-
1
-
-
79955435335
-
Clustered regularly interspaced short palindromic repeats (CRISPRs): The hallmark of an ingenious antiviral defense mechanism in prokaryotes
-
Al-Attar S, Westra ER, van der Oost J, Brouns SJ. 2011. Clustered regularly interspaced short palindromic repeats (CRISPRs): The hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 392(4):277–289.
-
(2011)
Biol Chem
, vol.392
, Issue.4
, pp. 277-289
-
-
Al-Attar, S.1
Westra, E.R.2
van der Oost, J.3
Brouns, S.J.4
-
2
-
-
84942256417
-
Engineering modular viral scaffolds for targeted bacterial population editing
-
Ando H, Sebastien L, Diana PP, Timothy KL. 2015. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst 1(3):187–196.
-
(2015)
Cell Syst
, vol.1
, Issue.3
, pp. 187-196
-
-
Ando, H.1
Sebastien, L.2
Diana, P.P.3
Timothy, K.L.4
-
3
-
-
84920389030
-
Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR-Cas system
-
Anton T, Bultmann S, Leonhardt H, Markaki Y. 2014. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR-Cas system. Nucleus 5(2):163–172.
-
(2014)
Nucleus
, vol.5
, Issue.2
, pp. 163-172
-
-
Anton, T.1
Bultmann, S.2
Leonhardt, H.3
Markaki, Y.4
-
4
-
-
84990228262
-
Linear ubiquitination by LUBEL has a role in Drosophila heat stress response
-
Asaoka T, Almagro J, Ehrhardt C, Tsai I, Schleiffer A, Deszcz L, Junttila S, Ringrose L, Mechtler K, Kavirayani A, Gyenesei A, Hofmann K, Duchek P, Rittinger K, Ikeda F. 2016. Linear ubiquitination by LUBEL has a role in Drosophila heat stress response. EMBO Rep 17(11):1624–1640.
-
(2016)
EMBO Rep
, vol.17
, Issue.11
, pp. 1624-1640
-
-
Asaoka, T.1
Almagro, J.2
Ehrhardt, C.3
Tsai, I.4
Schleiffer, A.5
Deszcz, L.6
Junttila, S.7
Ringrose, L.8
Mechtler, K.9
Kavirayani, A.10
Gyenesei, A.11
Hofmann, K.12
Duchek, P.13
Rittinger, K.14
Ikeda, F.15
-
5
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
-
7
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR-Cas9 system
-
Bassett AR, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR-Cas9 system. Cell Rep 4(1):220–228.
-
(2013)
Cell Rep
, vol.4
, Issue.1
, pp. 220-228
-
-
Bassett, A.R.1
Tibbit, C.2
Ponting, C.P.3
Liu, J.L.4
-
8
-
-
85017330457
-
A CRISPR design for next-generation antimicrobials
-
Beisel CL, Gomaa AA, Barrangou R. 2014. A CRISPR design for next-generation antimicrobials. Genome Biol 15(11):516.
-
(2014)
Genome Biol
, vol.15
, Issue.11
, pp. 516
-
-
Beisel, C.L.1
Gomaa, A.A.2
Barrangou, R.3
-
9
-
-
80755187812
-
CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation
-
Bhaya D, Davison M, Barrangou R. 2011. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297.
-
(2011)
Annu Rev Genet
, vol.45
, pp. 273-297
-
-
Bhaya, D.1
Davison, M.2
Barrangou, R.3
-
10
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X. 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32(11):1146–1150.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.11
, pp. 1146-1150
-
-
Bikard, D.1
Euler, C.W.2
Jiang, W.3
Nussenzweig, P.M.4
Goldberg, G.W.5
Duportet, X.6
-
11
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437.
-
(2013)
Nucleic Acids Res
, vol.41
, Issue.15
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
12
-
-
72149110399
-
Breaking the code of DNA binding specificity of TAL-type III effectors
-
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512.
-
(2009)
Science
, vol.326
, Issue.5959
, pp. 1509-1512
-
-
Boch, J.1
Scholze, H.2
Schornack, S.3
Landgraf, A.4
Hahn, S.5
Kay, S.6
-
13
-
-
79751503682
-
TALEs of genome targeting
-
Boch J. 2011. TALEs of genome targeting. Nat Biotechnol 29(2):135–136.
-
(2011)
Nat Biotechnol
, vol.29
, Issue.2
, pp. 135-136
-
-
Boch, J.1
-
14
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra-chromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra-chromosomal origin. Microbiology 151:2551–2561.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
15
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Dickman MJ. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Dickman, M.J.6
-
16
-
-
84920972934
-
+ T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques
-
+ T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques. Proc Natl Acad Sci USA 112(2):518–523.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.2
, pp. 518-523
-
-
Carnathan, D.G.1
Wetzel, K.S.2
Yu, J.3
Lee, S.T.4
Johnson, B.A.5
Paiardini, M.6
Yan, J.7
Morrow, M.P.8
Sardesai, N.Y.9
Weiner, D.B.10
Ertl, H.C.11
Silvestri, G.12
-
17
-
-
80051535219
-
Genome engineering with zinc-finger nucleases
-
Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782.
-
(2011)
Genetics
, vol.188
, Issue.4
, pp. 773-782
-
-
Carroll, D.1
-
18
-
-
79953056443
-
The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset
-
Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V. 2011. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471(7339):513–517.
-
(2011)
Nature
, vol.471
, Issue.7339
, pp. 513-517
-
-
Ceol, C.J.1
Houvras, Y.2
Jane-Valbuena, J.3
Bilodeau, S.4
Orlando, D.A.5
Battisti, V.6
-
19
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR-Cas system
-
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR-Cas system. Cell 155(7):1479–1491.
-
(2013)
Cell
, vol.155
, Issue.7
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
Schnitzbauer, J.4
Zhang, W.5
Li, G.W.6
-
20
-
-
84900395692
-
Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease
-
Chen H, Choi J, Bailey S. 2014. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289(19):13284–13294.
-
(2014)
J Biol Chem
, vol.289
, Issue.19
, pp. 13284-13294
-
-
Chen, H.1
Choi, J.2
Bailey, S.3
-
21
-
-
84997287053
-
CRISPR-Cas9: From genome editing to cancer research
-
Chen S, Sun H, Miao K, Deng CX. 2016. CRISPR-Cas9: From genome editing to cancer research. Int J Biol Sci 12(12):1427–1436.
-
(2016)
Int J Biol Sci
, vol.12
, Issue.12
, pp. 1427-1436
-
-
Chen, S.1
Sun, H.2
Miao, K.3
Deng, C.X.4
-
22
-
-
84905858394
-
The global burden of neurologic diseases
-
Chin JH, Vora N. 2014. The global burden of neurologic diseases. Neurology 83(4):349–351.
-
(2014)
Neurology
, vol.83
, Issue.4
, pp. 349-351
-
-
Chin, J.H.1
Vora, N.2
-
24
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32(11):1141–1145.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.11
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
25
-
-
84873729095
-
Multiplex genome engineering using CRISPR-Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N. 2013. Multiplex genome engineering using CRISPR-Cas systems. Science 339(6121):819–823.
