-
1
-
-
0025324784
-
Chromosomal translocations in lymphoid neoplasia: A reappraisal of the recombinase model
-
Tycko B, Sklar J. Chromosomal translocations in lymphoid neoplasia: a reappraisal of the recombinase model. Cancer Cells 1990;2:1-8.
-
(1990)
Cancer Cells
, vol.2
, pp. 1-8
-
-
Tycko, B.1
Sklar, J.2
-
2
-
-
0032785839
-
Regulated genomic instability and neoplasia in the lymphoid lineage
-
Vanasse GJ, Concannon P, Willerford DM. Regulated genomic instability and neoplasia in the lymphoid lineage. Blood 1999;94:3997-4010.
-
(1999)
Blood
, vol.94
, pp. 3997-4010
-
-
Vanasse, G.J.1
Concannon, P.2
Willerford, D.M.3
-
3
-
-
0141720776
-
Restraining the V(D)J recombinase
-
Roth DB. Restraining the V(D)J recombinase. Nat Rev Immunol 2003;3:656-666.
-
(2003)
Nat Rev Immunol
, vol.3
, pp. 656-666
-
-
Roth, D.B.1
-
4
-
-
0032555758
-
DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations
-
Hiom K, Melek M, Gellert M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 1998;94:463-470.
-
(1998)
Cell
, vol.94
, pp. 463-470
-
-
Hiom, K.1
Melek, M.2
Gellert, M.3
-
5
-
-
0032551829
-
Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system
-
Agrawal A, Eastman QM, Schatz DG. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 1998;394:744-751.
-
(1998)
Nature
, vol.394
, pp. 744-751
-
-
Agrawal, A.1
Eastman, Q.M.2
Schatz, D.G.3
-
6
-
-
0030009253
-
The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination
-
van Gent DC, Ramsden DA, Gellert M. The RAG1 and RAG2 proteins establish the 12/23 rule in V(D)J recombination. Cell 1996;85:107-113.
-
(1996)
Cell
, vol.85
, pp. 107-113
-
-
Van Gent, D.C.1
Ramsden, D.A.2
Gellert, M.3
-
8
-
-
0030887862
-
RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination
-
Agrawal A, Schatz DG. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 1997;89:43-53.
-
(1997)
Cell
, vol.89
, pp. 43-53
-
-
Agrawal, A.1
Schatz, D.G.2
-
9
-
-
0032084698
-
Assembly of a 12/23 paired signal complex: A critical control point in V(D)J recombination
-
Hiom K, Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol Cell 1998;1:1011-1019.
-
(1998)
Mol Cell
, vol.1
, pp. 1011-1019
-
-
Hiom, K.1
Gellert, M.2
-
10
-
-
0035108439
-
Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination
-
Qiu JX, Kale SB, Yarnell Schultz H, Roth DB. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol Cell 2001;7:77-87.
-
(2001)
Mol Cell
, vol.7
, pp. 77-87
-
-
Qiu, J.X.1
Kale, S.B.2
Yarnell Schultz, H.3
Roth, D.B.4
-
11
-
-
0035108780
-
Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro
-
Yarnall Schultz H, Landree MA, Qiu JX, Kale SB, Roth DB. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol Cell 2001;7:65-75.
-
(2001)
Mol Cell
, vol.7
, pp. 65-75
-
-
Yarnall Schultz, H.1
Landree, M.A.2
Qiu, J.X.3
Kale, S.B.4
Roth, D.B.5
-
12
-
-
0036240040
-
Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase
-
Huye LE, Purugganan MM, Jiang MM, Roth DB. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol 2002;22:3460-3473.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 3460-3473
-
-
Huye, L.E.1
Purugganan, M.M.2
Jiang, M.M.3
Roth, D.B.4
-
13
-
-
0036682980
-
Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination
-
Tsai CL, Drejer AH, Schatz DG. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev 2002;16:1934-1949.
