메뉴 건너뛰기




Volumn 73, Issue , 2017, Pages 220-239

Learning from class-imbalanced data: Review of methods and applications

Author keywords

Data mining; Imbalanced data; Machine learning; Rare events

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DECISION MAKING; LEARNING SYSTEMS; MANAGEMENT SCIENCE;

EID: 85009165593     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2016.12.035     Document Type: Review
Times cited : (1851)

References (300)
  • 1
    • 68349154502 scopus 로고    scopus 로고
    • A comparison of fraud cues and classification methods for fake escrow website detection
    • Abbasi, A., Chen, H., A comparison of fraud cues and classification methods for fake escrow website detection. Information Technology and Management 10:2-3 (2009), 83–101.
    • (2009) Information Technology and Management , vol.10 , Issue.2-3 , pp. 83-101
    • Abbasi, A.1    Chen, H.2
  • 4
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • Alfaro, E., García, N., Gámez, M., Elizondo, D., Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems 45:1 (2008), 110–122.
    • (2008) Decision Support Systems , vol.45 , Issue.1 , pp. 110-122
    • Alfaro, E.1    García, N.2    Gámez, M.3    Elizondo, D.4
  • 5
    • 84962349341 scopus 로고    scopus 로고
    • Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data
    • Ali, S., Majid, A., Javed, S.G., Sattar, M., Can-CSC-GBE: Developing Cost-sensitive Classifier with Gentleboost Ensemble for breast cancer classification using protein amino acids and imbalanced data. Computers in biology and medicine 73 (2016), 38–46.
    • (2016) Computers in biology and medicine , vol.73 , pp. 38-46
    • Ali, S.1    Majid, A.2    Javed, S.G.3    Sattar, M.4
  • 6
    • 84867580242 scopus 로고    scopus 로고
    • DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets
    • Alibeigi, M., Hashemi, S., Hamzeh, A., DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets. Data & Knowledge Engineering 81 (2012), 67–103.
    • (2012) Data & Knowledge Engineering , vol.81 , pp. 67-103
    • Alibeigi, M.1    Hashemi, S.2    Hamzeh, A.3
  • 7
    • 84915749948 scopus 로고    scopus 로고
    • A proposal for evolutionary fuzzy systems using feature weighting: Dealing with overlapping in imbalanced datasets
    • Alshomrani, S., Bawakid, A., Shim, S.-O., Fernández, A., Herrera, F., A proposal for evolutionary fuzzy systems using feature weighting: Dealing with overlapping in imbalanced datasets. Knowledge-Based Systems 73 (2015), 1–17.
    • (2015) Knowledge-Based Systems , vol.73 , pp. 1-17
    • Alshomrani, S.1    Bawakid, A.2    Shim, S.-O.3    Fernández, A.4    Herrera, F.5
  • 9
    • 78449268828 scopus 로고    scopus 로고
    • An approach for classification of highly imbalanced data using weighting and undersampling
    • Anand, A., Pugalenthi, G., Fogel, G.B., Suganthan, P., An approach for classification of highly imbalanced data using weighting and undersampling. Amino acids 39:5 (2010), 1385–1391.
    • (2010) Amino acids , vol.39 , Issue.5 , pp. 1385-1391
    • Anand, A.1    Pugalenthi, G.2    Fogel, G.B.3    Suganthan, P.4
  • 10
    • 82355191259 scopus 로고    scopus 로고
    • Governing events and life:‘Emergency'in UK Civil Contingencies
    • Anderson, B., Adey, P., Governing events and life:‘Emergency'in UK Civil Contingencies. Political Geography 31:1 (2012), 24–33.
    • (2012) Political Geography , vol.31 , Issue.1 , pp. 24-33
    • Anderson, B.1    Adey, P.2
  • 11
    • 85009220341 scopus 로고    scopus 로고
    • Classifying imbalanced data in distance-based feature space
    • Ando, S., Classifying imbalanced data in distance-based feature space. Knowledge and Information Systems, 2015, 1–24.
    • (2015) Knowledge and Information Systems , pp. 1-24
    • Ando, S.1
  • 12
    • 84878492833 scopus 로고    scopus 로고
    • Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers
    • Ashkezari, A.D., Ma, H., Saha, T.K., Ekanayake, C., Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers. Dielectrics and Electrical Insulation, IEEE Transactions on 20:3 (2013), 965–973.
    • (2013) Dielectrics and Electrical Insulation, IEEE Transactions on , vol.20 , Issue.3 , pp. 965-973
    • Ashkezari, A.D.1    Ma, H.2    Saha, T.K.3    Ekanayake, C.4
  • 14
    • 84959444758 scopus 로고    scopus 로고
    • Polyp Detection via Imbalanced Learning and Discriminative Feature Learning
    • Bae, S.-H., Yoon, K.-J., Polyp Detection via Imbalanced Learning and Discriminative Feature Learning. Medical Imaging, IEEE Transactions on 34:11 (2015), 2379–2393.
    • (2015) Medical Imaging, IEEE Transactions on , vol.34 , Issue.11 , pp. 2379-2393
    • Bae, S.-H.1    Yoon, K.-J.2
  • 18
    • 84946491209 scopus 로고    scopus 로고
    • Boosted Near-miss Under-sampling on SVM ensembles for concept detection in large-scale imbalanced datasets
    • Bao, L., Juan, C., Li, J., Zhang, Y., Boosted Near-miss Under-sampling on SVM ensembles for concept detection in large-scale imbalanced datasets. Neurocomputing 172 (2016), 198–206.
    • (2016) Neurocomputing , vol.172 , pp. 198-206
    • Bao, L.1    Juan, C.2    Li, J.3    Zhang, Y.4
  • 19
    • 84921689324 scopus 로고    scopus 로고
    • Classifying imbalanced data sets using similarity based hierarchical decomposition
    • Beyan, C., Fisher, R., Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recognition 48:5 (2015), 1653–1672.
    • (2015) Pattern Recognition , vol.48 , Issue.5 , pp. 1653-1672
    • Beyan, C.1    Fisher, R.2
  • 20
    • 84875125127 scopus 로고    scopus 로고
    • SMOTE for high-dimensional class-imbalanced data
    • Blagus, R., Lusa, L., SMOTE for high-dimensional class-imbalanced data. BMC bioinformatics 14:1 (2013), 1–16.
    • (2013) BMC bioinformatics , vol.14 , Issue.1 , pp. 1-16
    • Blagus, R.1    Lusa, L.2
  • 26
    • 38349154577 scopus 로고    scopus 로고
    • Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images
    • Brekke, C., Solberg, A.H., Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images. Geoscience and Remote Sensing Letters, IEEE 5:1 (2008), 65–69.
    • (2008) Geoscience and Remote Sensing Letters, IEEE , vol.5 , Issue.1 , pp. 65-69
    • Brekke, C.1    Solberg, A.H.2
  • 28
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown, I., Mues, C., An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications 39:3 (2012), 3446–3453.
    • (2012) Expert Systems with Applications , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 30
    • 84913530791 scopus 로고    scopus 로고
    • A parsimonious mixture of Gaussian trees model for oversampling in imbalanced and multimodal time-series classification
    • Cao, H., Tan, V.Y., Pang, J.Z., A parsimonious mixture of Gaussian trees model for oversampling in imbalanced and multimodal time-series classification. Neural Networks and Learning Systems, IEEE Transactions on 25:12 (2014), 2226–2239.
    • (2014) Neural Networks and Learning Systems, IEEE Transactions on , vol.25 , Issue.12 , pp. 2226-2239
    • Cao, H.1    Tan, V.Y.2    Pang, J.Z.3
  • 31
    • 0036120047 scopus 로고    scopus 로고
    • Projective ART for clustering data sets in high dimensional spaces
    • Cao, Y., Wu, J., Projective ART for clustering data sets in high dimensional spaces. Neural Networks 15:1 (2002), 105–120.
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 105-120
    • Cao, Y.1    Wu, J.2
  • 33
    • 84876114113 scopus 로고    scopus 로고
    • Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data
    • Castro, C.L., Braga, A.P., Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. Neural Networks and Learning Systems, IEEE Transactions on 24:6 (2013), 888–899.
    • (2013) Neural Networks and Learning Systems, IEEE Transactions on , vol.24 , Issue.6 , pp. 888-899
    • Castro, C.L.1    Braga, A.P.2
  • 34
    • 84897914291 scopus 로고    scopus 로고
    • A method for resampling imbalanced datasets in binary classification tasks for real-world problems
    • Cateni, S., Colla, V., Vannucci, M., A method for resampling imbalanced datasets in binary classification tasks for real-world problems. Neurocomputing 135 (2014), 32–41.
    • (2014) Neurocomputing , vol.135 , pp. 32-41
    • Cateni, S.1    Colla, V.2    Vannucci, M.3
  • 39
    • 77957793322 scopus 로고    scopus 로고
    • RAMOBoost: ranked minority oversampling in boosting
    • Chen, S., He, H., Garcia, E.A., RAMOBoost: ranked minority oversampling in boosting. Neural Networks, IEEE Transactions on 21:10 (2010), 1624–1642.