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
-
26
-
-
84923106217
-
Therapeutic genome editing: Prospects and challenges
-
Cox DB, Platt RJ, Zhang F. 2015. Therapeutic genome editing: Prospects and challenges. Nat Med 21(2):121–131.
-
(2015)
Nat Med
, vol.21
, Issue.2
, pp. 121-131
-
-
Cox, D.B.1
Platt, R.J.2
Zhang, F.3
-
27
-
-
50349083723
-
Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats
-
Cui Y, Li Y, Gorge O, Platonov ME, Yan Y, Guo Z. 2008. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE 3:e2652.
-
(2008)
PLoS ONE
, vol.3
-
-
Cui, Y.1
Li, Y.2
Gorge, O.3
Platonov, M.E.4
Yan, Y.5
Guo, Z.6
-
28
-
-
33645313846
-
Chromosome evolution in the Thermotogales: Large-scale inversions and strain diversification of CRISPR sequences
-
DeBoy RT, Mongodin EF, Emerson JB, Nelson KE. 2006. Chromosome evolution in the Thermotogales: Large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol 188(7):2364–2374.
-
(2006)
J Bacteriol
, vol.188
, Issue.7
, pp. 2364-2374
-
-
DeBoy, R.T.1
Mongodin, E.F.2
Emerson, J.B.3
Nelson, K.E.4
-
29
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
-
30
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400.
-
(2008)
J Bacteriol
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
31
-
-
77957935381
-
CRISPR-Cas system and its role in phage-bacteria interactions
-
Deveau H, Garneau JE, Moineau S. 2010. CRISPR-Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493.
-
(2010)
Annu Rev Microbiol
, vol.64
, pp. 475-493
-
-
Deveau, H.1
Garneau, J.E.2
Moineau, S.3
-
32
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343.
-
(2013)
Nucleic Acids Res
, vol.41
, Issue.7
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
33
-
-
84906079358
-
Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing
-
Ding Q, Strong A, Patel KM, Ng S-L, Gosis BS, Regan SN, Rader DJ, Musunuru K. 2014. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115(5):488–492.
-
(2014)
Circ Res
, vol.115
, Issue.5
, pp. 488-492
-
-
Ding, Q.1
Strong, A.2
Patel, K.M.3
Ng, S.-L.4
Gosis, B.S.5
Regan, S.N.6
Rader, D.J.7
Musunuru, K.8
-
34
-
-
84927513847
-
Targeting hepatitis B virus cccDNA by CRISPR-Cas9 nuclease efficiently inhibits viral replication
-
Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. 2015. Targeting hepatitis B virus cccDNA by CRISPR-Cas9 nuclease efficiently inhibits viral replication. Antiviral Res 118:110–117.
-
(2015)
Antiviral Res
, vol.118
, pp. 110-117
-
-
Dong, C.1
Qu, L.2
Wang, H.3
Wei, L.4
Dong, Y.5
Xiong, S.6
-
35
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096.
-
(2014)
Science
, vol.346
, Issue.6213
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
36
-
-
20544470693
-
Kidney development and disease in the zebrafish
-
Drummond IA. 2005. Kidney development and disease in the zebrafish. J Am Soc Nephrol 16(2):299–304.
-
(2005)
J Am Soc Nephrol
, vol.16
, Issue.2
, pp. 299-304
-
-
Drummond, I.A.1
-
37
-
-
84960961701
-
Perspectives of genome-editing technologies for HIV therapy
-
Ebina H, Gee P, Koyanagi Y. 2016. Perspectives of genome-editing technologies for HIV therapy. Curr HIV Res 14(1):2–8.
-
(2016)
Curr HIV Res
, vol.14
, Issue.1
, pp. 2-8
-
-
Ebina, H.1
Gee, P.2
Koyanagi, Y.3
-
38
-
-
84883305437
-
Harnessing the CRISPR-Cas9 system to disrupt latent HIV-1 provirus
-
Ebina H, Misawa N, Kanemura Y, Koyanagi Y. 2013. Harnessing the CRISPR-Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510.
-
(2013)
Sci Rep
, vol.3
, pp. 2510
-
-
Ebina, H.1
Misawa, N.2
Kanemura, Y.3
Koyanagi, Y.4
-
39
-
-
84962205403
-
The interplay of immunotherapy and chemotherapy: Harnessing potential synergies
-
Emens LA, Middleton G. 2015. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol Res 3(5):436–443.
-
(2015)
Cancer Immunol Res
, vol.3
, Issue.5
, pp. 436-443
-
-
Emens, L.A.1
Middleton, G.2
-
40
-
-
85014564234
-
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection
-
Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M. 2017. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113–117.
-
(2017)
Nature
, vol.543
, Issue.7643
, pp. 113-117
-
-
Eyquem, J.1
Mansilla-Soto, J.2
Giavridis, T.3
van der Stegen, S.J.4
Hamieh, M.5
Cunanan, K.M.6
Odak, A.7
Gönen, M.8
Sadelain, M.9
-
41
-
-
77950187447
-
Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons
-
Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G. 2010. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430.
-
(2010)
Nat Neurosci
, vol.13
, pp. 423-430
-
-
Feng, J.1
Zhou, Y.2
Campbell, S.L.3
Le, T.4
Li, E.5
Sweatt, J.D.6
Silva, A.J.7
Fan, G.8
-
42
-
-
0030010697
-
The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain
-
Fisher AL, Ohsako S, Caudy M. 1996. The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 16(6):2670–2677.
-
(1996)
Mol Cell Biol
, vol.16
, Issue.6
, pp. 2670-2677
-
-
Fisher, A.L.1
Ohsako, S.2
Caudy, M.3
-
43
-
-
84949220605
-
Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
-
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA 112(49):E6736–E6743.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.49
, pp. E6736-E6743
-
-
Gantz, V.M.1
Jasinskiene, N.2
Tatarenkova, O.3
Fazekas, A.4
Macias, V.M.5
Bier, E.6
James, A.A.7
-
44
-
-
78149261827
-
The CRISPR-Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P. 2010. The CRISPR-Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
-
45
-
-
84997578220
-
Inactivation of cancer mutations utilizing CRISPR-Cas9
-
Gebler C, Lohoff T, Paszkowski-Rogacz M, Mircetic J, Chakraborty D, Camgoz A, Hamann MV, Theis M, Thiede C, Buchholz F. 2017. Inactivation of cancer mutations utilizing CRISPR-Cas9. J Natl Cancer Inst 109(1):1–4.
-
(2017)
J Natl Cancer Inst
, vol.109
, Issue.1
, pp. 1-4
-
-
Gebler, C.1
Lohoff, T.2
Paszkowski-Rogacz, M.3
Mircetic, J.4
Chakraborty, D.5
Camgoz, A.6
Hamann, M.V.7
Theis, M.8
Thiede, C.9
Buchholz, F.10
-
46
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451.