-
(2002)
Genes Dev
, vol.16
, pp. 1934-1949
-
-
Tsai, C.L.1
Drejer, A.H.2
Schatz, D.G.3
-
14
-
-
0032555695
-
VDJ recombination: A transposase goes to work
-
Roth DB, Craig NL. VDJ recombination: a transposase goes to work. Cell 1998;94:411-414.
-
(1998)
Cell
, vol.94
, pp. 411-414
-
-
Roth, D.B.1
Craig, N.L.2
-
15
-
-
0029967722
-
Similarities between initiation of V(D)J recombination and retroviral integration
-
van Gent DC, Mizuuchi K, Gellert M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 1996;271:1592-1594.
-
(1996)
Science
, vol.271
, pp. 1592-1594
-
-
Van Gent, D.C.1
Mizuuchi, K.2
Gellert, M.3
-
18
-
-
0018627375
-
Sequences at the somatic recombination sites of immunoglobulin light-chain genes
-
Sakano H, Huppi K, Heinrich G, Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 1979;280:288-294.
-
(1979)
Nature
, vol.280
, pp. 288-294
-
-
Sakano, H.1
Huppi, K.2
Heinrich, G.3
Tonegawa, S.4
-
19
-
-
0025301095
-
RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination
-
Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990;248:1517-1523.
-
(1990)
Science
, vol.248
, pp. 1517-1523
-
-
Oettinger, M.A.1
Schatz, D.G.2
Gorka, C.3
Baltimore, D.4
-
20
-
-
0028867419
-
New insights into V(D)J recombination and its role in the evolution of the immune system
-
Thompson CB. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 1995;3:531-539.
-
(1995)
Immunity
, vol.3
, pp. 531-539
-
-
Thompson, C.B.1
-
21
-
-
0034568266
-
From lymphocytes to sharks: V(D)J recombinase moves to the germline
-
reviews1014.1-1014.4
-
Roth DB. From lymphocytes to sharks: V(D)J recombinase moves to the germline. Genome Biol 2000;1:reviews1014.1-1014.4.
-
(2000)
Genome Biol
, vol.1
-
-
Roth, D.B.1
-
22
-
-
0033970135
-
Recombination-activating genes, transposition, and the lymphoid-specific combinatorial immune system: A common evolutionary connection
-
Hansen JD, McBlane JF. Recombination-activating genes, transposition, and the lymphoid-specific combinatorial immune system: a common evolutionary connection. Curr Top Microbiol Immunol 2000;248:111-135.
-
(2000)
Curr Top Microbiol Immunol
, vol.248
, pp. 111-135
-
-
Hansen, J.D.1
McBlane, J.F.2
-
23
-
-
0030934860
-
Ku86 is not required for protection of signal ends or for formation of nonstandard V(D)J recombination products
-
Han J-O, Steen SB, Roth DB. Ku86 is not required for protection of signal ends or for formation of nonstandard V(D)J recombination products. Mol Cell Biol 1997;17:2226-2234.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 2226-2234
-
-
Han, J.-O.1
Steen, S.B.2
Roth, D.B.3
-
24
-
-
0032529260
-
V(D)J recombination intermediates and non-standard products in XRCC4-deficient cells
-
Han J-O, Erskine LA, Purugganan MM, Stamato TD, Roth DB. V(D)J recombination intermediates and non-standard products in XRCC4-deficient cells. Nucleic Acids Res 1998;26:3769-3775.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 3769-3775
-
-
Han, J.-O.1
Erskine, L.A.2
Purugganan, M.M.3
Stamato, T.D.4
Roth, D.B.5
-
25
-
-
0030837472
-
V(D)J recombination in Ku86-deficient mice: Distinct effects on coding, signal, and hybrid joint formation
-
Bogue MA, Wang C, Zhu C, Roth DB. V(D)J recombination in Ku86-deficient mice: distinct effects on coding, signal, and hybrid joint formation. Immunity 1997;7:37-47.