    • (2010) Neural Networks, IEEE Transactions on , vol.21 , Issue.10 , pp. 1624-1642
    • Chen, S.1    He, H.2    Garcia, E.A.3
  • 41
    • 84962706177 scopus 로고    scopus 로고
    • An empirical study of a hybrid imbalanced-class DT-RST classification procedure to elucidate therapeutic effects in uremia patients
    • Chen, Y.-S., An empirical study of a hybrid imbalanced-class DT-RST classification procedure to elucidate therapeutic effects in uremia patients. Medical & biological engineering & computing 54:6 (2016), 983–1001.
    • (2016) Medical & biological engineering & computing , vol.54 , Issue.6 , pp. 983-1001
    • Chen, Y.-S.1
  • 42
    • 84864609860 scopus 로고    scopus 로고
    • A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
    • Chen, Z.-Y., Fan, Z.-P., Sun, M., A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. European Journal of Operational Research 223:2 (2012), 461–472.
    • (2012) European Journal of Operational Research , vol.223 , Issue.2 , pp. 461-472
    • Chen, Z.-Y.1    Fan, Z.-P.2    Sun, M.3
  • 43
    • 84976867190 scopus 로고    scopus 로고
    • Cost-Sensitive Large margin Distribution Machine for classification of imbalanced data
    • Cheng, F., Zhang, J., Wen, C., Cost-Sensitive Large margin Distribution Machine for classification of imbalanced data. Pattern Recognition Letters 80 (2016), 107–112.
    • (2016) Pattern Recognition Letters , vol.80 , pp. 107-112
    • Cheng, F.1    Zhang, J.2    Wen, C.3
  • 44
    • 84961301846 scopus 로고    scopus 로고
    • Affective detection based on an imbalanced fuzzy support vector machine
    • Cheng, J., Liu, G.-Y., Affective detection based on an imbalanced fuzzy support vector machine. Biomedical Signal Processing and Control 18 (2015), 118–126.
    • (2015) Biomedical Signal Processing and Control , vol.18 , pp. 118-126
    • Cheng, J.1    Liu, G.-Y.2
  • 46
    • 84946488670 scopus 로고    scopus 로고
    • Integrating new data balancing technique with committee networks for imbalanced data: GRSOM approach
    • Chetchotsak, D., Pattanapairoj, S., Arnonkijpanich, B., Integrating new data balancing technique with committee networks for imbalanced data: GRSOM approach. Cognitive neurodynamics 9:6 (2015), 627–638.
    • (2015) Cognitive neurodynamics , vol.9 , Issue.6 , pp. 627-638
    • Chetchotsak, D.1    Pattanapairoj, S.2    Arnonkijpanich, B.3
  • 48
    • 84936742182 scopus 로고    scopus 로고
    • Parallel selective sampling method for imbalanced and large data classification
    • D'Addabbo, A., Maglietta, R., Parallel selective sampling method for imbalanced and large data classification. Pattern Recognition Letters 62 (2015), 61–67.
    • (2015) Pattern Recognition Letters , vol.62 , pp. 61-67
    • D'Addabbo, A.1    Maglietta, R.2
  • 49
  • 50
    • 84930944392 scopus 로고    scopus 로고
    • Imbalanced Protein Data Classification Using Ensemble FTM-SVM
    • Dai, H.-L., Imbalanced Protein Data Classification Using Ensemble FTM-SVM. NanoBioscience, IEEE Transactions on 14:4 (2015), 350–359.
    • (2015) NanoBioscience, IEEE Transactions on , vol.14 , Issue.4 , pp. 350-359
    • Dai, H.-L.1
  • 53
    • 84937927040 scopus 로고    scopus 로고
    • Near-Bayesian Support Vector Machines for imbalanced data classification with equal or unequal misclassification costs
    • Datta, S., Das, S., Near-Bayesian Support Vector Machines for imbalanced data classification with equal or unequal misclassification costs. Neural Networks 70 (2015), 39–52.
    • (2015) Neural Networks , vol.70 , pp. 39-52
    • Datta, S.1    Das, S.2
  • 55
    • 84906873734 scopus 로고    scopus 로고
    • On the use of MapReduce for imbalanced big data using random forest
    • del Río, S., López, V., Benítez, J.M., Herrera, F., On the use of MapReduce for imbalanced big data using random forest. Information Sciences 285 (2014), 112–137.
    • (2014) Information Sciences , vol.285 , pp. 112-137
    • del Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 59
    • 84883308045 scopus 로고    scopus 로고
    • Incremental learning of concept drift from streaming imbalanced data
    • Ditzler, G., Polikar, R., Incremental learning of concept drift from streaming imbalanced data. Knowledge and Data Engineering, IEEE Transactions on 25:10 (2013), 2283–2301.
    • (2013) Knowledge and Data Engineering, IEEE Transactions on , vol.25 , Issue.10 , pp. 2283-2301
    • Ditzler, G.1    Polikar, R.2
  • 60
    • 84960449255 scopus 로고    scopus 로고
    • Semi-supervised classification method through oversampling and common hidden space
    • Dong, A., Chung, F.-l., Wang, S., Semi-supervised classification method through oversampling and common hidden space. Information Sciences 349 (2016), 216–228.
    • (2016) Information Sciences , vol.349 , pp. 216-228
    • Dong, A.1    Chung, F.-L.2    Wang, S.3
  • 62
    • 84980392384 scopus 로고    scopus 로고
    • A new support vector data description method for machinery fault diagnosis with unbalanced datasets
    • Duan, L., Xie, M., Bai, T., Wang, J., A new support vector data description method for machinery fault diagnosis with unbalanced datasets. Expert Systems with Applications 64 (2016), 239–246.
    • (2016) Expert Systems with Applications , vol.64 , pp. 239-246
    • Duan, L.1    Xie, M.2    Bai, T.3    Wang, J.4
  • 64
    • 84890913329 scopus 로고    scopus 로고
    • Analysis of sampling techniques for imbalanced data: An n= 648 ADNI study
    • Dubey, R., Zhou, J., Wang, Y., Thompson, P.M., Ye, J., A. s. D. N. Initiative. Analysis of sampling techniques for imbalanced data: An n= 648 ADNI study. NeuroImage 87 (2014), 220–241.
    • (2014) NeuroImage , vol.87 , pp. 220-241
    • Dubey, R.1    Zhou, J.2    Wang, Y.3    Thompson, P.M.4    Ye, J.5
  • 66
    • 84867325601 scopus 로고    scopus 로고
    • D-Confidence: an active learning strategy to reduce label disclosure complexity in the presence of imbalanced class distributions
    • Escudeiro, N.F., Jorge, A.M., D-Confidence: an active learning strategy to reduce label disclosure complexity in the presence of imbalanced class distributions. Journal of the Brazilian Computer Society 18:4 (2012), 311–330.
    • (2012) Journal of the Brazilian Computer Society , vol.18 , Issue.4 , pp. 311-330
    • Escudeiro, N.F.1    Jorge, A.M.2
  • 69
    • 84991383987 scopus 로고    scopus 로고
    • Probability Model Selection and Parameter Evolutionary Estimation for Clustering Imbalanced Data without Sampling
    • Fan, J., Niu, Z., Liang, Y., Zhao, Z., Probability Model Selection and Parameter Evolutionary Estimation for Clustering Imbalanced Data without Sampling. Neurocomputing, 2016.
    • (2016) Neurocomputing
    • Fan, J.1    Niu, Z.2    Liang, Y.3    Zhao, Z.4
  • 70
    • 78649651248 scopus 로고    scopus 로고
    • A data mining framework for detecting subscription fraud in telecommunication
    • Farvaresh, H., Sepehri, M.M., A data mining framework for detecting subscription fraud in telecommunication. Engineering Applications of Artificial Intelligence 24:1 (2011), 182–194.
    • (2011) Engineering Applications of Artificial Intelligence , vol.24 , Issue.1 , pp. 182-194
    • Farvaresh, H.1    Sepehri, M.M.2
  • 71
    • 77954871595 scopus 로고    scopus 로고
    • Multi-class imbalanced data-sets with linguistic fuzzy rule based classification systems based on pairwise learning
    • Springer
    • Fernández, A., Del Jesus, M.J., Herrera, F., Multi-class imbalanced data-sets with linguistic fuzzy rule based classification systems based on pairwise learning. Computational Intelligence for Knowledge-Based Systems Design, 2010, Springer, 89–98.
    • (2010) Computational Intelligence for Knowledge-Based Systems Design , pp. 89-98
    • Fernández, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 72
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • Fernández, A., del Jesus, M.J., Herrera, F., On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets. Information Sciences 180:8 (2010), 1268–1291.
    • (2010) Information Sciences , vol.180 , Issue.8 , pp. 1268-1291
    • Fernández, A.1    del Jesus, M.J.2    Herrera, F.3
  • 73
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowledge-Based Systems 42 (2013), 97–110.
    • (2013) Knowledge-Based Systems , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 76
    • 84875251066 scopus 로고    scopus 로고
    • A neural network algorithm for semi-supervised node label learning from unbalanced data
    • Frasca, M., Bertoni, A., Re, M., Valentini, G., A neural network algorithm for semi-supervised node label learning from unbalanced data. Neural Networks 43 (2013), 84–98.
