • (2007) Nat Rev Genet , vol.8 , pp. 699-710
    • Beyer, A.1    Bandyopadhyay, S.2    Ideker, T.3
  • 184
    • 33845237637 scopus 로고    scopus 로고
    • Systems biology: many things from one
    • Newman JR, Weissman JS. Systems biology: many things from one. Nature 2006, 444:561-562.
    • (2006) Nature , vol.444 , pp. 561-562
    • Newman, J.R.1    Weissman, J.S.2
  • 185
    • 25144505718 scopus 로고    scopus 로고
    • In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    • Fong SS, et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 2005, 91:643-648.
    • (2005) Biotechnol Bioeng , vol.91 , pp. 643-648
    • Fong, S.S.1
  • 186
    • 15044342010 scopus 로고    scopus 로고
    • Metabolic-flux network analysis in fourteen hemiascomycetous yeasts
    • Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 2005, 5:545-558.
    • (2005) FEMS Yeast Res , vol.5 , pp. 545-558
    • Blank, L.M.1    Lehmbeck, F.2    Sauer, U.3
  • 187
    • 41149169317 scopus 로고    scopus 로고
    • Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major
    • Chavali AK, et al. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 2008, 4:177.
    • (2008) Mol Syst Biol , vol.4 , pp. 177
    • Chavali, A.K.1
  • 188
    • 78650595350 scopus 로고    scopus 로고
    • Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
    • Zomorrodi AR, Maranas CD. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 4:178.
    • BMC Syst Biol , vol.4 , pp. 178
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 189
    • 0347762731 scopus 로고    scopus 로고
    • Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock
    • Pharkya P, Burgard AP, Maranas CD. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 2003, 84:887-899.
    • (2003) Biotechnol Bioeng , vol.84 , pp. 887-899
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 190
    • 0033987329 scopus 로고    scopus 로고
    • Metabolic network analysis A powerful tool in metabolic engineering
    • Christensen B, Nielsen J. Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 2000, 66:209-231.
    • (2000) Adv Biochem Eng Biotechnol , vol.66 , pp. 209-231
    • Christensen, B.1    Nielsen, J.2
  • 191
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W. 13C metabolic flux analysis. Metab Eng 2001, 3:195-206.
    • (2001) Metab Eng , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 192
    • 20044375201 scopus 로고    scopus 로고
    • Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism
    • Fischer E, Sauer U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 2005, 37:636-640.
    • (2005) Nat Genet , vol.37 , pp. 636-640
    • Fischer, E.1    Sauer, U.2
  • 193
    • 79953317811 scopus 로고    scopus 로고
    • Large-scale 13Cflux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli
    • Haverkorn van Rijsewijk BR, et al. Large-scale 13Cflux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 2011, 7:477.
    • (2011) Mol Syst Biol , vol.7 , pp. 477
    • Haverkorn van Rijsewijk, B.R.1
  • 194
    • 43149099413 scopus 로고    scopus 로고
    • 13C labeling experiments at metabolic nonstationary conditions: an exploratory study
    • Wahl SA, Noh K, Wiechert W. 13C labeling experiments at metabolic nonstationary conditions: an exploratory study. BMC Bioinformatics 2008, 9:152.
    • (2008) BMC Bioinformatics , vol.9 , pp. 152
    • Wahl, S.A.1    Noh, K.2    Wiechert, W.3
  • 195
    • 84873199326 scopus 로고    scopus 로고
    • Metabolic flux analysis in systems biology of mammalian cells
    • Niklas J, Heinzle E. Metabolic flux analysis in systems biology of mammalian cells. Adv Biochem Eng Biotechnol 2007.
    • (2007) Adv Biochem Eng Biotechnol
    • Niklas, J.1    Heinzle, E.2
  • 196
    • 77049084742 scopus 로고    scopus 로고
    • Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
    • Jamshidi N, Palsson BO. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 2010, 98:175-185.
    • (2010) Biophys J , vol.98 , pp. 175-185
    • Jamshidi, N.1    Palsson, B.O.2
  • 197
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 2008, 4:e1000082.