-
(1997)
Immunity
, vol.7
, pp. 37-47
-
-
Bogue, M.A.1
Wang, C.2
Zhu, C.3
Roth, D.B.4
-
26
-
-
0032438115
-
Analysis of variable (diversity) joining recombination in DNA-dependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation
-
Bogue MA, Jhappan C, Roth DB. Analysis of variable (diversity) joining recombination in DNA-dependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc Natl Acad Sci USA 1998;95:15559-15564.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 15559-15564
-
-
Bogue, M.A.1
Jhappan, C.2
Roth, D.B.3
-
27
-
-
0032502886
-
Rejoining of DNA by the RAG1 and RAG2 proteins
-
Melek M, Gellert M, van Gent DC. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 1998;280:301-303.
-
(1998)
Science
, vol.280
, pp. 301-303
-
-
Melek, M.1
Gellert, M.2
Van Gent, D.C.3
-
28
-
-
0032913232
-
Roles of the "dispensable" portions of RAG-1 and RAG-2 in V(D)J recombination
-
Steen SB, Han J-O, Mundy C, Oettinger MA, Roth DB. Roles of the "dispensable" portions of RAG-1 and RAG-2 in V(D)J recombination. Mol Cell Biol 1999;19:3010-3017.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 3010-3017
-
-
Steen, S.B.1
Han, J.-O.2
Mundy, C.3
Oettinger, M.A.4
Roth, D.B.5
-
29
-
-
0034625261
-
RAG1/2-mediated resolution of transposition intermediates: Two pathways and possible consequences
-
Melek M, Gellert M. RAG1/2-mediated resolution of transposition intermediates: two pathways and possible consequences. Cell 2000;101:625-633.
-
(2000)
Cell
, vol.101
, pp. 625-633
-
-
Melek, M.1
Gellert, M.2
-
30
-
-
0026719238
-
Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases
-
Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 1992;12:2331-2338.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 2331-2338
-
-
Kulkosky, J.1
Jones, K.S.2
Katz, R.A.3
Mack, J.P.G.4
Skalka, A.M.5
-
31
-
-
0029609126
-
DNA transposition: From a black box to a color monitor
-
Grindley NDF, Leschziner AE. DNA transposition: from a black box to a color monitor. Cell 1995;83:1063-1066.
-
(1995)
Cell
, vol.83
, pp. 1063-1066
-
-
Grindley, N.D.F.1
Leschziner, A.E.2
-
32
-
-
0029129435
-
Structure of the bacteriophage Mu transposase core: A common structural motif for DNA transposition and retroviral integration
-
Rice P, Mizuuchi K. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 1995;82:209-220.
-
(1995)
Cell
, vol.82
, pp. 209-220
-
-
Rice, P.1
Mizuuchi, K.2
-
33
-
-
0033380368
-
Mutational analysis of RAG-1 and RAG-2 identifies three active site amino acids in RAG-1 critical for both cleavage steps of V(D)J recombination
-
Landree MA, Wibbenmeyer JA, Roth DB. Mutational analysis of RAG-1 and RAG-2 identifies three active site amino acids in RAG-1 critical for both cleavage steps of V(D)J recombination. Genes Dev 1999;13:3059-3069.
-
(1999)
Genes Dev
, vol.13
, pp. 3059-3069
-
-
Landree, M.A.1
Wibbenmeyer, J.A.2
Roth, D.B.3
-
34
-
-
0033634859
-
Unexpected structural diversity in DNA recombination: The restriction endonuclease connection
-
Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell 2000;5:1025-1034.
-
(2000)
Mol Cell
, vol.5
, pp. 1025-1034
-
-
Hickman, A.B.1
Li, Y.2
Mathew, S.V.3
May, E.W.4
Craig, N.L.5
Dyda, F.6
-
35
-
-
0000675571
-
Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase
-
Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev 1999;13:3070-3080.
-
(1999)
Genes Dev
, vol.13
, pp. 3070-3080
-
-
Kim, D.R.1
Dai, Y.2
Mundy, C.L.3
Yang, W.4
Oettinger, M.A.5
-
36
-
-
0028865574
-
High-resolution structure of the catalytic domain of avian sarcoma virus integrase
-
Bujacz G, et al. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J Mol Biol 1995;253:333-346.