-
(2013)
Cell
, vol.154
, Issue.2
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
Torres, S.E.6
-
47
-
-
84910658482
-
Efficient CRISPR-Cas9 plasmids for rapid and versatile genome editing in Drosophila
-
Gokcezade J, Sienski G, Duchek P. 2014. Efficient CRISPR-Cas9 plasmids for rapid and versatile genome editing in Drosophila. G3 (Bethesda) 4(11):2279–2282.
-
(2014)
G3 (Bethesda)
, vol.4
, Issue.11
, pp. 2279-2282
-
-
Gokcezade, J.1
Sienski, G.2
Duchek, P.3
-
48
-
-
84861587180
-
Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish
-
Goldshmit Y, Sztal TE, Jusuf PR, Hall TE, Nguyen-Chi M, Currie PD. 2012. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci 32(22):7477–7492.
-
(2012)
J Neurosci
, vol.32
, Issue.22
, pp. 7477-7492
-
-
Goldshmit, Y.1
Sztal, T.E.2
Jusuf, P.R.3
Hall, T.E.4
Nguyen-Chi, M.5
Currie, P.D.6
-
49
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
-
Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. 2014. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5(1):e00928–e00913.
-
(2014)
MBio
, vol.5
, Issue.1
, pp. e00913-e00928
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, C.L.6
-
51
-
-
84960422519
-
CRISPR-Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse
-
Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L. 2016. CRISPR-Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8(5):477–488.
-
(2016)
EMBO Mol Med
, vol.8
, Issue.5
, pp. 477-488
-
-
Guan, Y.1
Ma, Y.2
Li, Q.3
Sun, Z.4
Ma, L.5
Wu, L.6
-
52
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139(5):945–956.
-
(2009)
Cell
, vol.139
, Issue.5
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
Wells, L.6
-
53
-
-
84953730637
-
A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
-
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34(1):78–83.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.1
, pp. 78-83
-
-
Hammond, A.1
Galizi, R.2
Kyrou, K.3
Simoni, A.4
Siniscalchi, C.5
Katsanos, D.6
Gribble, M.7
Baker, D.8
Marois, E.9
Russell, S.10
Burt, A.11
Windbichler, N.12
Crisanti, A.13
Nolan, T.14
-
54
-
-
0034614637
-
The hallmarks of cancer
-
Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70.
-
(2000)
Cell
, vol.100
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.A.2
-
55
-
-
0032924127
-
The neuropathology of schizophrenia. A critical review of the data and their interpretation
-
Harrison PJ. 1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624.
-
(1999)
Brain
, vol.122
, pp. 593-624
-
-
Harrison, P.J.1
-
56
-
-
84862662420
-
Dynamics and memory of heterochromatin in living cells
-
Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. 2012. Dynamics and memory of heterochromatin in living cells. Cell 149(7):1447–1460.
-
(2012)
Cell
, vol.149
, Issue.7
, pp. 1447-1460
-
-
Hathaway, N.A.1
Bell, O.2
Hodges, C.3
Miller, E.L.4
Neel, D.S.5
Crabtree, G.R.6
-
57
-
-
84951568684
-
Applications of CRISPR-Cas systems in neuroscience
-
Heidenreich M, Zhang F. 2016. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci 17(1):36–44.
-
(2016)
Nat Rev Neurosci
, vol.17
, Issue.1
, pp. 36-44
-
-
Heidenreich, M.1
Zhang, F.2
-
58
-
-
84924365995
-
Precise in-frame integration of exogenous DNA mediated by CRISPR-Cas9 system in zebrafish
-
Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H. 2015. Precise in-frame integration of exogenous DNA mediated by CRISPR-Cas9 system in zebrafish. Sci Rep 5:8841.
-
(2015)
Sci Rep
, vol.5
, pp. 8841
-
-
Hisano, Y.1
Sakuma, T.2
Nakade, S.3
Ohga, R.4
Ota, S.5
Okamoto, H.6
-
59
-
-
74249095519
-
CRISPR-Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. 2010. CRISPR-Cas, the immune system of bacteria and archaea. Science 327(5962):167–170.
-
(2010)
Science
, vol.327
, Issue.5962
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
60
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278.
-
(2014)
Cell
, vol.157
, Issue.6
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
61
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.3
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
-
62
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433.
-
(1987)
J Bacteriol
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
63
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR-Cas9 in Saccharomyces cerevisiae
-
Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE. 2015. Multiplex metabolic pathway engineering using CRISPR-Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222.
-
(2015)
Metab Eng
, vol.28
, pp. 213-222
-
-
Jakočiūnas, T.1
Bonde, I.2
Herrgård, M.3
Harrison, S.J.4
Kristensen, M.5
Pedersen, L.E.6
-
64
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575.
-
(2002)
Mol Microbiol
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
Embden, J.D.2
Gaastra, W.3
Schouls, L.M.4
-
65
-
-
84882788354
-
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
-
Jao LE, Wente SR, Chen W. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110(34):13904–13909.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.34
, pp. 13904-13909
-
-
Jao, L.E.1
Wente, S.R.2
Chen, W.3
-
66
-
-
84965043183
-
Long-term alcohol consumption and breast, upper aero-digestive tract and colorectal cancer risk: A systematic review and meta-analysis
-
Jayasekara H, MacInnis RJ, Room R, English DR. 2016. Long-term alcohol consumption and breast, upper aero-digestive tract and colorectal cancer risk: A systematic review and meta-analysis. Alcohol 51(3):315–330.
-
(2016)
Alcohol
, vol.51
, Issue.3
, pp. 315-330
-
-
Jayasekara, H.1
MacInnis, R.J.2
Room, R.3
English, D.R.4
-
67
-
-
84921487573
-
Designing chimeric antigen receptors to effectively and safely target tumors
-
Jensen MC, Riddell SR. 2015. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 33:9–15.
-
(2015)
Curr Opin Immunol
, vol.33
, pp. 9-15
-
-
Jensen, M.C.1
Riddell, S.R.2
-
68
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.3
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
69
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821.
-
(2012)
Science
, vol.337
, Issue.6096
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
70
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 2013. RNA-programmed genome editing in human cells. Elife 2:e00471.
-
(2013)
Elife
, vol.2
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.6
-
71
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997.
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
Ma, E.6
Anders, C.7
Hauer, M.8
Zhou, K.9
Lin, S.10
-
72
-
-
84907666916
-
Editorial: Advances in neuroscience: The BRAIN initiative and implications for neuroendocrinology
-
Kaiser UB. 2014. Editorial: Advances in neuroscience: The BRAIN initiative and implications for neuroendocrinology. Mol Endocrinol 28(10):1589–1591.
-
(2014)
Mol Endocrinol
, vol.28
, Issue.10
, pp. 1589-1591
-
-
Kaiser, U.B.1
-
73
-
-
84960482311
-
Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR-Cas9 gene editing
-
Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y. 2016. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR-Cas9 gene editing. Sci Rep 6:22555.