    • (2008) PLoS Comput Biol , vol.4
    • Becker, S.A.1    Palsson, B.O.2
  • 198
    • 51349092391 scopus 로고    scopus 로고
    • Network-based prediction of human tissue-specific metabolism
    • Shlomi T, et al. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008, 26:1003-1010.
    • (2008) Nat Biotechnol , vol.26 , pp. 1003-1010
    • Shlomi, T.1
  • 199
    • 77957837882 scopus 로고    scopus 로고
    • Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection
    • Oberhardt MA, et al. Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J Bacteriol 2010, 192:5534-5548.
    • (2010) J Bacteriol , vol.192 , pp. 5534-5548
    • Oberhardt, M.A.1
  • 200
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production
    • Colijn C, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009, 5:e1000489.
    • (2009) PLoS Comput Biol , vol.5
    • Colijn, C.1
  • 201
    • 60749102185 scopus 로고    scopus 로고
    • Systems biology. Attractors and democratic dynamics
    • Bar-Yam Y, Harmon D, de Bivort B. Systems biology. Attractors and democratic dynamics. Science 2009, 323:1016-1017.
    • (2009) Science , vol.323 , pp. 1016-1017
    • Bar-Yam, Y.1    Harmon, D.2    de Bivort, B.3
  • 202
    • 33845545435 scopus 로고    scopus 로고
    • The modular nature of genetic diseases
    • Oti M, Brunner HG. The modular nature of genetic diseases. Clin Genet 2007, 71:1-11.
    • (2007) Clin Genet , vol.71 , pp. 1-11
    • Oti, M.1    Brunner, H.G.2
  • 203
    • 23744481400 scopus 로고    scopus 로고
    • What do we learn from high-throughput protein interaction data?
    • Titz B, Schlesner M, Uetz P. What do we learn from high-throughput protein interaction data? Expert Rev Proteomics 2004, 1:111-121.
    • (2004) Expert Rev Proteomics , vol.1 , pp. 111-121
    • Titz, B.1    Schlesner, M.2    Uetz, P.3
  • 204
    • 33947095027 scopus 로고    scopus 로고
    • A human phenome-interactome network of protein complexes implicated in genetic disorders
    • Lage K, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 2007, 25:309-316.
    • (2007) Nat Biotechnol , vol.25 , pp. 309-316
    • Lage, K.1
  • 205
    • 58149189856 scopus 로고    scopus 로고
    • McKusick's Online Mendelian Inheritance in Man (OMIM)
    • Amberger J, et al. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 2009, 37(Database issue):D793-D796.
    • (2009) Nucleic Acids Res , vol.37 , Issue.DATABASE ISSUE
    • Amberger, J.1
  • 206
    • 13444266370 scopus 로고    scopus 로고
    • Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
    • Hamosh A, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005, 33(Database issue):D514-D517.
    • (2005) Nucleic Acids Res , vol.33 , Issue.DATABASE ISSUE
    • Hamosh, A.1
  • 207
    • 61649095940 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance
    • Raman K, Chandra N. Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 2008, 8:234.
    • (2008) BMC Microbiol , vol.8 , pp. 234
    • Raman, K.1    Chandra, N.2
  • 208
    • 82255181188 scopus 로고    scopus 로고
    • Antagonism of chemical genetic interaction networks resensitize MRSA to beta-lactam antibiotics
    • Lee SH, et al. Antagonism of chemical genetic interaction networks resensitize MRSA to beta-lactam antibiotics. Chem Biol 2011, 18:1379-1389.
    • (2011) Chem Biol , vol.18 , pp. 1379-1389
    • Lee, S.H.1
  • 209
    • 83555173299 scopus 로고    scopus 로고
    • Features of the reversible sensitivityresistance transition in PI3K/PTEN/AKT signalling network after HER2 inhibition
    • Goltsov A, et al. Features of the reversible sensitivityresistance transition in PI3K/PTEN/AKT signalling network after HER2 inhibition. Cell Signal 2012, 24:493-504.
    • (2012) Cell Signal , vol.24 , pp. 493-504
    • Goltsov, A.1
  • 210
    • 79953103271 scopus 로고    scopus 로고
    • An integrative approach to identifying cancer chemoresistance-associated pathways
    • Chao SY, et al. An integrative approach to identifying cancer chemoresistance-associated pathways. BMC Med Genomics 2011, 4:23.