-
(1995)
J Mol Biol
, vol.253
, pp. 333-346
-
-
Bujacz, G.1
-
37
-
-
0029643858
-
The catalytic domain of avian sarcoma virus integrase: Conformation of the active-site residues in the presence of divalent cations
-
Bujacz G, et al. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Structure 1996;4:89-96.
-
(1996)
Structure
, vol.4
, pp. 89-96
-
-
Bujacz, G.1
-
38
-
-
0032483022
-
Three new structures of the core domain of HIV-1 integrase: An active site that binds magnesium
-
Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc Natl Acad Sci USA 1998;95:9150-9154.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 9150-9154
-
-
Goldgur, Y.1
Dyda, F.2
Hickman, A.B.3
Jenkins, T.M.4
Craigie, R.5
-
39
-
-
0032544311
-
Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: High level of similarity of the active site with other viral integrases
-
Maignan S, Guilloteau J-P, Zhou-Liu Q, Clement-Mella C, Mikol V. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol 1998;282:359-368.
-
(1998)
J Mol Biol
, vol.282
, pp. 359-368
-
-
Maignan, S.1
Guilloteau, J.-P.2
Zhou-Liu, Q.3
Clement-Mella, C.4
Mikol, V.5
-
40
-
-
0033954892
-
Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex
-
Fugmann SD, Villey IJ, Ptaszek LM, Schatz DG. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol Cell 2000; 5:97-107.
-
(2000)
Mol Cell
, vol.5
, pp. 97-107
-
-
Fugmann, S.D.1
Villey, I.J.2
Ptaszek, L.M.3
Schatz, D.G.4
-
42
-
-
0028048275
-
The mechanism of V(D)J joining: Lessons from molecular immunological and comparative analyses
-
Lewis SM. The mechanism of V(D)J joining: lessons from molecular immunological and comparative analyses. Adv Immunol 1994;56:27-150.
-
(1994)
Adv Immunol
, vol.56
, pp. 27-150
-
-
Lewis, S.M.1
-
43
-
-
2942680399
-
V(D)J recombination and the evolution of the adaptive immune system
-
Market E, Papavasiliou FN. V(D)J recombination and the evolution of the adaptive immune system. PLos Biol 2003;1:E16.
-
(2003)
PLos Biol
, vol.1
-
-
Market, E.1
Papavasiliou, F.N.2
-
44
-
-
0026792892
-
V(D)J recombination: Broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes
-
Roth DB, Menetski JP, Nakajima PB, Bosma MJ, Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 1992;70:983-991.
-
(1992)
Cell
, vol.70
, pp. 983-991
-
-
Roth, D.B.1
Menetski, J.P.2
Nakajima, P.B.3
Bosma, M.J.4
Gellert, M.5
-
45
-
-
0027769386
-
Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated RAG-dependent, and cell cycle regulated
-
Schlissel M, Constantinescu A, Morrow T, Baxter M, Peng A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated RAG-dependent, and cell cycle regulated. Genes Dev 1993;7:2520-2532.
-
(1993)
Genes Dev
, vol.7
, pp. 2520-2532
-
-
Schlissel, M.1
Constantinescu, A.2
Morrow, T.3
Baxter, M.4
Peng, A.5
-
46
-
-
0028958942
-
Characterization of coding ends in thymocytes of scid mice: Implications for the mechanism of V(D)J recombination
-
Zhu C, Roth DB. Characterization of coding ends in thymocytes of scid mice: implications for the mechanism of V(D)J recombination. Immunity 1995;2:101-112.
-
(1995)
Immunity
, vol.2
, pp. 101-112
-
-
Zhu, C.1
Roth, D.B.2
-
47
-
-
0030069149
-
T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells
-
Livak F, Schatz DG. T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells. Mol Cell Biol 1996;16:609-618.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 609-618
-
-
Livak, F.1
Schatz, D.G.2
-
48
-
-
0028801363
-
Formation and resolution of double-strand break intermediates in V(D)J rearrangement
-
Ramsden DA, Gellert M. Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev 1995;9:2409-2420.