    • (2013) Neural Networks , vol.43 , pp. 84-98
    • Frasca, M.1    Bertoni, A.2    Re, M.3    Valentini, G.4
  • 77
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund, Y., Schapire, R.E., Experiments with a new boosting algorithm. ICML, 1996.
    • (1996) ICML
    • Freund, Y.1    Schapire, R.E.2
  • 78
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E., A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55:1 (1997), 119–139.
    • (1997) Journal of computer and system sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 79
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J.H., Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001, 1189–1232.
    • (2001) Annals of statistics , pp. 1189-1232
    • Friedman, J.H.1
  • 80
    • 84881548984 scopus 로고    scopus 로고
    • Certainty-based active learning for sampling imbalanced datasets
    • Fu, J., Lee, S., Certainty-based active learning for sampling imbalanced datasets. Neurocomputing 119 (2013), 350–358.
    • (2013) Neurocomputing , vol.119 , pp. 350-358
    • Fu, J.1    Lee, S.2
  • 82
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • Galar, M., Fernández, A., Barrenechea, E., Herrera, F., EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognition 46:12 (2013), 3460–3471.
    • (2013) Pattern Recognition , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 83
    • 84914167532 scopus 로고    scopus 로고
    • Construction of neurofuzzy models for imbalanced data classification
    • Gao, M., Hong, X., Harris, C.J., Construction of neurofuzzy models for imbalanced data classification. Fuzzy Systems, IEEE Transactions on 22:6 (2014), 1472–1488.
    • (2014) Fuzzy Systems, IEEE Transactions on , vol.22 , Issue.6 , pp. 1472-1488
    • Gao, M.1    Hong, X.2    Harris, C.J.3
  • 84
    • 84955189241 scopus 로고    scopus 로고
    • Adaptive weighted imbalance learning with application to abnormal activity recognition
    • Gao, X., Chen, Z., Tang, S., Zhang, Y., Li, J., Adaptive weighted imbalance learning with application to abnormal activity recognition. Neurocomputing 173 (2016), 1927–1935.
    • (2016) Neurocomputing , vol.173 , pp. 1927-1935
    • Gao, X.1    Chen, Z.2    Tang, S.3    Zhang, Y.4    Li, J.5
  • 87
    • 85009229626 scopus 로고    scopus 로고
    • Boosting for class-imbalanced datasets using genetically evolved supervised non-linear projections
    • García-Pedrajas, N., García-Osorio, C., Boosting for class-imbalanced datasets using genetically evolved supervised non-linear projections. Progress in Artificial Intelligence 2:1 (2013), 29–44.
    • (2013) Progress in Artificial Intelligence , vol.2 , Issue.1 , pp. 29-44
    • García-Pedrajas, N.1    García-Osorio, C.2
  • 88
    • 84884203574 scopus 로고    scopus 로고
    • Ensemble of online neural networks for non-stationary and imbalanced data streams
    • Ghazikhani, A., Monsefi, R., Yazdi, H.S., Ensemble of online neural networks for non-stationary and imbalanced data streams. Neurocomputing 122 (2013), 535–544.
    • (2013) Neurocomputing , vol.122 , pp. 535-544
    • Ghazikhani, A.1    Monsefi, R.2    Yazdi, H.S.3
  • 89
    • 84884819180 scopus 로고    scopus 로고
    • Online cost-sensitive neural network classifiers for non-stationary and imbalanced data streams
    • Ghazikhani, A., Monsefi, R., Yazdi, H.S., Online cost-sensitive neural network classifiers for non-stationary and imbalanced data streams. Neural Computing and Applications 23:5 (2013), 1283–1295.
    • (2013) Neural Computing and Applications , vol.23 , Issue.5 , pp. 1283-1295
    • Ghazikhani, A.1    Monsefi, R.2    Yazdi, H.S.3
  • 91
    • 84856534206 scopus 로고    scopus 로고
    • A Kolmogorov–Smirnov statistic based segmentation approach to learning from imbalanced datasets: With application in property refinance prediction
    • Gong, R., Huang, S.H., A Kolmogorov–Smirnov statistic based segmentation approach to learning from imbalanced datasets: With application in property refinance prediction. Expert Systems with Applications 39:6 (2012), 6192–6200.
    • (2012) Expert Systems with Applications , vol.39 , Issue.6 , pp. 6192-6200
    • Gong, R.1    Huang, S.H.2
  • 92
    • 84938785593 scopus 로고    scopus 로고
    • ELECTRE: A comprehensive literature review on methodologies and applications
    • Govindan, K., Jepsen, M.B., ELECTRE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research 250:1 (2016), 1–29.
    • (2016) European Journal of Operational Research , vol.250 , Issue.1 , pp. 1-29
    • Govindan, K.1    Jepsen, M.B.2
  • 98
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: a coherent alternative to the area under the ROC curve
    • Hand, D.J., Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine learning 77:1 (2009), 103–123.
    • (2009) Machine learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 99
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand, D.J., Till, R.J., A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine learning 45:2 (2001), 171–186.
    • (2001) Machine learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 100
    • 84890130251 scopus 로고    scopus 로고
    • An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced PubChem BioAssay data
    • Hao, M., Wang, Y., Bryant, S.H., An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced PubChem BioAssay data. Analytica chimica acta 806 (2014), 117–127.
    • (2014) Analytica chimica acta , vol.806 , pp. 117-127
    • Hao, M.1    Wang, Y.2    Bryant, S.H.3
  • 101
    • 85009225356 scopus 로고    scopus 로고
    • Dimension reduction vs. variable selection. Applied Parallel Computing
    • Springer
    • Hartmann, W.M., Dimension reduction vs. variable selection. Applied Parallel Computing. State of the Art in Scientific Computing, 2004, Springer, 931–938.
    • (2004) State of the Art in Scientific Computing , pp. 931-938
    • Hartmann, W.M.1
  • 105
    • 84973558192 scopus 로고    scopus 로고
    • A Study of Domain Adaptation Classifiers Derived From Logistic Regression for the Task of Splice Site Prediction
    • Herndon, N., Caragea, D., A Study of Domain Adaptation Classifiers Derived From Logistic Regression for the Task of Splice Site Prediction. IEEE transactions on nanobioscience 15:2 (2016), 75–83.
    • (2016) IEEE transactions on nanobioscience , vol.15 , Issue.2 , pp. 75-83
    • Herndon, N.1    Caragea, D.2
  • 106
    • 51149102669 scopus 로고    scopus 로고
    • An application of supervised and unsupervised learning approaches to telecommunications fraud detection
    • Hilas, C.S., Mastorocostas, P.A., An application of supervised and unsupervised learning approaches to telecommunications fraud detection. Knowledge-Based Systems 21:7 (2008), 721–726.
    • (2008) Knowledge-Based Systems , vol.21 , Issue.7 , pp. 721-726
    • Hilas, C.S.1    Mastorocostas, P.A.2
  • 107
    • 85011285088 scopus 로고    scopus 로고
    • Learning from streaming data with concept drift and imbalance: an overview
    • Hoens, T.R., Polikar, R., Chawla, N.V., Learning from streaming data with concept drift and imbalance: an overview. Progress in Artificial Intelligence 1:1 (2012), 89–101.
    • (2012) Progress in Artificial Intelligence , vol.1 , Issue.1 , pp. 89-101
    • Hoens, T.R.1    Polikar, R.2    Chawla, N.V.3
  • 108
    • 33846046907 scopus 로고    scopus 로고
    • A kernel-based two-class classifier for imbalanced data sets
    • Hong, X., Chen, S., Harris, C.J., A kernel-based two-class classifier for imbalanced data sets. Neural Networks, IEEE Transactions on 18:1 (2007), 28–41.
    • (2007) Neural Networks, IEEE Transactions on , vol.18 , Issue.1 , pp. 28-41
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 110
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., Extreme learning machine: theory and applications. Neurocomputing 70:1 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 113
    • 84934921404 scopus 로고    scopus 로고
    • Conception of a dominance-based multi-objective local search in the context of classification rule mining in large and imbalanced data sets
    • Jacques, J., Taillard, J., Delerue, D., Dhaenens, C., Jourdan, L., Conception of a dominance-based multi-objective local search in the context of classification rule mining in large and imbalanced data sets. Applied Soft Computing 34 (2015), 705–720.
    • (2015) Applied Soft Computing , vol.34 , pp. 705-720
    • Jacques, J.1    Taillard, J.2    Delerue, D.3    Dhaenens, C.4    Jourdan, L.5
  • 115
    • 84977856307 scopus 로고    scopus 로고
    • A new sampling method for classifying imbalanced data based on support vector machine ensemble
    • Jian, C., Gao, J., Ao, Y., A new sampling method for classifying imbalanced data based on support vector machine ensemble. Neurocomputing 193 (2016), 115–122.