-
(2016)
Sci Rep
, vol.6
, pp. 22555
-
-
Kaminski, R.1
Chen, Y.2
Fischer, T.3
Tedaldi, E.4
Napoli, A.5
Zhang, Y.6
-
74
-
-
85008497306
-
Efficient screening of CRISPR-Cas9-induced events in Drosophila using a Co-CRISPR strategy
-
Kane NS, Vora M, Varre KJ, Padgett RW. 2017. Efficient screening of CRISPR-Cas9-induced events in Drosophila using a Co-CRISPR strategy. G3 (Bethesda) 7(1):87–93.
-
(2017)
G3 (Bethesda)
, vol.7
, Issue.1
, pp. 87-93
-
-
Kane, N.S.1
Vora, M.2
Varre, K.J.3
Padgett, R.W.4
-
75
-
-
84982823952
-
The CRISPR revolution and its impact on cancer research
-
Kannan R, Ventura A. 2015. The CRISPR revolution and its impact on cancer research. Swiss Med Wkly 145:w14230.
-
(2015)
Swiss Med Wkly
, vol.145
, pp. w14230
-
-
Kannan, R.1
Ventura, A.2
-
76
-
-
84920095727
-
Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR-Cas RNA-guided DNA endonuclease
-
Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP. 2015. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR-Cas RNA-guided DNA endonuclease. Virology 476:196–205.
-
(2015)
Virology
, vol.476
, pp. 196-205
-
-
Kennedy, E.M.1
Bassit, L.C.2
Mueller, H.3
Kornepati, A.V.4
Bogerd, H.P.5
-
77
-
-
84907916621
-
Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR-Cas RNA-guided endonuclease
-
Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC. 2014. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR-Cas RNA-guided endonuclease. J Virol 88(20):11965–11972.
-
(2014)
J Virol
, vol.88
, Issue.20
, pp. 11965-11972
-
-
Kennedy, E.M.1
Kornepati, A.V.2
Goldstein, M.3
Bogerd, H.P.4
Poling, B.C.5
-
78
-
-
84884925278
-
Highly improved gene targeting by germline-specific Cas9 expression in Drosophila
-
Kondo S, Ueda R. 2013. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195(3):715–721.
-
(2013)
Genetics
, vol.195
, Issue.3
, pp. 715-721
-
-
Kondo, S.1
Ueda, R.2
-
80
-
-
84920553129
-
Visual cortical areas of the mouse: Comparison of parcellation and network structure with primates
-
Laramée ME, Boire D. 2014. Visual cortical areas of the mouse: Comparison of parcellation and network structure with primates. Front Neural Circuits 8:149.
-
(2014)
Front Neural Circuits
, vol.8
, pp. 149
-
-
Laramée, M.E.1
Boire, D.2
-
81
-
-
84940203001
-
+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR-Cas9
-
+ T cells by gene editing of CCR5 using adenovirus-delivered CRISPR-Cas9. J Gen Virol 96(8):2381–2393.
-
(2015)
J Gen Virol
, vol.96
, Issue.8
, pp. 2381-2393
-
-
Li, C.1
Guan, X.2
Du, T.3
Jin, W.4
Wu, B.5
Liu, Y.6
-
82
-
-
84883819602
-
Heritable gene targeting in the mouse and rat using a CRISPR-Cas system
-
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M. 2013. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683.
-
(2013)
Nat Biotechnol
, vol.31
, Issue.8
, pp. 681-683
-
-
Li, D.1
Qiu, Z.2
Shao, Y.3
Chen, Y.4
Guan, Y.5
Liu, M.6
Li, Y.7
Gao, N.8
Wang, L.9
Lu, X.10
Zhao, Y.11
Liu, M.12
-
83
-
-
85021859986
-
Removal of integrated hepatitis B virus DNA using CRISPR-Cas9
-
Li H, Sheng C, Wang S, Yang L, Liang Y, Huang Y, Liu H, Li P, Yang C, Yang X, Jia L, Xie J, Wang L, Hao R, Du X, Xu D, Zhou J, Li M, Sun Y, Tong Y, Li Q, Qiu S, Song H. 2017. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front Cell Infect Microbiol 7:91.
-
(2017)
Front Cell Infect Microbiol
, vol.7
, pp. 91
-
-
Li, H.1
Sheng, C.2
Wang, S.3
Yang, L.4
Liang, Y.5
Huang, Y.6
Liu, H.7
Li, P.8
Yang, C.9
Yang, X.10
Jia, L.11
Xie, J.12
Wang, L.13
Hao, R.14
Du, X.15
Xu, D.16
Zhou, J.17
Li, M.18
Sun, Y.19
Tong, Y.20
Li, Q.21
Qiu, S.22
Song, H.23
more..
-
84
-
-
84973333020
-
CRISPR-Cas9: A double-edged sword when used to combat HIV infection
-
Liang C, Wainberg MA, Das AT, Berkhout B. 2016. CRISPR-Cas9: A double-edged sword when used to combat HIV infection. Retrovirology 13:37.
-
(2016)
Retrovirology
, vol.13
, pp. 37
-
-
Liang, C.1
Wainberg, M.A.2
Das, A.T.3
Berkhout, B.4
-
85
-
-
84930943161
-
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
-
Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53.
-
(2015)
J Biotechnol
, vol.208
, pp. 44-53
-
-
Liang, X.1
Potter, J.2
Kumar, S.3
Zou, Y.4
Quintanilla, R.5
Sridharan, M.6
-
86
-
-
84924365668
-
Use of the CRISPR-Cas9 system as an intracellular defense against HIV-1 infection in human cells
-
Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M. 2015. Use of the CRISPR-Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6:6413.
-
(2015)
Nat Commun
, vol.6
, pp. 6413
-
-
Liao, H.K.1
Gu, Y.2
Diaz, A.3
Marlett, J.4
Takahashi, Y.5
Li, M.6
-
87
-
-
84907379292
-
The CRISPR-Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo
-
Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY. 2014. The CRISPR-Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3:e186.
-
(2014)
Mol Ther Nucleic Acids
, vol.3
-
-
Lin, S.R.1
Yang, H.C.2
Kuo, Y.T.3
Liu, C.J.4
Yang, T.Y.5
-
88
-
-
84953726026
-
CRISPR-Cas9 facilitates investigation of neural circuit disease using human iPSCs: Mechanism of epilepsy caused by an SCN1A loss-of-function mutation
-
Liu J, Gao C, Chen W, Ma W, Li X, Shi Y, Zhang H, Zhang L, Long Y, Xu H, Guo X, Deng S, Yan X, Yu D, Pan G, Chen Y, Lai L, Liao W, Li Z. 2016. CRISPR-Cas9 facilitates investigation of neural circuit disease using human iPSCs: Mechanism of epilepsy caused by an SCN1A loss-of-function mutation. Transl Psychiatry 6:e703.
-
(2016)
Transl Psychiatry
, vol.6
-
-
Liu, J.1
Gao, C.2
Chen, W.3
Ma, W.4
Li, X.5
Shi, Y.6
Zhang, H.7
Zhang, L.8
Long, Y.9
Xu, H.10
Guo, X.11
Deng, S.12
Yan, X.13
Yu, D.14
Pan, G.15
Chen, Y.16
Lai, L.17
Liao, W.18
Li, Z.19
-
89
-
-
84969787316
-
Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes
-
Liu YC, Cai ZM, Zhang XJ. 2015. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl 18(3):475–479.