-
(1995)
Genes Dev
, vol.9
, pp. 2409-2420
-
-
Ramsden, D.A.1
Gellert, M.2
-
49
-
-
0035818603
-
Intermediates in V(D)J recombination: A stable RAG1/2 complex sequesters cleaved RSS ends
-
Jones JM, Gellert M. Intermediates in V(D)J recombination: a stable RAG1/2 complex sequesters cleaved RSS ends. Proc Natl Acad Sci USA 2001;98:12926-12931.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 12926-12931
-
-
Jones, J.M.1
Gellert, M.2
-
50
-
-
0021885386
-
DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes
-
Lewis S, Gifford A, Baltimore D. DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes. Science 1985;228:677-685.
-
(1985)
Science
, vol.228
, pp. 677-685
-
-
Lewis, S.1
Gifford, A.2
Baltimore, D.3
-
51
-
-
0023659483
-
Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V(D)J joining signals
-
Hesse JE, Lieber MR, Gellert M, Mizuuchi K. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V(D)J joining signals. Cell 1987;49:775-783.
-
(1987)
Cell
, vol.49
, pp. 775-783
-
-
Hesse, J.E.1
Lieber, M.R.2
Gellert, M.3
Mizuuchi, K.4
-
52
-
-
0035312712
-
The RAG proteins in V(D)J recombination: More than just a nuclease
-
Sadofsky MJ. The RAG proteins in V(D)J recombination: more than just a nuclease. Nucleic Acids Res 2001;29:1399-1409.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 1399-1409
-
-
Sadofsky, M.J.1
-
53
-
-
0026052160
-
Cutting and closing without recombination in V(D)J joining
-
Lewis SM, Hesse JE. Cutting and closing without recombination in V(D)J joining. EMBO J 1991;10:3631-3639.
-
(1991)
EMBO J
, vol.10
, pp. 3631-3639
-
-
Lewis, S.M.1
Hesse, J.E.2
-
54
-
-
0027410476
-
V(D)J recombination: Signal and coding joint resolution are uncoupled and depend on parallel synapsis of the sites
-
Sheehan KM, Lieber MR. V(D)J recombination: signal and coding joint resolution are uncoupled and depend on parallel synapsis of the sites. Mol Cell Biol 1993;13:1363-1370.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 1363-1370
-
-
Sheehan, K.M.1
Lieber, M.R.2
-
55
-
-
0036242313
-
The V(D)J recombinase efficiently cleaves and transposes signal joints
-
Neiditch MB, Lee GS, Huye LE, Brandt VL, Roth DB. The V(D)J recombinase efficiently cleaves and transposes signal joints. Mol Cell 2002;9:871-878.
-
(2002)
Mol Cell
, vol.9
, pp. 871-878
-
-
Neiditch, M.B.1
Lee, G.S.2
Huye, L.E.3
Brandt, V.L.4
Roth, D.B.5
-
56
-
-
0030576534
-
Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates
-
Zhu C, Bogue MA, Lim D-S, Hasty P, Roth DB. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 1996;86:379-389.
-
(1996)
Cell
, vol.86
, pp. 379-389
-
-
Zhu, C.1
Bogue, M.A.2
Lim, D.-S.3
Hasty, P.4
Roth, D.B.5
-
57
-
-
0037370378
-
Distinct t(7;9)(q34;q32) breakpoints in healthy individuals and individuals with T-ALL
-
Marculescu R, Vanura K, Le T, Simon P, Jager U, Nadel B. Distinct t(7;9)(q34;q32) breakpoints in healthy individuals and individuals with T-ALL. Nat Genet 2003;33:342-344.