    • (2016) Neurocomputing , vol.193 , pp. 115-122
    • Jian, C.1    Gao, J.2    Ao, Y.3
  • 116
    • 84896396511 scopus 로고    scopus 로고
    • Weighted local and global regressive mapping: A new manifold learning method for machine fault classification
    • Jin, X., Yuan, F., Chow, T.W., Zhao, M., Weighted local and global regressive mapping: A new manifold learning method for machine fault classification. Engineering Applications of Artificial Intelligence 30 (2014), 118–128.
    • (2014) Engineering Applications of Artificial Intelligence , vol.30 , pp. 118-128
    • Jin, X.1    Yuan, F.2    Chow, T.W.3    Zhao, M.4
  • 118
    • 82255175535 scopus 로고    scopus 로고
    • Classification cost: An empirical comparison among traditional classifier, Cost-Sensitive Classifier, and MetaCost
    • Kim, J., Choi, K., Kim, G., Suh, Y., Classification cost: An empirical comparison among traditional classifier, Cost-Sensitive Classifier, and MetaCost. Expert Systems with Applications 39:4 (2012), 4013–4019.
    • (2012) Expert Systems with Applications , vol.39 , Issue.4 , pp. 4013-4019
    • Kim, J.1    Choi, K.2    Kim, G.3    Suh, Y.4
  • 119
    • 84991492567 scopus 로고    scopus 로고
    • Ordinal Classification of Imbalanced Data with Application in Emergency and Disaster Information Services
    • Kim, S., Kim, H., Namkoong, Y., Ordinal Classification of Imbalanced Data with Application in Emergency and Disaster Information Services. IEEE Intelligent Systems 31:5 (2016), 50–56.
    • (2016) IEEE Intelligent Systems , vol.31 , Issue.5 , pp. 50-56
    • Kim, S.1    Kim, H.2    Namkoong, Y.3
  • 120
    • 4544259831 scopus 로고    scopus 로고
    • Logistic regression in rare events data
    • King, G., Zeng, L., Logistic regression in rare events data. Political analysis 9:2 (2001), 137–163.
    • (2001) Political analysis , vol.9 , Issue.2 , pp. 137-163
    • King, G.1    Zeng, L.2
  • 121
    • 84925601568 scopus 로고    scopus 로고
    • A fraud detection approach with data mining in health insurance
    • Kirlidog, M., Asuk, C., A fraud detection approach with data mining in health insurance. Procedia-Social and Behavioral Sciences 62 (2012), 989–994.
    • (2012) Procedia-Social and Behavioral Sciences , vol.62 , pp. 989-994
    • Kirlidog, M.1    Asuk, C.2
  • 122
    • 84946594569 scopus 로고    scopus 로고
    • Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy
    • Krawczyk, B., Galar, M., Jeleń, Ł., Herrera, F., Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Applied Soft Computing 38 (2016), 714–726.
    • (2016) Applied Soft Computing , vol.38 , pp. 714-726
    • Krawczyk, B.1    Galar, M.2    Jeleń, Ł.3    Herrera, F.4
  • 124
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • Krawczyk, B., Woźniak, M., Schaefer, G., Cost-sensitive decision tree ensembles for effective imbalanced classification. Applied Soft Computing 14 (2014), 554–562.
    • (2014) Applied Soft Computing , vol.14 , pp. 554-562
    • Krawczyk, B.1    Woźniak, M.2    Schaefer, G.3
  • 125
    • 77951204543 scopus 로고    scopus 로고
    • A hybrid model for plastic card fraud detection systems
    • Krivko, M., A hybrid model for plastic card fraud detection systems. Expert Systems with Applications 37:8 (2010), 6070–6076.
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 6070-6076
    • Krivko, M.1
  • 127
    • 84938791486 scopus 로고    scopus 로고
    • An Incremental Clustering-Based Fault Detection Algorithm for Class-Imbalanced Process Data
    • Kwak, J., Lee, T., Kim, C.O., An Incremental Clustering-Based Fault Detection Algorithm for Class-Imbalanced Process Data. Semiconductor Manufacturing, IEEE Transactions on 28:3 (2015), 318–328.
    • (2015) Semiconductor Manufacturing, IEEE Transactions on , vol.28 , Issue.3 , pp. 318-328
    • Kwak, J.1    Lee, T.2    Kim, C.O.3
  • 128
    • 70350180387 scopus 로고    scopus 로고
    • A joint investigation of misclassification treatments and imbalanced datasets on neural network performance
    • Lan, J.-s., Berardi, V.L., Patuwo, B.E., Hu, M., A joint investigation of misclassification treatments and imbalanced datasets on neural network performance. Neural Computing and Applications 18:7 (2009), 689–706.
    • (2009) Neural Computing and Applications , vol.18 , Issue.7 , pp. 689-706
    • Lan, J.-S.1    Berardi, V.L.2    Patuwo, B.E.3    Hu, M.4
  • 129
    • 84865482239 scopus 로고    scopus 로고
    • On developing robust models for favourability analysis: Model choice, feature sets and imbalanced data
    • Lane, P.C., Clarke, D., Hender, P., On developing robust models for favourability analysis: Model choice, feature sets and imbalanced data. Decision Support Systems 53:4 (2012), 712–718.
    • (2012) Decision Support Systems , vol.53 , Issue.4 , pp. 712-718
    • Lane, P.C.1    Clarke, D.2    Hender, P.3
  • 131
    • 67349201687 scopus 로고    scopus 로고
    • A reference model for customer-centric data mining with support vector machines
    • Lessmann, S., Voß, S., A reference model for customer-centric data mining with support vector machines. European Journal of Operational Research 199:2 (2009), 520–530.
    • (2009) European Journal of Operational Research , vol.199 , Issue.2 , pp. 520-530
    • Lessmann, S.1    Voß, S.2
  • 132
    • 84963553919 scopus 로고    scopus 로고
    • Financial fraud detection by using Grammar-based multi-objective genetic programming with ensemble learning
    • IEEE
    • Li, H., Wong, M.-L., Financial fraud detection by using Grammar-based multi-objective genetic programming with ensemble learning. Evolutionary Computation (CEC), 2015 IEEE Congress on, 2015, IEEE.
    • (2015) Evolutionary Computation (CEC), 2015 IEEE Congress on
    • Li, H.1    Wong, M.-L.2
  • 133
    • 85009198947 scopus 로고    scopus 로고
    • Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms
    • Li, J., Fong, S., Mohammed, S., Fiaidhi, J., Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms. The Journal of Supercomputing, 2015, 1–21.
    • (2015) The Journal of Supercomputing , pp. 1-21
    • Li, J.1    Fong, S.2    Mohammed, S.3    Fiaidhi, J.4
  • 135
    • 84893671177 scopus 로고    scopus 로고
    • Boosting weighted ELM for imbalanced learning
    • Li, K., Kong, X., Lu, Z., Wenyin, L., Yin, J., Boosting weighted ELM for imbalanced learning. Neurocomputing 128 (2014), 15–21.
    • (2014) Neurocomputing , vol.128 , pp. 15-21
    • Li, K.1    Kong, X.2    Lu, Z.3    Wenyin, L.4    Yin, J.5
  • 137
    • 84878011207 scopus 로고    scopus 로고
    • Constructing support vector machine ensemble with segmentation for imbalanced datasets
    • Li, Q., Yang, B., Li, Y., Deng, N., Jing, L., Constructing support vector machine ensemble with segmentation for imbalanced datasets. Neural Computing and Applications 22:1 (2013), 249–256.
    • (2013) Neural Computing and Applications , vol.22 , Issue.1 , pp. 249-256
    • Li, Q.1    Yang, B.2    Li, Y.3    Deng, N.4    Jing, L.5
  • 138
    • 84971647404 scopus 로고    scopus 로고
    • An Imbalanced Learning based MDR-TB Early Warning System
    • Li, S., Tang, B., He, H., An Imbalanced Learning based MDR-TB Early Warning System. Journal of medical systems 40:7 (2016), 1–9.
    • (2016) Journal of medical systems , vol.40 , Issue.7 , pp. 1-9
    • Li, S.1    Tang, B.2    He, H.3
  • 140
    • 84953638515 scopus 로고    scopus 로고
    • Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data
    • Li, Y., Guo, H., Xiao, L., Yanan, L., Jinling, L., Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowledge-Based Systems 94 (2016), 88–104.
    • (2016) Knowledge-Based Systems , vol.94 , pp. 88-104
    • Li, Y.1    Guo, H.2    Xiao, L.3    Yanan, L.4    Jinling, L.5
  • 141
    • 84864686700 scopus 로고    scopus 로고
    • The-Means-Type Algorithms Versus Imbalanced Data Distributions
    • Liang, J., Bai, L., Dang, C., Cao, F., The-Means-Type Algorithms Versus Imbalanced Data Distributions. Fuzzy Systems, IEEE Transactions on 20:4 (2012), 728–745.
    • (2012) Fuzzy Systems, IEEE Transactions on , vol.20 , Issue.4 , pp. 728-745
    • Liang, J.1    Bai, L.2    Dang, C.3    Cao, F.4
  • 142
    • 44949084506 scopus 로고    scopus 로고
    • Classification of weld flaws with imbalanced class data
    • Liao, T.W., Classification of weld flaws with imbalanced class data. Expert Systems with Applications 35:3 (2008), 1041–1052.