-
(2015)
Asian J Androl
, vol.18
, Issue.3
, pp. 475-479
-
-
Liu, Y.C.1
Cai, Z.M.2
Zhang, X.J.3
-
90
-
-
84907200149
-
Prevention of muscular dystrophy in mice by CRISPR-Cas9-mediated editing of germline DNA
-
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. 2014. Prevention of muscular dystrophy in mice by CRISPR-Cas9-mediated editing of germline DNA. Science 345(6201):1184–1188.
-
(2014)
Science
, vol.345
, Issue.6201
, pp. 1184-1188
-
-
Long, C.1
McAnally, J.R.2
Shelton, J.M.3
Mireault, A.A.4
Bassel-Duby, R.5
Olson, E.N.6
-
91
-
-
84924347318
-
Multicolor CRISPR labeling of chromosomal loci in human cells
-
Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T. 2015. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112(10):3002–3007.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.10
, pp. 3002-3007
-
-
Ma, H.1
Naseri, A.2
Reyes-Gutierrez, P.3
Wolfe, S.A.4
Zhang, S.5
Pederson, T.6
-
92
-
-
84884907424
-
CRISPR RNA-guided activation of endogenous human genes
-
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 2013. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979.
-
(2013)
Nat Methods
, vol.10
, Issue.10
, pp. 977-979
-
-
Maeder, M.L.1
Linder, S.J.2
Cascio, V.M.3
Fu, Y.4
Ho, Q.H.5
Joung, J.K.6
-
93
-
-
0037079680
-
A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis
-
Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. 2002. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 482-496
-
-
Makarova, K.S.1
Aravind, L.2
Grishin, N.V.3
Rogozin, I.B.4
Koonin, E.V.5
-
94
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.
-
(2013)
Science
, vol.339
, Issue.6121
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
95
-
-
34547757915
-
Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia
-
Manco-Johnson MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R. 2007. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med 357(6):535–544.
-
(2007)
N Engl J Med
, vol.357
, Issue.6
, pp. 535-544
-
-
Manco-Johnson, M.J.1
Abshire, T.C.2
Shapiro, A.D.3
Riske, B.4
Hacker, M.R.5
Kilcoyne, R.6
-
96
-
-
84874613680
-
Obligate ligation-gated recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining
-
Maresca M, Lin VG, Guo N, Yang Y. 2013. Obligate ligation-gated recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res 23:539–546.
-
(2013)
Genome Res
, vol.23
, pp. 539-546
-
-
Maresca, M.1
Lin, V.G.2
Guo, N.3
Yang, Y.4
-
97
-
-
0028183182
-
Krüppel-associated boxes are potent transcriptional repression domains
-
Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ. 1994. Krüppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA 91(10):4509–4513.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, Issue.10
, pp. 4509-4513
-
-
Margolin, J.F.1
Friedman, J.R.2
Meyer, W.K.3
Vissing, H.4
Thiesen, H.J.5
Rauscher, F.J.6
-
98
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
99
-
-
84964226757
-
A CRISPR path to engineering new genetic mouse models for cardiovascular research
-
Miano JM, Zhu QM, Lowenstein CJ. 2016. A CRISPR path to engineering new genetic mouse models for cardiovascular research. Arterioscler Thromb Vasc Biol 36(6):1058–1075.
-
(2016)
Arterioscler Thromb Vasc Biol
, vol.36
, Issue.6
, pp. 1058-1075
-
-
Miano, J.M.1
Zhu, Q.M.2
Lowenstein, C.J.3
-
100
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182.
-
(2005)
J Mol Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Soria, E.4
-
101
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria
-
Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol 36:244–246.
-
(2000)
Mol Microbiol
, vol.36
, pp. 244-246
-
-
Mojica, F.J.1
Díez-Villaseñor, C.2
Soria, E.3
Juez, G.4
-
102
-
-
0029166294
-
Long stretches of short tandem repeats are present in the largest replicons of the archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning
-
Mojica FJ, Ferrer C, Juez G, Rodriguez-Valera F. 1995. Long stretches of short tandem repeats are present in the largest replicons of the archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85–93.
-
(1995)
Mol Microbiol
, vol.17
, pp. 85-93
-
-
Mojica, F.J.1
Ferrer, C.2
Juez, G.3
Rodriguez-Valera, F.4
-
103
-
-
72149090954
-
A simple cipher governs DNA recognition by TAL effectors
-
Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501.
-
(2009)
Science
, vol.326
, Issue.5959
, pp. 1501
-
-
Moscou, M.J.1
Bogdanove, A.J.2
-
104
-
-
84871099014
-
Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010
-
Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gonzalez-Medina D, Gosselin R, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Lalloo R, Laslett LL. 2012. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223.
-
(2012)
Lancet
, vol.380
, pp. 2197-2223
-
-
Murray, C.J.1
Vos, T.2
Lozano, R.3
Naghavi, M.4
Flaxman, A.D.5
Michaud, C.6
Ezzati, M.7
Shibuya, K.8
Salomon, J.A.9
Abdalla, S.10
Aboyans, V.11
Abraham, J.12
Ackerman, I.13
Aggarwal, R.14
Ahn, S.Y.15
Ali, M.K.16
Alvarado, M.17
Anderson, H.R.18
Anderson, L.M.19
Andrews, K.G.20
Atkinson, C.21
Baddour, L.M.22
Bahalim, A.N.23
Barker-Collo, S.24
Barrero, L.H.25
Bartels, D.H.26
Basáñez, M.G.27
Baxter, A.28
Bell, M.L.29
Benjamin, E.J.30
Bennett, D.31
Bernabé, E.32
Bhalla, K.33
Bhandari, B.34
Bikbov, B.35
Bin Abdulhak, A.36
Birbeck, G.37
Black, J.A.38
Blencowe, H.39
Blore, J.D.40
Blyth, F.41
Bolliger, I.42
Bonaventure, A.43
Boufous, S.44
Bourne, R.45
Boussinesq, M.46
Braithwaite, T.47
Brayne, C.48
Bridgett, L.49
Brooker, S.50
Brooks, P.51
Brugha, T.S.52
Bryan-Hancock, C.53
Bucello, C.54
Buchbinder, R.55
Buckle, G.56
Budke, C.M.57
Burch, M.58
Burney, P.59
Burstein, R.60
Calabria, B.61
Campbell, B.62
Canter, C.E.63
Carabin, H.64
Carapetis, J.65
Carmona, L.66
Cella, C.67
Charlson, F.68
Chen, H.69
Cheng, A.T.70
Chou, D.71
Chugh, S.S.72
Coffeng, L.E.73
Colan, S.D.74
Colquhoun, S.75
Colson, K.E.76
Condon, J.77
Connor, M.D.78
Cooper, L.T.79
Corriere, M.80
Cortinovis, M.81
de Vaccaro, K.C.82
Couser, W.83
Cowie, B.C.84
Criqui, M.H.85
Cross, M.86
Dabhadkar, K.C.87
Dahiya, M.88
Dahodwala, N.89