-
(2003)
Nat Genet
, vol.33
, pp. 342-344
-
-
Marculescu, R.1
Vanura, K.2
Le, T.3
Simon, P.4
Jager, U.5
Nadel, B.6
-
58
-
-
0034967436
-
RAG transposase can capture and commit to target DNA before or after donor cleavage
-
Neiditch MB, Lee GS, Landree MA, Roth DB. RAG transposase can capture and commit to target DNA before or after donor cleavage. Mol Cell Biol 2001;21:4302-4310.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4302-4310
-
-
Neiditch, M.B.1
Lee, G.S.2
Landree, M.A.3
Roth, D.B.4
-
59
-
-
0030967281
-
The Tn10 synaptic complex can capture a target DNA only after transposon excision
-
Sakai J, Kleckner N. The Tn10 synaptic complex can capture a target DNA only after transposon excision. Cell 1997;89:205-214.
-
(1997)
Cell
, vol.89
, pp. 205-214
-
-
Sakai, J.1
Kleckner, N.2
-
60
-
-
0345379607
-
A RAG1 and RAG2 tetramer complex is active in cleavage in V(D)J recombination
-
Bailin T, Mo X, Sadofsky MJ. A RAG1 and RAG2 tetramer complex is active in cleavage in V(D)J recombination. Mol Cell Biol 1999;19:4664-4671.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 4664-4671
-
-
Bailin, T.1
Mo, X.2
Sadofsky, M.J.3
-
61
-
-
0036839614
-
A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals
-
Swanson PC. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol Cell Biol 2002;22:7790-7801.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7790-7801
-
-
Swanson, P.C.1
-
64
-
-
0037447338
-
The C-terminal portion of RAG2 protects against transposition in vitro
-
Elkin SK, Matthews AG, Oettinger MA. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 2003;22:1931-1938.
-
(2003)
EMBO J
, vol.22
, pp. 1931-1938
-
-
Elkin, S.K.1
Matthews, A.G.2
Oettinger, M.A.3
-
65
-
-
1042301422
-
Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition, but not hybrid joint formation or disintegration
-
Swanson PC, Volkmer D, Wang L. Full-length RAG-2, and not full-length RAG-1, specifically suppresses RAG-mediated transposition, but not hybrid joint formation or disintegration. J Biol Chem 2004;279:4034-4044.
-
(2004)
J Biol Chem
, vol.279
, pp. 4034-4044
-
-
Swanson, P.C.1
Volkmer, D.2
Wang, L.3
-
66
-
-
0037447298
-
Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2
-
Tsai CL, Schatz DG. Regulation of RAG1/RAG2-mediated transposition by GTP and the C-terminal region of RAG2. EMBO J 2003;22:1922-1930.
-
(2003)
EMBO J
, vol.22
, pp. 1922-1930
-
-
Tsai, C.L.1
Schatz, D.G.2
-
67
-
-
0035865136
-
Target DNA structure plays a critical role in Tn7 transposition
-
Kuduvalli PN, Rao JE, Craig NL. Target DNA structure plays a critical role in Tn7 transposition. EMBO J 2001;20:924-932.
-
(2001)
EMBO J
, vol.20
, pp. 924-932
-
-
Kuduvalli, P.N.1
Rao, J.E.2
Craig, N.L.3
-
68
-
-
0034636031
-
Recognition of triple-helical DNA structures by transposon Tn7
-
Rao JE, Miller PS, Craig NL. Recognition of triple-helical DNA structures by transposon Tn7. Proc Natl Acad Sci USA 2000;97:3936-3941.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 3936-3941
-
-
Rao, J.E.1
Miller, P.S.2
Craig, N.L.3
-
69
-
-
0035853286
-
Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7
-
Rao JE, Craig NL. Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7. J Mol Biol 2001;307:1161-1170.
-
(2001)
J Mol Biol
, vol.307
, pp. 1161-1170
-
-
Rao, J.E.1
Craig, N.L.2
-
71
-
-
0345146909
-
In vivo transposition mediated by V(D)J recombinase in human T lymphocytes
-
Messier TL, O'Neill JP, Hou SM, Nicklas JA, Finette BA. In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J 2003;22:1381-1388.