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1041-1052
    • Liao, T.W.1
  • 144
    • 84875898112 scopus 로고    scopus 로고
    • Dynamic sampling approach to training neural networks for multiclass imbalance classification
    • Lin, M., Tang, K., Yao, X., Dynamic sampling approach to training neural networks for multiclass imbalance classification. Neural Networks and Learning Systems, IEEE Transactions on 24:4 (2013), 647–660.
    • (2013) Neural Networks and Learning Systems, IEEE Transactions on , vol.24 , Issue.4 , pp. 647-660
    • Lin, M.1    Tang, K.2    Yao, X.3
  • 145
    • 84871925649 scopus 로고    scopus 로고
    • Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction
    • Lin, S.-J., Chang, C., Hsu, M.-F., Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction. Knowledge-Based Systems 39 (2013), 214–223.
    • (2013) Knowledge-Based Systems , vol.39 , pp. 214-223
    • Lin, S.-J.1    Chang, C.2    Hsu, M.-F.3
  • 148
    • 84911445875 scopus 로고    scopus 로고
    • Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
    • López, V., del Río, S., Benítez, J.M., Herrera, F., Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets and Systems 258 (2015), 5–38.
    • (2015) Fuzzy Sets and Systems , vol.258 , pp. 5-38
    • López, V.1    del Río, S.2    Benítez, J.M.3    Herrera, F.4
  • 149
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • López, V., Fernández, A., García, S., Palade, V., Herrera, F., An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences 250 (2013), 113–141.
    • (2013) Information Sciences , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 150
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
    • López, V., Fernández, A., Moreno-Torres, J.G., Herrera, F., Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems with Applications 39:7 (2012), 6585–6608.
    • (2012) Expert Systems with Applications , vol.39 , Issue.7 , pp. 6585-6608
    • López, V.1    Fernández, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 151
  • 153
    • 41549103711 scopus 로고    scopus 로고
    • Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme
    • Lu, W.Z., Wang, D., Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Science of the Total Environment 395:2-3 (2008), 109–116.
    • (2008) Science of the Total Environment , vol.395 , Issue.2-3 , pp. 109-116
    • Lu, W.Z.1    Wang, D.2
  • 154
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Lusa, L., Class prediction for high-dimensional class-imbalanced data. BMC bioinformatics, 11(1), 2010, 523.
    • (2010) BMC bioinformatics , vol.11 , Issue.1 , pp. 523
    • Lusa, L.1
  • 155
    • 85020590925 scopus 로고    scopus 로고
    • Gradient boosting for high-dimensional prediction of rare events
    • Lusa, L., Gradient boosting for high-dimensional prediction of rare events. Computational Statistics & Data Analysis, 2016.
    • (2016) Computational Statistics & Data Analysis
    • Lusa, L.1
  • 156
    • 84897670501 scopus 로고    scopus 로고
    • Weighted logistic regression for large-scale imbalanced and rare events data
    • Maalouf, M., Siddiqi, M., Weighted logistic regression for large-scale imbalanced and rare events data. Knowledge-Based Systems 59 (2014), 142–148.
    • (2014) Knowledge-Based Systems , vol.59 , pp. 142-148
    • Maalouf, M.1    Siddiqi, M.2
  • 157
    • 77956394683 scopus 로고    scopus 로고
    • Robust weighted kernel logistic regression in imbalanced and rare events data
    • Maalouf, M., Trafalis, T.B., Robust weighted kernel logistic regression in imbalanced and rare events data. Computational Statistics & Data Analysis 55:1 (2011), 168–183.
    • (2011) Computational Statistics & Data Analysis , vol.55 , Issue.1 , pp. 168-183
    • Maalouf, M.1    Trafalis, T.B.2
  • 158
    • 84893704508 scopus 로고    scopus 로고
    • Imbalanced data classification using second-order cone programming support vector machines
    • Maldonado, S., López, J., Imbalanced data classification using second-order cone programming support vector machines. Pattern Recognition 47:5 (2014), 2070–2079.
    • (2014) Pattern Recognition , vol.47 , Issue.5 , pp. 2070-2079
    • Maldonado, S.1    López, J.2
  • 159
    • 84906691312 scopus 로고    scopus 로고
    • Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines
    • Maldonado, S., Weber, R., Famili, F., Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines. Information Sciences 286 (2014), 228–246.
    • (2014) Information Sciences , vol.286 , pp. 228-246
    • Maldonado, S.1    Weber, R.2    Famili, F.3
  • 161
    • 84995608735 scopus 로고    scopus 로고
    • Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
    • Mao, W., He, L., Yan, Y., Wang, J., Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mechanical Systems and Signal Processing 83 (2017), 450–473.
    • (2017) Mechanical Systems and Signal Processing , vol.83 , pp. 450-473
    • Mao, W.1    He, L.2    Yan, Y.3    Wang, J.4
  • 162
    • 85009225526 scopus 로고    scopus 로고
    • Two-Stage Hybrid Extreme Learning Machine for Sequential Imbalanced Data
    • Springer
    • Mao, W., Wang, J., He, L., Tian, Y., Two-Stage Hybrid Extreme Learning Machine for Sequential Imbalanced Data. Proceedings of ELM-2015, Volume 1, 2016, Springer, 423–433.
    • (2016) Proceedings of ELM-2015 , vol.1 , pp. 423-433
    • Mao, W.1    Wang, J.2    He, L.3    Tian, Y.4
  • 163
    • 84888640664 scopus 로고    scopus 로고
    • Adjusted F-measure and kernel scaling for imbalanced data learning
    • Maratea, A., Petrosino, A., Manzo, M., Adjusted F-measure and kernel scaling for imbalanced data learning. Information Sciences 257 (2014), 331–341.
    • (2014) Information Sciences , vol.257 , pp. 331-341
    • Maratea, A.1    Petrosino, A.2    Manzo, M.3
  • 165
    • 84876194131 scopus 로고    scopus 로고
    • Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data
    • Márquez-Vera, C., Cano, A., Romero, C., Ventura, S., Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Applied intelligence 38:3 (2013), 315–330.
    • (2013) Applied intelligence , vol.38 , Issue.3 , pp. 315-330
    • Márquez-Vera, C.1    Cano, A.2    Romero, C.3    Ventura, S.4
  • 168
    • 84891860723 scopus 로고    scopus 로고
    • Training and assessing classification rules with imbalanced data
    • Menardi, G., Torelli, N., Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery 28:1 (2014), 92–122.
    • (2014) Data Mining and Knowledge Discovery , vol.28 , Issue.1 , pp. 92-122
    • Menardi, G.1    Torelli, N.2
  • 171
    • 84922042477 scopus 로고    scopus 로고
    • Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift
    • PA
    • Mirza, B., Lin, Z., Liu, N., Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149:PA (2015), 316–329.
    • (2015) Neurocomputing , vol.149 , pp. 316-329
    • Mirza, B.1    Lin, Z.2    Liu, N.3
  • 172
    • 84890560408 scopus 로고    scopus 로고
    • Weighted online sequential extreme learning machine for class imbalance learning
    • Mirza, B., Lin, Z., Toh, K.-A., Weighted online sequential extreme learning machine for class imbalance learning. Neural processing letters 38:3 (2013), 465–486.
    • (2013) Neural processing letters , vol.38 , Issue.3 , pp. 465-486
    • Mirza, B.1    Lin, Z.2    Toh, K.-A.3
  • 175
    • 0042934661 scopus 로고    scopus 로고
    • Feature selection, extraction and construction
    • Institute of Information and Computing Machinery Taiwan
    • Motoda, H., Liu, H., Feature selection, extraction and construction. Communication of IICM, Vol 5, 2002, Institute of Information and Computing Machinery, Taiwan, 67–72.
    • (2002) Communication of IICM , vol.5 , pp. 67-72
    • Motoda, H.1    Liu, H.2
  • 177
    • 85009162187 scopus 로고    scopus 로고
    • Types of minority class examples and their influence on learning classifiers from imbalanced data
    • Napierala, K., Stefanowski, J., Types of minority class examples and their influence on learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 2015, 1–35.
    • (2015) Journal of Intelligent Information Systems , pp. 1-35
    • Napierala, K.1    Stefanowski, J.2
  • 178
    • 84942363608 scopus 로고    scopus 로고
    • Addressing imbalanced data with argument based rule learning
    • Napierała, K., Stefanowski, J., Addressing imbalanced data with argument based rule learning. Expert Systems with Applications 42:24 (2015), 9468–9481.
    • (2015) Expert Systems with Applications , vol.42 , Issue.24 , pp. 9468-9481
    • Napierała, K.1    Stefanowski, J.2
  • 179
    • 26844519208 scopus 로고    scopus 로고
    • Hiding classification rules for data sharing with privacy preservation
    • Springer
    • Natwichai, J., Li, X., Orlowska, M., Hiding classification rules for data sharing with privacy preservation. Data Warehousing and Knowledge Discovery, 2005, Springer, 468–477.