Damsere-Derry, J.90
Danaei, G.91
Davis, A.92
De Leo, D.93
Degenhardt, L.94
Dellavalle, R.95
Delossantos, A.96
Denenberg, J.97
Derrett, S.98
Des Jarlais, D.C.99
Dharmaratne, S.D.100
Dherani, M.101
Diaz-Torne, C.102
Dolk, H.103
Dorsey, E.R.104
Driscoll, T.105
Duber, H.106
Ebel, B.107
Edmond, K.108
Elbaz, A.109
Ali, S.E.110
Erskine, H.111
Erwin, P.J.112
Espindola, P.113
Ewoigbokhan, S.E.114
Farzadfar, F.115
Feigin, V.116
Felson, D.T.117
Ferrari, A.118
Ferri, C.P.119
Fèvre, E.M.120
Finucane, M.M.121
Flaxman, S.122
Flood, L.123
Foreman, K.124
Forouzanfar, M.H.125
Fowkes, F.G.126
Fransen, M.127
Freeman, M.K.128
Gabbe, B.J.129
Gabriel, S.E.130
Gakidou, E.131
Ganatra, H.A.132
Garcia, B.133
Gaspari, F.134
Gillum, R.F.135
Gmel, G.136
Gonzalez-Medina, D.137
Gosselin, R.138
Grainger, R.139
Grant, B.140
Groeger, J.141
Guillemin, F.142
Gunnell, D.143
Gupta, R.144
Haagsma, J.145
Hagan, H.146
Halasa, Y.A.147
Hall, W.148
Haring, D.149
Haro, J.M.150
Harrison, J.E.151
Havmoeller, R.152
Hay, R.J.153
Higashi, H.154
Hill, C.155
Hoen, B.156
Hoffman, H.157
Hotez, P.J.158
Hoy, D.159
Huang, J.J.160
Ibeanusi, S.E.161
Jacobsen, K.H.162
James, S.L.163
Jarvis, D.164
Jasrasaria, R.165
Jayaraman, S.166
Johns, N.167
Jonas, J.B.168
Karthikeyan, G.169
Kassebaum, N.170
Kawakami, N.171
Keren, A.172
Khoo, J.P.173
King, C.H.174
Knowlton, L.M.175
Kobusingye, O.176
Koranteng, A.177
Krishnamurthi, R.178
Laden, F.179
Lalloo, R.180
Laslett, L.L.181
more..
-
105
-
-
84963940775
-
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
-
Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407.
-
(2016)
Science
, vol.351
, Issue.6271
, pp. 403-407
-
-
Nelson, C.E.1
Hakim, C.H.2
Ousterout, D.G.3
Thakore, P.I.4
Moreb, E.A.5
-
106
-
-
84934936070
-
Multi-input CRISPR-Cas genetic circuits that interface host regulatory networks
-
Nielsen AA, Voigt CA. 2014. Multi-input CRISPR-Cas genetic circuits that interface host regulatory networks. Mol Syst Biol 10:763.
-
(2014)
Mol Syst Biol
, vol.10
, pp. 763
-
-
Nielsen, A.A.1
Voigt, C.A.2
-
107
-
-
65249146929
-
Multidrug resistance in bacteria
-
Nikaido H. 2009. Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 119-146
-
-
Nikaido, H.1
-
108
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949.
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
Konermann, S.4
Shehata, S.I.5
Dohmae, N.6
Ishitani, R.7
Zhang, F.8
Nureki, O.9
-
109
-
-
84903191807
-
Multiple genome modifications by the CRISPR-Cas9 system in zebrafish
-
Ota S, Hisano Y, Ikawa Y, Kawahara A. 2014. Multiple genome modifications by the CRISPR-Cas9 system in zebrafish. Genes Cells 19(7):555–564.
-
(2014)
Genes Cells
, vol.19
, Issue.7
, pp. 555-564
-
-
Ota, S.1
Hisano, Y.2
Ikawa, Y.3
Kawahara, A.4
-
110
-
-
84923652406
-
Multiplex CRISPR-Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy
-
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. 2015. Multiplex CRISPR-Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6:6244.
-
(2015)
Nat Commun
, vol.6
, pp. 6244
-
-
Ousterout, D.G.1
Kabadi, A.M.2
Thakore, P.I.3
Majoros, W.H.4
Reddy, T.E.5
Gersbach, C.A.6
-
111
-
-
0034923498
-
Design and selection of novel Cys2His2 zinc finger proteins
-
Pabo CO, Peisach E, Grant RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340.
-
(2001)
Annu Rev Biochem
, vol.70
, pp. 313-340
-
-
Pabo, C.O.1
Peisach, E.2
Grant, R.A.3
-
112
-
-
85016051955
-
Genetic engineering of a temperate phage-based delivery system for CRISPR-Cas9 antimicrobials against Staphylococcus aureus
-
Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. 2017. Genetic engineering of a temperate phage-based delivery system for CRISPR-Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 7:44929.
-
(2017)
Sci Rep
, vol.7
, pp. 44929
-
-
Park, J.Y.1
Moon, B.Y.2
Park, J.W.3
Thornton, J.A.4
Park, Y.H.5
Seo, K.S.6
-
113
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976.
-
(2013)
Nat Methods
, vol.10
, Issue.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
Adler, A.F.4
Kabadi, A.M.5
Polstein, L.R.6
-
114
-
-
84912101598
-
CRISPR-Cas9 knock-in mice for genome editing and cancer modeling
-
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR. 2014. CRISPR-Cas9 knock-in mice for genome editing and cancer modeling. Cell 159:440–455.
-
(2014)
Cell
, vol.159
, pp. 440-455
-
-
Platt, R.J.1
Chen, S.2
Zhou, Y.3
Yim, M.J.4
Swiech, L.5
Kempton, H.R.6
-
115
-
-
84925534357
-
A light-inducible CRISPR-Cas9 system for control of endogenous gene activation
-
Polstein LR, Gersbach CA. 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200.
-
(2015)
Nat Chem Biol
, vol.11
, Issue.3
, pp. 198-200
-
-
Polstein, L.R.1
Gersbach, C.A.2
-
116
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663.
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
117
-
-
84929206935
-
Cas9-mediated targeting of viral RNA in eukaryotic cells
-
Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. 2015. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 112(19):6164–6169.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.19
, pp. 6164-6169
-
-
Price, A.A.1
Sampson, T.R.2
Ratner, H.K.3
Grakoui, A.4
Weiss, D.S.5
-
118
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):173–183.
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 173-183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
-
119
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
-
121
-
-
0034837386
-
A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster
-
Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. 2001. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6):1114–1125.
-
(2001)
Genome Res
, vol.11
, Issue.6
, pp. 1114-1125
-
-
Reiter, L.T.1
Potocki, L.2
Chien, S.3
Gribskov, M.4
Bier, E.5
-
122
-
-
84919762182
-
Enhanced specificity and efficiency of the CRISPR-Cas9 system with optimized sgRNA parameters in Drosophila
-
Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y. 2014. Enhanced specificity and efficiency of the CRISPR-Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162.