    • (2011) BMC Med Genomics , vol.4 , pp. 23
    • Chao, S.Y.1
  • 211
    • 79957561774 scopus 로고    scopus 로고
    • Quantitative proteomic and interaction network analysis of cisplatin resistance in HeLa cells
    • Chavez JD, et al. Quantitative proteomic and interaction network analysis of cisplatin resistance in HeLa cells. PLoS One 2011, 6:e19892.
    • (2011) PLoS One , vol.6
    • Chavez, J.D.1
  • 212
    • 38349164409 scopus 로고    scopus 로고
    • Computing topological parameters of biological networks
    • Assenov Y, et al. Computing topological parameters of biological networks. Bioinformatics 2008, 24:282-284.
    • (2008) Bioinformatics , vol.24 , pp. 282-284
    • Assenov, Y.1
  • 213
    • 79957806921 scopus 로고    scopus 로고
    • CyClus3D: a Cytoscape plugin for clustering network motifs in integrated networks
    • Audenaert P, et al. CyClus3D: a Cytoscape plugin for clustering network motifs in integrated networks. Bioinformatics 2011, 27:1587-1588.
    • (2011) Bioinformatics , vol.27 , pp. 1587-1588
    • Audenaert, P.1
  • 214
    • 78651512420 scopus 로고    scopus 로고
    • GraphCrunch 2 software tool for network modeling, alignment and clustering
    • Kuchaiev O, et al. GraphCrunch 2: software tool for network modeling, alignment and clustering. BMC Bioinformatics 2011, 12:24.
    • (2011) BMC Bioinformatics , vol.12 , pp. 24
    • Kuchaiev, O.1
  • 215
    • 12744261504 scopus 로고    scopus 로고
    • Network structures and algorithms in bioconductor
    • Carey VJ, et al. Network structures and algorithms in bioconductor. Bioinformatics 2005, 21:135-136.
    • (2005) Bioinformatics , vol.21 , pp. 135-136
    • Carey, V.J.1
  • 216
    • 24044440971 scopus 로고    scopus 로고
    • BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks
    • Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21:3448-3449.
    • (2005) Bioinformatics , vol.21 , pp. 3448-3449
    • Maere, S.1    Heymans, K.2    Kuiper, M.3
  • 217
    • 70349948795 scopus 로고    scopus 로고
    • Howto visually interpret biological data using networks
    • Merico D, Gfeller D, Bader GD. Howto visually interpret biological data using networks. Nat Biotechnol 2009, 27:921-924.
    • (2009) Nat Biotechnol , vol.27 , pp. 921-924
    • Merico, D.1    Gfeller, D.2    Bader, G.D.3
  • 218
    • 38449101120 scopus 로고    scopus 로고
    • Integration of biological networks and gene expression data using Cytoscape
    • Cline MS, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007, 2:2366-2382.
    • (2007) Nat Protoc , vol.2 , pp. 2366-2382
    • Cline, M.S.1
  • 219
    • 33747832812 scopus 로고    scopus 로고
    • BiologicalNetworks: visualization and analysis tool for systems biology
    • Baitaluk M, et al. BiologicalNetworks: visualization and analysis tool for systems biology. Nucleic Acids Res 2006, 34(Web Server issue):W466-W471.
    • (2006) Nucleic Acids Res , vol.34 , Issue.WEB SERVER ISSUE
    • Baitaluk, M.1
  • 220
    • 2942609149 scopus 로고    scopus 로고
    • VisANT: an online visualization and analysis tool for biological interaction data
    • Hu Z, et al. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 2004, 5:17.
    • (2004) BMC Bioinformatics , vol.5 , pp. 17
    • Hu, Z.1
  • 221
    • 33751375646 scopus 로고    scopus 로고
    • The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks
    • Yip KY, et al. The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics 2006, 22:2968-2970.
    • (2006) Bioinformatics , vol.22 , pp. 2968-2970
    • Yip, K.Y.1
  • 222
    • 4444268694 scopus 로고    scopus 로고
    • Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs
    • Kashtan N, et al. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 2004, 20:1746-1758.