    • (2005) Data Warehousing and Knowledge Discovery , pp. 468-477
    • Natwichai, J.1    Li, X.2    Orlowska, M.3
  • 180
    • 84947569019 scopus 로고    scopus 로고
    • Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets
    • Nekooeimehr, I., Lai-Yuen, S.K., Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications 46 (2016), 405–416.
    • (2016) Expert Systems with Applications , vol.46 , pp. 405-416
    • Nekooeimehr, I.1    Lai-Yuen, S.K.2
  • 181
    • 84994895363 scopus 로고    scopus 로고
    • Dual autoencoders features for imbalance classification problem
    • Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W., Dual autoencoders features for imbalance classification problem. Pattern Recognition 60 (2016), 875–889.
    • (2016) Pattern Recognition , vol.60 , pp. 875-889
    • Ng, W.W.1    Zeng, G.2    Zhang, J.3    Yeung, D.S.4    Pedrycz, W.5
  • 184
    • 79751530792 scopus 로고    scopus 로고
    • Error back-propagation algorithm for classification of imbalanced data
    • Oh, S.-H., Error back-propagation algorithm for classification of imbalanced data. Neurocomputing 74:6 (2011), 1058–1061.
    • (2011) Neurocomputing , vol.74 , Issue.6 , pp. 1058-1061
    • Oh, S.-H.1
  • 185
    • 84155186545 scopus 로고    scopus 로고
    • A probabilistic approach to fraud detection in telecommunications
    • Olszewski, D., A probabilistic approach to fraud detection in telecommunications. Knowledge-Based Systems 26 (2012), 246–258.
    • (2012) Knowledge-Based Systems , vol.26 , pp. 246-258
    • Olszewski, D.1
  • 186
    • 78650819842 scopus 로고    scopus 로고
    • A support vector machine-based model for detecting top management fraud
    • Pai, P.-F., Hsu, M.-F., Wang, M.-C., A support vector machine-based model for detecting top management fraud. Knowledge-Based Systems 24:2 (2011), 314–321.
    • (2011) Knowledge-Based Systems , vol.24 , Issue.2 , pp. 314-321
    • Pai, P.-F.1    Hsu, M.-F.2    Wang, M.-C.3
  • 188
    • 67349218861 scopus 로고    scopus 로고
    • Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning
    • Panigrahi, S., Kundu, A., Sural, S., Majumdar, A.K., Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion 10:4 (2009), 354–363.
    • (2009) Information Fusion , vol.10 , Issue.4 , pp. 354-363
    • Panigrahi, S.1    Kundu, A.2    Sural, S.3    Majumdar, A.K.4
  • 190
    • 84893911493 scopus 로고    scopus 로고
    • Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD
    • Peng Yang, J., Li, W., Zhao, D., Zaiane, O., Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD. Computerized Medical Imaging and Graphics 38:3 (2014), 137–150.
    • (2014) Computerized Medical Imaging and Graphics , vol.38 , Issue.3 , pp. 137-150
    • Peng Yang, J.1    Li, W.2    Zhao, D.3    Zaiane, O.4
  • 191
    • 77956395103 scopus 로고    scopus 로고
    • Analysis of an evolutionary RBFN design algorithm, CO 2 RBFN, for imbalanced data sets
    • Pérez-Godoy, M.D., Fernández, A., Rivera, A.J., del Jesus, M.J., Analysis of an evolutionary RBFN design algorithm, CO 2 RBFN, for imbalanced data sets. Pattern Recognition Letters 31:15 (2010), 2375–2388.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.15 , pp. 2375-2388
    • Pérez-Godoy, M.D.1    Fernández, A.2    Rivera, A.J.3    del Jesus, M.J.4
  • 192
    • 84876503003 scopus 로고    scopus 로고
    • Robust multiclass classification for learning from imbalanced biomedical data
    • Phoungphol, P., Zhang, Y., Zhao, Y., Robust multiclass classification for learning from imbalanced biomedical data. Tsinghua Science and technology 17:6 (2012), 619–628.
    • (2012) Tsinghua Science and technology , vol.17 , Issue.6 , pp. 619-628
    • Phoungphol, P.1    Zhang, Y.2    Zhao, Y.3
  • 196
    • 84953297975 scopus 로고    scopus 로고
    • Lopinavir Resistance Classification with Imbalanced Data Using Probabilistic Neural Networks
    • Raposo, L.M., Arruda, M.B., de Brindeiro, R.M., Nobre, F.F., Lopinavir Resistance Classification with Imbalanced Data Using Probabilistic Neural Networks. Journal of medical systems 40:3 (2016), 1–7.
    • (2016) Journal of medical systems , vol.40 , Issue.3 , pp. 1-7
    • Raposo, L.M.1    Arruda, M.B.2    de Brindeiro, R.M.3    Nobre, F.F.4
  • 198
    • 85009198970 scopus 로고    scopus 로고
    • Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm
    • Ren, F., Cao, P., Li, W., Zhao, D., Zaiane, O., Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm. Computerized Medical Imaging and Graphics, 2016.
    • (2016) Computerized Medical Imaging and Graphics
    • Ren, F.1    Cao, P.2    Li, W.3    Zhao, D.4    Zaiane, O.5
  • 199
    • 84979306748 scopus 로고    scopus 로고
    • Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model
    • Ren, Y., Wang, Y., Wu, X., Yu, G., Ding, C., Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model. Accident Analysis & Prevention 95 (2016), 266–273.
    • (2016) Accident Analysis & Prevention , vol.95 , pp. 266-273
    • Ren, Y.1    Wang, Y.2    Wu, X.3    Yu, G.4    Ding, C.5
  • 200
    • 84879196286 scopus 로고    scopus 로고
    • Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data
    • Richardson, A.M., Lidbury, B.A., Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. BMC bioinformatics, 14(1), 2013, 1.
    • (2013) BMC bioinformatics , vol.14 , Issue.1 , pp. 1
    • Richardson, A.M.1    Lidbury, B.A.2
  • 202
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. bioinformatics 23:19 (2007), 2507–2517.
    • (2007) bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 203
    • 84923328437 scopus 로고    scopus 로고
    • SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering
    • Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F., SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Information Sciences 291 (2015), 184–203.
    • (2015) Information Sciences , vol.291 , pp. 184-203
    • Sáez, J.A.1    Luengo, J.2    Stefanowski, J.3    Herrera, F.4
  • 204
    • 84878939025 scopus 로고    scopus 로고
    • A cost-sensitive decision tree approach for fraud detection
    • Sahin, Y., Bulkan, S., Duman, E., A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications 40:15 (2013), 5916–5923.
    • (2013) Expert Systems with Applications , vol.40 , Issue.15 , pp. 5916-5923
    • Sahin, Y.1    Bulkan, S.2    Duman, E.3
  • 205
    • 84938795155 scopus 로고    scopus 로고
    • A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data
    • Sanz, J.A., Bernardo, D., Herrera, F., Bustince, H., Hagras, H., A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. Fuzzy Systems, IEEE Transactions on 23:4 (2015), 973–990.
    • (2015) Fuzzy Systems, IEEE Transactions on , vol.23 , Issue.4 , pp. 973-990
    • Sanz, J.A.1    Bernardo, D.2    Herrera, F.3    Bustince, H.4    Hagras, H.5
  • 206
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E., Singer, Y., Improved boosting algorithms using confidence-rated predictions. Machine learning 37:3 (1999), 297–336.
    • (1999) Machine learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 208
    • 84900803418 scopus 로고    scopus 로고
    • An efficient weighted Lagrangian twin support vector machine for imbalanced data classification
    • Shao, Y.-H., Chen, W.-J., Zhang, J.-J., Wang, Z., Deng, N.-Y., An efficient weighted Lagrangian twin support vector machine for imbalanced data classification. Pattern Recognition 47:9 (2014), 3158–3167.
    • (2014) Pattern Recognition , vol.47 , Issue.9 , pp. 3158-3167
    • Shao, Y.-H.1    Chen, W.-J.2    Zhang, J.-J.3    Wang, Z.4    Deng, N.-Y.5
  • 210
    • 84907013321 scopus 로고    scopus 로고
    • nDNA-prot: identification of DNA-binding proteins based on unbalanced classification
    • Song, L., Li, D., Zeng, X., Wu, Y., Guo, L., Zou, Q., nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC bioinformatics, 15(1), 2014, 1.
    • (2014) BMC bioinformatics , vol.15 , Issue.1 , pp. 1
    • Song, L.1    Li, D.2    Zeng, X.3    Wu, Y.4    Guo, L.5    Zou, Q.6
  • 212
    • 84938938243 scopus 로고    scopus 로고
    • Quarter-Sphere Support Vector Machine for Fraud Detection in Mobile Telecommunication Networks
    • Subudhi, S., Panigrahi, S., Quarter-Sphere Support Vector Machine for Fraud Detection in Mobile Telecommunication Networks. Procedia Computer Science 48 (2015), 353–359.
    • (2015) Procedia Computer Science , vol.48 , pp. 353-359
    • Subudhi, S.1    Panigrahi, S.2
  • 216
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 40:12 (2007), 3358–3378.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 218
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognition 48:5 (2015), 1623–1637.