-
(2014)
Cell Rep
, vol.9
, Issue.3
, pp. 1151-1162
-
-
Ren, X.1
Yang, Z.2
Xu, J.3
Sun, J.4
Mao, D.5
Hu, Y.6
-
123
-
-
84868118560
-
Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems
-
Richter C, Chang JT, Fineran PC. 2012. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4(10):2291–2311.
-
(2012)
Viruses
, vol.4
, Issue.10
, pp. 2291-2311
-
-
Richter, C.1
Chang, J.T.2
Fineran, P.C.3
-
124
-
-
0035895278
-
Genetic architecture of thermal adaptation in Escherichia coli
-
Riehle MM, Bennett AF, Long AD. 2001. Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98(2):525–530.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, Issue.2
, pp. 525-530
-
-
Riehle, M.M.1
Bennett, A.F.2
Long, A.D.3
-
126
-
-
84929855423
-
The therapeutic application of CRISPR-Cas9 technologies for HIV
-
Saayman S, Ali SA, Morris KV, Weinberg MS. 2015. The therapeutic application of CRISPR-Cas9 technologies for HIV. Expert Opin Biol Ther 15(6):819–830.
-
(2015)
Expert Opin Biol Ther
, vol.15
, Issue.6
, pp. 819-830
-
-
Saayman, S.1
Ali, S.A.2
Morris, K.V.3
Weinberg, M.S.4
-
127
-
-
84877669593
-
The basic principles of chimeric antigen receptor design
-
Sadelain M, Brentjens R, Riviere I. 2013. The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398.
-
(2013)
Cancer Discov
, vol.3
, pp. 388-398
-
-
Sadelain, M.1
Brentjens, R.2
Riviere, I.3
-
128
-
-
84933277263
-
Applications of the CRISPR-Cas9 system in cancer biology
-
Sánchez-Rivera FJ, Jacks T. 2015. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15(7):387–395.
-
(2015)
Nat Rev Cancer
, vol.15
, Issue.7
, pp. 387-395
-
-
Sánchez-Rivera, F.J.1
Jacks, T.2
-
129
-
-
80755145195
-
The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli
-
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 2011. The Streptococcus thermophilus CRISPR-Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282.
-
(2011)
Nucleic Acids Res
, vol.39
, Issue.21
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
130
-
-
34548497655
-
Human papillomavirus and cervical cancer
-
Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. 2007. Human papillomavirus and cervical cancer. Lancet 370(9590):890–907.
-
(2007)
Lancet
, vol.370
, Issue.9590
, pp. 890-907
-
-
Schiffman, M.1
Castle, P.E.2
Jeronimo, J.3
Rodriguez, A.C.4
Wacholder, S.5
-
131
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelsen, T.S.6
Heckl, D.7
Ebert, B.L.8
Root, D.E.9
Doench, J.G.10
Zhang, F.11
-
132
-
-
84997822099
-
Exploring the potential of genome editing CRISPR-Cas9 technology
-
Singh V, Braddick D, Dhar PK. 2017. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599:1–18.
-
(2017)
Gene
, vol.599
, pp. 1-18
-
-
Singh, V.1
Braddick, D.2
Dhar, P.K.3
-
133
-
-
79953779608
-
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR-Cas immune system
-
Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 2011. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR-Cas immune system. EMBO J 30:1335–1342.
-
(2011)
EMBO J
, vol.30
, pp. 1335-1342
-
-
Sinkunas, T.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
134
-
-
84940787011
-
Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate
-
Srikanth P, Han K, Callahan DG. 2015. Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Rep 12:1414–1429.
-
(2015)
Cell Rep
, vol.12
, pp. 1414-1429
-
-
Srikanth, P.1
Han, K.2
Callahan, D.G.3
-
135
-
-
85000819280
-
In vivo genome editing via CRISPR-Cas9 mediated homology-independent targeted integration
-
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nuñez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC. 2016. In vivo genome editing via CRISPR-Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149.
-
(2016)
Nature
, vol.540
, Issue.7631
, pp. 144-149
-
-
Suzuki, K.1
Tsunekawa, Y.2
Hernandez-Benitez, R.3
Wu, J.4
Zhu, J.5
Kim, E.J.6
Hatanaka, F.7
Yamamoto, M.8
Araoka, T.9
Li, Z.10
Kurita, M.11
Hishida, T.12
Li, M.13
Aizawa, E.14
Guo, S.15
Chen, S.16
Goebl, A.17
Soligalla, R.D.18
Qu, J.19
Jiang, T.20
Fu, X.21
Jafari, M.22
Esteban, C.R.23
Berggren, W.T.24
Lajara, J.25
Nuñez-Delicado, E.26
Guillen, P.27
Campistol, J.M.28
Matsuzaki, F.29
Liu, G.H.30
Magistretti, P.31
Zhang, K.32
Callaway, E.M.33
Zhang, K.34
Belmonte, J.C.35
more..
-
136
-
-
84926061715
-
In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
-
Swiech L, Heidenreich M, Banerjee A. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 102-106
-
-
Swiech, L.1
Heidenreich, M.2
Banerjee, A.3
-
137
-
-
84858179174
-
Role of CRISPR-cas system in the development of bacteriophage resistance
-
Szczepankowska A. 2012. Role of CRISPR-cas system in the development of bacteriophage resistance. Adv Virus Res 82:289–338.
-
(2012)
Adv Virus Res
, vol.82
, pp. 289-338
-
-
Szczepankowska, A.1
-
138
-
-
34447323568
-
Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases
-
Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T. 2007. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793.
-
(2007)
Nat Biotechnol
, vol.25
, Issue.7
, pp. 786-793
-
-
Szczepek, M.1
Brondani, V.2
Büchel, J.3
Serrano, L.4
Segal, D.J.5
Cathomen, T.6
-
139
-
-
84938537178
-
CRISPR-Cas9: A powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases
-
Tu Z, Yang W, Yan S, Guo X, Li XJ. 2015. CRISPR-Cas9: A powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener 10:35.
-
(2015)
Mol Neurodegener
, vol.10
, pp. 35
-
-
Tu, Z.1
Yang, W.2
Yan, S.3
Guo, X.4
Li, X.J.5
-
140
-
-
85016997705
-
CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells
-
Vanoli F, Tomishima M, Feng W, Lamribet K, Babin L, Brunet E, Jasin M. 2017. CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc Natl Acad Sci USA 114(14):3696–3701.
-
(2017)
Proc Natl Acad Sci USA
, vol.114
, Issue.14
, pp. 3696-3701
-
-
Vanoli, F.1
Tomishima, M.2
Feng, W.3
Lamribet, K.4
Babin, L.5
Brunet, E.6
Jasin, M.7
-
141
-
-
84960380460
-
CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape
-
Wang G, Zhao N, Berkhout B, Das AT. 2016b. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther 24:522–526.
