메뉴 건너뛰기




Volumn 98, Issue 3, 2007, Pages 668-678

Significance analysis of time-series transcriptomic data: A methodology that enables the identification and further exploration of the differentially expressed genes at each time-point

Author keywords

Bioinformatics; Dynamic omic profiling; Highthroughput analysis; Hypothesis testing; Systems biology; Time point comparison

Indexed keywords

ALGORITHMS; BIOINFORMATICS; BIOLOGICAL SYSTEMS; DATA ACQUISITION; INFORMATION ANALYSIS; MICROARRAYS; TIME SERIES ANALYSIS;

EID: 35048896054     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.21432     Document Type: Article
Times cited : (5)

References (32)
  • 1
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD. 2001. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509-519.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 2
    • 0042838381 scopus 로고    scopus 로고
    • Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes
    • Bar-Joseph Z, Gerber GK, Simon I, Gifford DK, Jaakkola TS. 2003a. Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci USA 100:10146-10151.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10146-10151
    • Bar-Joseph, Z.1    Gerber, G.K.2    Simon, I.3    Gifford, D.K.4    Jaakkola, T.S.5
  • 5
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • Brown PO, Botstsein D. 1999. Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33-37.
    • (1999) Nat Genet , vol.21 , pp. 33-37
    • Brown, P.O.1    Botstsein, D.2
  • 8
    • 35048884971 scopus 로고    scopus 로고
    • Chu G, Narasimhan B, Tibshirani R, Tusher V. SAM User guide and Technical Document [http://www-stat.stanford.edu/~tibs/SAM/]. Downloaded September 2006.
    • Chu G, Narasimhan B, Tibshirani R, Tusher V. SAM User guide and Technical Document [http://www-stat.stanford.edu/~tibs/SAM/]. Downloaded September 2006.
  • 9
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA. 2005. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6:59-75.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 10
    • 0042093637 scopus 로고    scopus 로고
    • Noise sampling method: An ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays
    • Draghici S, Kulaeva O, Hoff B, Petrov A, Shams S, Tainsky MA. 2003. Noise sampling method: An ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays. Bioinformatics 19:1348-1359.
    • (2003) Bioinformatics , vol.19 , pp. 1348-1359
    • Draghici, S.1    Kulaeva, O.2    Hoff, B.3    Petrov, A.4    Shams, S.5    Tainsky, M.A.6
  • 12
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst J, Nau GJ, Bar-Joseph Z. 2005. Clustering short time series gene expression data. Bioinformatics Suppl 1:i159-i168.
    • (2005) Bioinformatics , Issue.SUPPL. 1
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 13
    • 0033667460 scopus 로고    scopus 로고
    • Mining of biological data. I. Identifying discriminating features via mean hypothesis testing
    • Kamimura RT, Bicciato S, Shimizu H, Alford J, Stephanopoulos G. 2000. Mining of biological data. I. Identifying discriminating features via mean hypothesis testing. Metab Eng 2:218-227.
    • (2000) Metab Eng , vol.2 , pp. 218-227
    • Kamimura, R.T.1    Bicciato, S.2    Shimizu, H.3    Alford, J.4    Stephanopoulos, G.5
  • 16
    • 0037350568 scopus 로고    scopus 로고
    • Gene expression analyses of Arabidopsis chromosome 2 using a genomic DNA amplicon microarray
    • Kim H, Snesrud EC, Haas B, Cheung F, Town CD, Quackenbush J. 2003. Gene expression analyses of Arabidopsis chromosome 2 using a genomic DNA amplicon microarray. Genome Res 13:327-340.
    • (2003) Genome Res , vol.13 , pp. 327-340
    • Kim, H.1    Snesrud, E.C.2    Haas, B.3    Cheung, F.4    Town, C.D.5    Quackenbush, J.6
  • 17
    • 0345871265 scopus 로고    scopus 로고
    • The quest for the mechanisms of life