    • (2015) Pattern Recognition , vol.48 , Issue.5 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3    Sun, H.4    Xu, B.5    Zhou, Y.6
  • 219
    • 70349322730 scopus 로고    scopus 로고
    • A multiple expert approach to the class imbalance problem using inverse random under sampling
    • Springer
    • Tahir, M.A., Kittler, J., Mikolajczyk, K., Yan, F., A multiple expert approach to the class imbalance problem using inverse random under sampling. Multiple Classifier Systems, 2009, Springer, 82–91.
    • (2009) Multiple Classifier Systems , pp. 82-91
    • Tahir, M.A.1    Kittler, J.2    Mikolajczyk, K.3    Yan, F.4
  • 224
    • 79951771270 scopus 로고    scopus 로고
    • Imbalanced classification using support vector machine ensemble
    • Tian, J., Gu, H., Liu, W., Imbalanced classification using support vector machine ensemble. Neural Computing and Applications 20:2 (2011), 203–209.
    • (2011) Neural Computing and Applications , vol.20 , Issue.2 , pp. 203-209
    • Tian, J.1    Gu, H.2    Liu, W.3
  • 226
    • 55249117307 scopus 로고    scopus 로고
    • Oil spill detection by SAR images: dark formation detection, feature extraction and classification algorithms
    • Topouzelis, K.N., Oil spill detection by SAR images: dark formation detection, feature extraction and classification algorithms. Sensors 8:10 (2008), 6642–6659.
    • (2008) Sensors , vol.8 , Issue.10 , pp. 6642-6659
    • Topouzelis, K.N.1
  • 228
    • 60249092433 scopus 로고    scopus 로고
    • Forecasting of ozone episode days by cost-sensitive neural network methods
    • Tsai, C.H., Chang, L.C., Chiang, H.C., Forecasting of ozone episode days by cost-sensitive neural network methods. Science of the Total Environment 407:6 (2009), 2124–2135.
    • (2009) Science of the Total Environment , vol.407 , Issue.6 , pp. 2124-2135
    • Tsai, C.H.1    Chang, L.C.2    Chiang, H.C.3
  • 231
    • 83955164226 scopus 로고    scopus 로고
    • New insights into churn prediction in the telecommunication sector: A profit driven data mining approach
    • Verbeke, W., Dejaeger, K., Martens, D., Hur, J., Baesens, B., New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research 218:1 (2012), 211–229.
    • (2012) European Journal of Operational Research , vol.218 , Issue.1 , pp. 211-229
    • Verbeke, W.1    Dejaeger, K.2    Martens, D.3    Hur, J.4    Baesens, B.5
  • 232
    • 85009224301 scopus 로고    scopus 로고
    • A multi-scale seriation algorithm for clustering sparse imbalanced data: application to spike sorting
    • Vigneron, V., Chen, H., A multi-scale seriation algorithm for clustering sparse imbalanced data: application to spike sorting. Pattern Analysis and Applications, 2015, 1–19.
    • (2015) Pattern Analysis and Applications , pp. 1-19
    • Vigneron, V.1    Chen, H.2
  • 235
    • 84901637050 scopus 로고    scopus 로고
    • Threshold optimization for classification in imbalanced data in a problem of gamma-ray astronomy
    • Voigt, T., Fried, R., Backes, M., Rhode, W., Threshold optimization for classification in imbalanced data in a problem of gamma-ray astronomy. Advances in Data Analysis and Classification 8:2 (2014), 195–216.
    • (2014) Advances in Data Analysis and Classification , vol.8 , Issue.2 , pp. 195-216
    • Voigt, T.1    Fried, R.2    Backes, M.3    Rhode, W.4
  • 236
    • 85027951549 scopus 로고    scopus 로고
    • Imbalanced Learning for Air Pollution by Meta-Cognitive Online Sequential Extreme Learning Machine
    • Vong, C.-M., Ip, W.-F., Chiu, C.-C., Wong, P.-K., Imbalanced Learning for Air Pollution by Meta-Cognitive Online Sequential Extreme Learning Machine. Cognitive Computation 7:3 (2015), 381–391.
    • (2015) Cognitive Computation , vol.7 , Issue.3 , pp. 381-391
    • Vong, C.-M.1    Ip, W.-F.2    Chiu, C.-C.3    Wong, P.-K.4
  • 238
    • 84964313272 scopus 로고    scopus 로고
    • Learning to improve medical decision making from imbalanced data without a priori cost
    • Wan, X., Liu, J., Cheung, W.K., Tong, T., Learning to improve medical decision making from imbalanced data without a priori cost. BMC medical informatics and decision making, 14(1), 2014, 1.
    • (2014) BMC medical informatics and decision making , vol.14 , Issue.1 , pp. 1
    • Wan, X.1    Liu, J.2    Cheung, W.K.3    Tong, T.4
  • 239
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • Wang, B.X., Japkowicz, N., Boosting support vector machines for imbalanced data sets. Knowledge and Information Systems 25:1 (2010), 1–20.
    • (2010) Knowledge and Information Systems , vol.25 , Issue.1 , pp. 1-20
    • Wang, B.X.1    Japkowicz, N.2
  • 247
    • 84878691303 scopus 로고    scopus 로고
    • Using class imbalance learning for software defect prediction
    • Wang, S., Yao, X., Using class imbalance learning for software defect prediction. Reliability, IEEE Transactions on 62:2 (2013), 434–443.
    • (2013) Reliability, IEEE Transactions on , vol.62 , Issue.2 , pp. 434-443
    • Wang, S.1    Yao, X.2
  • 248
    • 84966495128 scopus 로고    scopus 로고
    • Probabilistic framework of visual anomaly detection for unbalanced data
    • Wang, Y., Li, X., Ding, X., Probabilistic framework of visual anomaly detection for unbalanced data. Neurocomputing, 2016.
    • (2016) Neurocomputing
    • Wang, Y.1    Li, X.2    Ding, X.3
  • 250
    • 85009214740 scopus 로고    scopus 로고
    • Distributed Weighted Extreme Learning Machine for Big Imbalanced Data Learning
    • Springer
    • Wang, Z., Xin, J., Tian, S., Yu, G., Distributed Weighted Extreme Learning Machine for Big Imbalanced Data Learning. Proceedings of ELM-2015, Volume 1, 2016, Springer, 319–332.
    • (2016) Proceedings of ELM-2015 , vol.1 , pp. 319-332
    • Wang, Z.1    Xin, J.2    Tian, S.3    Yu, G.4
  • 251
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • Wasikowski, M., Chen, X.-w., Combating the small sample class imbalance problem using feature selection. Knowledge and Data Engineering, IEEE Transactions on 22:10 (2010), 1388–1400.
    • (2010) Knowledge and Data Engineering, IEEE Transactions on , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.-W.2
  • 252
    • 84872875985 scopus 로고    scopus 로고
    • Discovering medical quality of total hip arthroplasty by rough set classifier with imbalanced class
    • Wei, M.-H., Cheng, C.-H., Huang, C.-S., Chiang, P.-C., Discovering medical quality of total hip arthroplasty by rough set classifier with imbalanced class. Quality & Quantity 47:3 (2013), 1761–1779.
    • (2013) Quality & Quantity , vol.47 , Issue.3 , pp. 1761-1779
    • Wei, M.-H.1    Cheng, C.-H.2    Huang, C.-S.3    Chiang, P.-C.4
  • 253
    • 84878915608 scopus 로고    scopus 로고
    • Effective detection of sophisticated online banking fraud on extremely imbalanced data
    • Wei, W., Li, J., Cao, L., Ou, Y., Chen, J., Effective detection of sophisticated online banking fraud on extremely imbalanced data. World Wide Web 16:4 (2013), 449–475.
    • (2013) World Wide Web , vol.16 , Issue.4 , pp. 449-475
    • Wei, W.1    Li, J.2    Cao, L.3    Ou, Y.4    Chen, J.5
  • 254
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss, G.M., Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newsletter 6:1 (2004), 7–19.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 258
    • 84956702149 scopus 로고    scopus 로고
    • Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset
    • Wu, D., Wang, Z., Chen, Y., Zhao, H., Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset. Neurocomputing 190 (2016), 35–49.
    • (2016) Neurocomputing , vol.190 , pp. 35-49
    • Wu, D.1    Wang, Z.2    Chen, Y.3    Zhao, H.4
  • 260
    • 85009183138 scopus 로고    scopus 로고
    • Imbalanced Extreme Learning Machine for Classification with Imbalanced Data Distributions
    • Springer
    • Xiao, W., Zhang, J., Li, Y., Yang, W., Imbalanced Extreme Learning Machine for Classification with Imbalanced Data Distributions. Proceedings of ELM-2015, Volume 2, 2016, Springer, 503–514.
    • (2016) Proceedings of ELM-2015 , vol.2 , pp. 503-514
    • Xiao, W.1    Zhang, J.2    Li, Y.3    Yang, W.4
  • 263
    • 84958168684 scopus 로고    scopus 로고
    • Detecting rare events using Kullback–Leibler divergence: A weakly supervised approach
    • Xu, J., Denman, S., Fookes, C., Sridharan, S., Detecting rare events using Kullback–Leibler divergence: A weakly supervised approach. Expert Systems with Applications 54 (2016), 13–28.