-
(2003)
EMBO J
, vol.22
, pp. 1381-1388
-
-
Messier, T.L.1
O'Neill, J.P.2
Hou, S.M.3
Nicklas, J.A.4
Finette, B.A.5
-
72
-
-
0026575427
-
S1 nuclease hypersensitive sites in an oligopurine/oligopyrimidine DNA from the t(10;14) breakpoint cluster region
-
Lu M, Zhang N, Raimondi S, Ho AD. S1 nuclease hypersensitive sites in an oligopurine/oligopyrimidine DNA from the t(10;14) breakpoint cluster region. Nucleic Acids Res 1992;20:263-266.
-
(1992)
Nucleic Acids Res
, vol.20
, pp. 263-266
-
-
Lu, M.1
Zhang, N.2
Raimondi, S.3
Ho, A.D.4
-
73
-
-
0024437912
-
Alternating purine-pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours
-
Boehm T, et al. Alternating purine-pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours. EMBO J 1989;8:2621-2631.
-
(1989)
EMBO J
, vol.8
, pp. 2621-2631
-
-
Boehm, T.1
-
74
-
-
0033106433
-
Intermolecular V(D)J recombination is prohibited specifically at the joining step
-
Han J-O, Steen SB, Roth DB. Intermolecular V(D)J recombination is prohibited specifically at the joining step. Mol Cell 1999;3:331-338.
-
(1999)
Mol Cell
, vol.3
, pp. 331-338
-
-
Han, J.-O.1
Steen, S.B.2
Roth, D.B.3
-
75
-
-
0034708588
-
Intermolecular V(D)J recombination
-
Tevelev A, Schatz DG. Intermolecular V(D)J recombination. J Biol Chem 2000;275:8341-8348.
-
(2000)
J Biol Chem
, vol.275
, pp. 8341-8348
-
-
Tevelev, A.1
Schatz, D.G.2
-
76
-
-
0035697242
-
Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs
-
Sekiguchi JA, Whitlow S, Alt FW. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol Cell 2001;8:1383-1390.
-
(2001)
Mol Cell
, vol.8
, pp. 1383-1390
-
-
Sekiguchi, J.A.1
Whitlow, S.2
Alt, F.W.3
-
77
-
-
0027285604
-
V(D)J recombination generates a high frequency of nonstandard TCR delta-associated rearrangements in thymocytes
-
Carroll AM, Slack JK, Mu X. V(D)J recombination generates a high frequency of nonstandard TCR delta-associated rearrangements in thymocytes. J Immunol 1993;150:2222-2230.
-
(1993)
J Immunol
, vol.150
, pp. 2222-2230
-
-
Carroll, A.M.1
Slack, J.K.2
Mu, X.3
-
78
-
-
0028889966
-
Inversions produced during V(D)J rearrangement at IgH, the immunoglobulin heavy-chain locus
-
Sollbach AE, Wu GE. Inversions produced during V(D)J rearrangement at IgH, the immunoglobulin heavy-chain locus. Mol Cell Biol 1995;15:671-681.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 671-681
-
-
Sollbach, A.E.1
Wu, G.E.2
-
79
-
-
0030293631
-
Immunoglobulin DH recombination signal sequence targeting
-
VanDyk LF, Wise TW, Moore BB, Meek K. Immunoglobulin DH recombination signal sequence targeting. J Immunol 1996;157:4005-4015.
-
(1996)
J Immunol
, vol.157
, pp. 4005-4015
-
-
Vandyk, L.F.1
Wise, T.W.2
Moore, B.B.3
Meek, K.4
-
80
-
-
0028283180
-
Abnormal deletions in the T cell receptor delta locus of mouse thymocytes
-
Fish SM, Bosma MJ. Abnormal deletions in the T cell receptor delta locus of mouse thymocytes. Mol Cell Biol 1994;14:4455-4464.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 4455-4464
-
-
Fish, S.M.1
Bosma, M.J.2
|