    • (2004) Bioinformatics , vol.20 , pp. 1746-1758
    • Kashtan, N.1
  • 223
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2 8: new features for data integration and network visualization
    • Smoot ME, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2010, 27:431-432.
    • (2010) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1
  • 224
    • 0036578644 scopus 로고    scopus 로고
    • GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways
    • Dahlquist KD, et al. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 2002, 31:19-20.
    • (2002) Nat Genet , vol.31 , pp. 19-20
    • Dahlquist, K.D.1
  • 226
    • 77956501805 scopus 로고    scopus 로고
    • PathwayAccess: CellDesigner plugins for pathway databases
    • Van Hemert JL, Dickerson JA. PathwayAccess: CellDesigner plugins for pathway databases. Bioinformatics 2010, 26:2345-2346.
    • (2010) Bioinformatics , vol.26 , pp. 2345-2346
    • Van Hemert, J.L.1    Dickerson, J.A.2
  • 227
    • 0242559054 scopus 로고    scopus 로고
    • Pathway studio-the analysis and navigation of molecular networks
    • Nikitin A, et al. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 2003, 19:2155-2157.
    • (2003) Bioinformatics , vol.19 , pp. 2155-2157
    • Nikitin, A.1
  • 228
    • 77951972600 scopus 로고    scopus 로고
    • BioNet: an R-Package for the functional analysis of biological networks
    • Beisser D, et al. BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 2010, 26:1129-1130.
    • (2010) Bioinformatics , vol.26 , pp. 1129-1130
    • Beisser, D.1
  • 229
    • 4444366661 scopus 로고    scopus 로고
    • A critical and integrated view of the yeast interactome
    • Cornell M, Paton NW, Oliver SG. A critical and integrated view of the yeast interactome. Comput Funct Genomics 2004, 5:382-402.
    • (2004) Comput Funct Genomics , vol.5 , pp. 382-402
    • Cornell, M.1    Paton, N.W.2    Oliver, S.G.3
  • 230
    • 59149103076 scopus 로고    scopus 로고
    • Challenges and rewards of interaction proteomics
    • Wodak SJ, et al. Challenges and rewards of interaction proteomics. Mol Cell Proteomics 2009, 8:3-18.
    • (2009) Mol Cell Proteomics , vol.8 , pp. 3-18
    • Wodak, S.J.1
  • 231
    • 67149141471 scopus 로고    scopus 로고
    • Influence of protein abundance on high-throughput protein-protein interaction detection
    • Ivanic J, et al. Influence of protein abundance on high-throughput protein-protein interaction detection. PLoS One 2009, 4:e5815.
    • (2009) PLoS One , vol.4
    • Ivanic, J.1
  • 232
    • 0036805329 scopus 로고    scopus 로고
    • Bridging structural biology and genomics: assessing protein interaction data with known complexes
    • Edwards AM, et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet 2002, 18:529-536.
    • (2002) Trends Genet , vol.18 , pp. 529-536
    • Edwards, A.M.1
  • 233
    • 79952659846 scopus 로고    scopus 로고
    • Boosting signal-tonoise in complex biology: prior knowledge is power
    • Ideker T, Dutkowski J, Hood L. Boosting signal-tonoise in complex biology: prior knowledge is power. Cell 2011, 144:860-863.
    • (2011) Cell , vol.144 , pp. 860-863
    • Ideker, T.1    Dutkowski, J.2    Hood, L.3
  • 234
    • 62549128139 scopus 로고    scopus 로고
    • A census of human transcription factors: function, expression and evolution
    • Vaquerizas JM, et al. A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009, 10:252-263.
    • (2009) Nat Rev Genet , vol.10 , pp. 252-263
    • Vaquerizas, J.M.1
  • 235
    • 27744567556 scopus 로고    scopus 로고
    • Interactome: gateway into systems biology
    • Cusick ME, et al. Interactome: gateway into systems biology. Hum Mol Genet 2005, 14(Spec No. 2):R171-R181.