    • Klapa MI, Quackenbush J. 2003. The quest for the mechanisms of life. Biotechnol Bioeng 84:739-742.
    • (2003) Biotechnol Bioeng , vol.84 , pp. 739-742
    • Klapa, M.I.1    Quackenbush, J.2
  • 18
    • 35048860256 scopus 로고    scopus 로고
    • Korn EL, Troendle JF, McShane LM, Simon R. 2001. Controlling the number of false discoveries: Application to high-dimensional genomic data Technical report 003, Biometrie Research Branch, National Cancer Institute. http://linus.nci.nih.gov/~brb/TechReport.htm.
    • Korn EL, Troendle JF, McShane LM, Simon R. 2001. Controlling the number of false discoveries: Application to high-dimensional genomic data Technical report 003, Biometrie Research Branch, National Cancer Institute. http://linus.nci.nih.gov/~brb/TechReport.htm.
  • 19
    • 25444458298 scopus 로고    scopus 로고
    • Considerations when using the significance analysis of microarrays (SAM) algorithm
    • Larsson O, Wahlestedt C, Timmons JA. 2005. Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinform 6:129.
    • (2005) BMC Bioinform , vol.6 , pp. 129
    • Larsson, O.1    Wahlestedt, C.2    Timmons, J.A.3
  • 20
    • 20444462441 scopus 로고    scopus 로고
    • Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis
    • Liu F, Vantoai T, Moy LP, Bock G, Linford LD, Quackenbush J. 2005. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115-1129.
    • (2005) Plant Physiol , vol.137 , pp. 1115-1129
    • Liu, F.1    Vantoai, T.2    Moy, L.P.3    Bock, G.4    Linford, L.D.5    Quackenbush, J.6
  • 22
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan W. 2002. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18:546-554.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 23
    • 0037433769 scopus 로고    scopus 로고
    • Statistical tests for identifying differentially expressed genes in time-course microarray experiments
    • Park T, Yi SG, Lee S, Lee SY, Yoo DH, Ahn JI, Lee YS. 2003. Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19:694-703.
    • (2003) Bioinformatics , vol.19 , pp. 694-703
    • Park, T.1    Yi, S.G.2    Lee, S.3    Lee, S.Y.4    Yoo, D.H.5    Ahn, J.I.6    Lee, Y.S.7
  • 25
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 27
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman RB. 2002. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18:1454-1461.
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.G.1    Garber, M.E.2    Brown, P.O.3    Botstein, D.4    Altman, R.B.5
  • 28
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98:5116-5121.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 29
    • 4544298732 scopus 로고    scopus 로고
    • Sample size for identifying differentially expressed genes in microarray experiments
    • Wang S, Chen JJ. 2004. Sample size for identifying differentially expressed genes in microarray experiments. J Comput Biol 11:714-726.
    • (2004) J Comput Biol , vol.11 , pp. 714-726
    • Wang, S.1    Chen, J.J.2
  • 30
    • 17444374677 scopus 로고    scopus 로고
    • Differential gene expression detection using penalized linear regression models: The improved SAM statistics
    • Wu B. 2005. Differential gene expression detection using penalized linear regression models: The improved SAM statistics. Bioinformatics 21:1565-1571.
    • (2005) Bioinformatics , vol.21 , pp. 1565-1571
    • Wu, B.1
  • 32
    • 0037180744 scopus 로고    scopus 로고
    • Improved significance test for DNA microarray data: Temporal effects of shear stress on endothelial genes
    • Zhao Y, Chen BP, Miao H, Yuan S, Li YS, Hu Y, Rocke DM, Chien S. 2002. Improved significance test for DNA microarray data: Temporal effects of shear stress on endothelial genes. Physiol Genom 12:1-11.
    • (2002) Physiol Genom , vol.12 , pp. 1-11
    • Zhao, Y.1    Chen, B.P.2    Miao, H.3    Yuan, S.4    Li, Y.S.5    Hu, Y.6    Rocke, D.M.7    Chien, S.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.