-
(2016)
Mol Ther
, vol.24
, pp. 522-526
-
-
Wang, G.1
Zhao, N.2
Berkhout, B.3
Das, A.T.4
-
142
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR-Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR-Cas-mediated genome engineering. Cell 153:910–918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
-
143
-
-
84944382599
-
CRISPR-Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment
-
Wang P, Lin M, Pedrosa E. 2015. CRISPR-Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism 6:55.
-
(2015)
Mol Autism
, vol.6
, pp. 55
-
-
Wang, P.1
Lin, M.2
Pedrosa, E.3
-
144
-
-
84919904581
-
CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection
-
Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. 2014. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS ONE 9(12):e115987.
-
(2014)
PLoS ONE
, vol.9
, Issue.12
-
-
Wang, W.1
Ye, C.2
Liu, J.3
Zhang, D.4
Kimata, J.T.5
Zhou, P.6
-
145
-
-
84957592496
-
One-step generation of triple gene-targeted pigs using CRISPR-Cas9 system
-
Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J. 2016c. One-step generation of triple gene-targeted pigs using CRISPR-Cas9 system. Nat Publ Gr 6:20620.
-
(2016)
Nat Publ Gr
, vol.6
, pp. 20620
-
-
Wang, X.1
Cao, C.2
Huang, J.3
Yao, J.4
Hai, T.5
Zheng, Q.6
Wang, X.7
Zhang, H.8
Qin, G.9
Cheng, J.10
Wang, Y.11
Yuan, Z.12
Zhou, Q.13
Wang, H.14
Zhao, J.15
-
146
-
-
84962726170
-
CRISPR-Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape
-
Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg MA, Liang C. 2016a. CRISPR-Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15:481–489.
-
(2016)
Cell Rep
, vol.15
, pp. 481-489
-
-
Wang, Z.1
Pan, Q.2
Gendron, P.3
Zhu, W.4
Guo, F.5
Cen, S.6
Wainberg, M.A.7
Liang, C.8
-
147
-
-
84880140895
-
Of mice and monkeys: Using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders
-
Watson KK, Platt ML. 2012. Of mice and monkeys: Using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 4(1):21.
-
(2012)
J Neurodev Disord
, vol.4
, Issue.1
, pp. 21
-
-
Watson, K.K.1
Platt, M.L.2
-
148
-
-
84907219050
-
Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR-Cas9 and piggyBac
-
Xie F, Ye L, Chang JC, Beyer AI, Wang J. 2014. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR-Cas9 and piggyBac. Genome Res 24:1526–1533.
-
(2014)
Genome Res
, vol.24
, pp. 1526-1533
-
-
Xie, F.1
Ye, L.2
Chang, J.C.3
Beyer, A.I.4
Wang, J.5
-
149
-
-
84908190503
-
CRISPR-mediated direct mutation of cancer genes in the mouse liver
-
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384.
-
(2014)
Nature
, vol.514
, Issue.7522
, pp. 380-384
-
-
Xue, W.1
Chen, S.2
Yin, H.3
Tammela, T.4
Papagiannakopoulos, T.5
Joshi, N.S.6
Cai, W.7
Yang, G.8
Bronson, R.9
Crowley, D.G.10
Zhang, F.11
Anderson, D.G.12
Sharp, P.A.13
Jacks, T.14
-
150
-
-
84960863986
-
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
-
Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K, Batshaw ML, Wilson JM. 2016. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34(3):334–338.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.3
, pp. 334-338
-
-
Yang, Y.1
Wang, L.2
Bell, P.3
McMenamin, D.4
He, Z.5
White, J.6
Yu, H.7
Xu, C.8
Morizono, H.9
Musunuru, K.10
Batshaw, M.L.11
Wilson, J.M.12
-
151
-
-
84961794371
-
Multiple gene repression in cyanobacteria using CRISPRi
-
Yao L, Cengic I, Anfelt J, Hudson EP. 2016. Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5(3):207–212.
-
(2016)
ACS Synth Biol
, vol.5
, Issue.3
, pp. 207-212
-
-
Yao, L.1
Cengic, I.2
Anfelt, J.3
Hudson, E.P.4
-
152
-
-
85018762305
-
In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models
-
Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W. 2017. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 25(5):1168–1186.
-
(2017)
Mol Ther
, vol.25
, Issue.5
, pp. 1168-1186
-
-
Yin, C.1
Zhang, T.2
Qu, X.3
Zhang, Y.4
Putatunda, R.5
Xiao, X.6
Li, F.7
Xiao, W.8
Zhao, H.9
Dai, S.10
Qin, X.11
Mo, X.12
Young, W.B.13
Khalili, K.14
Hu, W.15
-
153
-
-
84902095353
-
Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
-
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.6
, pp. 551-553
-
-
Yin, H.1
Xue, W.2
Chen, S.3
Bogorad, R.L.4
Benedetti, E.5
Grompe, M.6
-
154
-
-
84931291929
-
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria
-
Yosef I, Manor M, Kiro R, Qimron U. 2015. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 112(23):7267–7272.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.23
, pp. 7267-7272
-
-
Yosef, I.1
Manor, M.2
Kiro, R.3
Qimron, U.4
-
155
-
-
84903189190
-
Human genes involved in hepatitis B virus infection
-
Zeng Z. 2014. Human genes involved in hepatitis B virus infection. World J Gastroenterol 20(24):7696–7706.
-
(2014)
World J Gastroenterol
, vol.20
, Issue.24
, pp. 7696-7706
-
-
Zeng, Z.1
-
156
-
-
84909588702
-
Individualized management of pregnant women with high hepatitis B virus DNA levels
-
Zhang Z, Chen C, Li Z, Wu YH, Xiao XM. 2014. Individualized management of pregnant women with high hepatitis B virus DNA levels. World J Gastroenterol 20(34):12056–12061.
-
(2014)
World J Gastroenterol
, vol.20
, Issue.34
, pp. 12056-12061
-
-
Zhang, Z.1
Chen, C.2
Li, Z.3
Wu, Y.H.4
Xiao, X.M.5
-
157
-
-
84929048246
-
Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus
-
Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY. 2015. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22(5):404–412.
-
(2015)
Gene Ther
, vol.22
, Issue.5
, pp. 404-412
-
-
Zhen, S.1
Hua, L.2
Liu, Y.H.3
Gao, L.C.4
Fu, J.5
Wan, D.Y.6
-
158
-
-
84928739868
-
The CRISPR-Cas9 system inactivates latent HIV-1 proviral DNA
-
Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA. 2015. The CRISPR-Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22.
-
(2015)
Retrovirology
, vol.12
, pp. 22
-
-
Zhu, W.1
Lei, R.2
Le Duff, Y.3
Li, J.4
Guo, F.5
Wainberg, M.A.6
-
159
-
-
84961288301
-
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
-
Zuris JA, Thompson DB, Shu Y. 2014. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80.
-
(2014)
Nat Biotechnol
, vol.33
, pp. 73-80
-
-
Zuris, J.A.1
Thompson, D.B.2
Shu, Y.3
|