    • (2005) Hum Mol Genet , vol.14 , Issue.SPEC NO. 2
    • Cusick, M.E.1
  • 236
    • 33847744247 scopus 로고    scopus 로고
    • How complete are current yeast and human protein-interaction networks?
    • Hart GT, Ramani AK, Marcotte EM. How complete are current yeast and human protein-interaction networks? Genome Biol 2006, 7:120.
    • (2006) Genome Biol , vol.7 , pp. 120
    • Hart, G.T.1    Ramani, A.K.2    Marcotte, E.M.3
  • 237
    • 78650274124 scopus 로고    scopus 로고
    • New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size
    • Sambourg L, Thierry-Mieg N. New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size. BMC Bioinformatics 2010, 11:605.
    • (2010) BMC Bioinformatics , vol.11 , pp. 605
    • Sambourg, L.1    Thierry-Mieg, N.2
  • 238
    • 44349113144 scopus 로고    scopus 로고
    • Estimating the size of the human interactome
    • Stumpf MP, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA 2008, 105:6959-6964.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 6959-6964
    • Stumpf, M.P.1
  • 239
    • 15444372528 scopus 로고    scopus 로고
    • Subnets of scale-free networks are not scale-free: sampling properties of networks
    • Stumpf MP, Wiuf C, May RM. Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci USA 2005, 102:4221-4224.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 4221-4224
    • Stumpf, M.P.1    Wiuf, C.2    May, R.M.3
  • 240
    • 24944442468 scopus 로고    scopus 로고
    • Effect of sampling on topology predictions of protein-protein interaction networks
    • Han JD, et al. Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 2005, 23:839-844.
    • (2005) Nat Biotechnol , vol.23 , pp. 839-844
    • Han, J.D.1
  • 241
    • 80052947609 scopus 로고    scopus 로고
    • Introduction to network analysis in systems biology
    • Ma'ayan A. Introduction to network analysis in systems biology. Sci Signal 2011, 4:tr5.
    • (2011) Sci Signal , vol.4
    • Ma'ayan, A.1
  • 242
    • 79952635505 scopus 로고    scopus 로고
    • Principles and strategies for developing network models in cancer
    • Pe'er D, Hacohen N. Principles and strategies for developing network models in cancer. Cell 2011, 144:864-873.
    • (2011) Cell , vol.144 , pp. 864-873
    • Pe'er, D.1    Hacohen, N.2
  • 243
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308:523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 244
    • 80052730617 scopus 로고    scopus 로고
    • Verification of systems biology research in the age of collaborative competition
    • Meyer P, et al. Verification of systems biology research in the age of collaborative competition. Nat Biotechnol 2011, 29:811-815.
    • (2011) Nat Biotechnol , vol.29 , pp. 811-815
    • Meyer, P.1
  • 245
    • 35048896054 scopus 로고    scopus 로고
    • Significance analysis of time-series transcriptomic data: a methodology that enables the identification and further exploration of the differentially expressed genes at each time-point
    • Dutta B, Snyder R, Klapa MI. Significance analysis of time-series transcriptomic data: a methodology that enables the identification and further exploration of the differentially expressed genes at each time-point. Biotechnol Bioeng 2007, 98:668-678.
    • (2007) Biotechnol Bioeng , vol.98 , pp. 668-678
    • Dutta, B.1    Snyder, R.2    Klapa, M.I.3
  • 246
    • 44949247269 scopus 로고    scopus 로고
    • Dynamic analysis of integrated signaling, metabolic, and regulatory networks
    • Lee JM, et al. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008, 4:e1000086.
    • (2008) PLoS Comput Biol , vol.4
    • Lee, J.M.1
  • 247
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgard MJ, et al. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 2006, 16:627-635.
    • (2006) Genome Res , vol.16 , pp. 627-635
    • Herrgard, M.J.1
  • 248
    • 58149232521 scopus 로고    scopus 로고
    • Superhighway or blind alley? The cancer genome atlas releases first results
    • Hede K. Superhighway or blind alley? The cancer genome atlas releases first results. J Natl Cancer Inst 2008, 100:1566-1569.
    • (2008) J Natl Cancer Inst , vol.100 , pp. 1566-1569
    • Hede, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.