    • (2016) Expert Systems with Applications , vol.54 , pp. 13-28
    • Xu, J.1    Denman, S.2    Fookes, C.3    Sridharan, S.4
  • 264
    • 84901191969 scopus 로고    scopus 로고
    • Real-time video event detection in crowded scenes using MPEG derived features: A multiple instance learning approach
    • Xu, J., Denman, S., Reddy, V., Fookes, C., Sridharan, S., Real-time video event detection in crowded scenes using MPEG derived features: A multiple instance learning approach. Pattern Recognition Letters 44 (2014), 113–125.
    • (2014) Pattern Recognition Letters , vol.44 , pp. 113-125
    • Xu, J.1    Denman, S.2    Reddy, V.3    Fookes, C.4    Sridharan, S.5
  • 265
    • 33947326736 scopus 로고    scopus 로고
    • Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm
    • Xu, L., Chow, M.-Y., Taylor, L.S., Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm. Power Systems, IEEE Transactions on 22:1 (2007), 164–171.
    • (2007) Power Systems, IEEE Transactions on , vol.22 , Issue.1 , pp. 164-171
    • Xu, L.1    Chow, M.-Y.2    Taylor, L.S.3
  • 266
    • 33947327869 scopus 로고    scopus 로고
    • Power distribution outage cause identification with imbalanced data using artificial immune recognition system (AIRS) algorithm
    • Xu, L., Chow, M.-Y., Timmis, J., Taylor, L.S., Power distribution outage cause identification with imbalanced data using artificial immune recognition system (AIRS) algorithm. Power Systems, IEEE Transactions on 22:1 (2007), 198–204.
    • (2007) Power Systems, IEEE Transactions on , vol.22 , Issue.1 , pp. 198-204
    • Xu, L.1    Chow, M.-Y.2    Timmis, J.3    Taylor, L.S.4
  • 267
    • 85045099463 scopus 로고    scopus 로고
    • A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification
    • Xu, Y., Yang, Z., Zhang, Y., Pan, X., Wang, L., A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification. Knowledge-Based Systems, 2015.
    • (2015) Knowledge-Based Systems
    • Xu, Y.1    Yang, Z.2    Zhang, Y.3    Pan, X.4    Wang, L.5
  • 269
    • 85009373798 scopus 로고    scopus 로고
    • Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
    • Yang, J., Zhou, J., Zhu, Z., Ma, X., Ji, Z., Iterative ensemble feature selection for multiclass classification of imbalanced microarray data. Journal of Biological Research-Thessaloniki, 23(1), 2016, 13.
    • (2016) Journal of Biological Research-Thessaloniki , vol.23 , Issue.1 , pp. 13
    • Yang, J.1    Zhou, J.2    Zhu, Z.3    Ma, X.4    Ji, Z.5
  • 270
    • 71549117908 scopus 로고    scopus 로고
    • A particle swarm based hybrid system for imbalanced medical data sampling
    • Yang, P., Xu, L., Zhou, B.B., Zhang, Z., Zomaya, A.Y., A particle swarm based hybrid system for imbalanced medical data sampling. BMC genomics, 10(3), 2009, 1.
    • (2009) BMC genomics , vol.10 , Issue.3 , pp. 1
    • Yang, P.1    Xu, L.2    Zhou, B.B.3    Zhang, Z.4    Zomaya, A.Y.5
  • 274
    • 84923095334 scopus 로고    scopus 로고
    • Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data
    • Yu, H., Mu, C., Sun, C., Yang, W., Yang, X., Zuo, X., Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data. Knowledge-Based Systems 76 (2015), 67–78.
    • (2015) Knowledge-Based Systems , vol.76 , pp. 67-78
    • Yu, H.1    Mu, C.2    Sun, C.3    Yang, W.4    Yang, X.5    Zuo, X.6
  • 275
    • 84876228387 scopus 로고    scopus 로고
    • Mining and integrating reliable decision rules for imbalanced cancer gene expression data sets
    • Yu, H., Ni, J., Dan, Y., Xu, S., Mining and integrating reliable decision rules for imbalanced cancer gene expression data sets. Tsinghua Science and technology 17:6 (2012), 666–673.
    • (2012) Tsinghua Science and technology , vol.17 , Issue.6 , pp. 666-673
    • Yu, H.1    Ni, J.2    Dan, Y.3    Xu, S.4
  • 276
    • 84948966157 scopus 로고    scopus 로고
    • ODOC-ELM: Optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data
    • Yu, H., Sun, C., Yang, X., Yang, W., Shen, J., Qi, Y., ODOC-ELM: Optimal decision outputs compensation-based extreme learning machine for classifying imbalanced data. Knowledge-Based Systems 92 (2016), 55–70.
    • (2016) Knowledge-Based Systems , vol.92 , pp. 55-70
    • Yu, H.1    Sun, C.2    Yang, X.3    Yang, W.4    Shen, J.5    Qi, Y.6
  • 278
    • 84964444611 scopus 로고    scopus 로고
    • A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing
    • Zakaryazad, A., Duman, E., A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing 175 (2016), 121–131.
    • (2016) Neurocomputing , vol.175 , pp. 121-131
    • Zakaryazad, A.1    Duman, E.2
  • 279
    • 84962341039 scopus 로고    scopus 로고
    • The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers
    • Zhai, J., Zhang, S., Wang, C., The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. International Journal of Machine Learning and Cybernetics, 2015, 1–9.
    • (2015) International Journal of Machine Learning and Cybernetics , pp. 1-9
    • Zhai, J.1    Zhang, S.2    Wang, C.3
  • 285
    • 84944355420 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine
    • Zhang, X., Wang, B., Chen, X., Intelligent fault diagnosis of roller bearings with multivariable ensemble-based incremental support vector machine. Knowledge-Based Systems 89 (2015), 56–85.
    • (2015) Knowledge-Based Systems , vol.89 , pp. 56-85
    • Zhang, X.1    Wang, B.2    Chen, X.3
  • 288
    • 84897347020 scopus 로고    scopus 로고
    • Imbalanced data classification based on scaling kernel-based support vector machine
    • Zhang, Y., Fu, P., Liu, W., Chen, G., Imbalanced data classification based on scaling kernel-based support vector machine. Neural Computing and Applications 25:3-4 (2014), 927–935.
    • (2014) Neural Computing and Applications , vol.25 , Issue.3-4 , pp. 927-935
    • Zhang, Y.1    Fu, P.2    Liu, W.3    Chen, G.4
  • 289
    • 84862786552 scopus 로고    scopus 로고
    • Using ensemble methods to deal with imbalanced data in predicting protein–protein interactions
    • Zhang, Y., Zhang, D., Mi, G., Ma, D., Li, G., Guo, Y., et al. Using ensemble methods to deal with imbalanced data in predicting protein–protein interactions. Computational Biology and Chemistry 36 (2012), 36–41.
    • (2012) Computational Biology and Chemistry , vol.36 , pp. 36-41
    • Zhang, Y.1    Zhang, D.2    Mi, G.3    Ma, D.4    Li, G.5    Guo, Y.6
  • 292
    • 79956154382 scopus 로고    scopus 로고
    • Learning SVM with weighted maximum margin criterion for classification of imbalanced data
    • Zhao, Z., Zhong, P., Zhao, Y., Learning SVM with weighted maximum margin criterion for classification of imbalanced data. Mathematical and Computer Modelling 54:3 (2011), 1093–1099.
    • (2011) Mathematical and Computer Modelling , vol.54 , Issue.3 , pp. 1093-1099
    • Zhao, Z.1    Zhong, P.2    Zhao, Y.3
  • 293
    • 84877117527 scopus 로고    scopus 로고
    • Classifying peer-to-peer applications using imbalanced concept-adapting very fast decision tree on IP data stream
    • Zhong, W., Raahemi, B., Liu, J., Classifying peer-to-peer applications using imbalanced concept-adapting very fast decision tree on IP data stream. Peer-to-Peer Networking and Applications 6:3 (2013), 233–246.
    • (2013) Peer-to-Peer Networking and Applications , vol.6 , Issue.3 , pp. 233-246
    • Zhong, W.1    Raahemi, B.2    Liu, J.3
  • 294
    • 84873725663 scopus 로고    scopus 로고
    • Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods
    • Zhou, L., Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods. Knowledge-Based Systems 41 (2013), 16–25.
    • (2013) Knowledge-Based Systems , vol.41 , pp. 16-25
    • Zhou, L.1
  • 295
    • 85017293235 scopus 로고    scopus 로고
    • Tsinghua University press
    • Zhou, Z.-H., (eds.) Machine Learning, 2016, Tsinghua University press.
    • (2016) Machine Learning
    • Zhou, Z.-H.1
  • 296
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.-H., Liu, X.-Y., Training cost-sensitive neural networks with methods addressing the class imbalance problem. Knowledge and Data Engineering, IEEE Transactions on 18:1 (2006), 63–77.
    • (2006) Knowledge and Data Engineering, IEEE Transactions on , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 298
    • 84947128160 scopus 로고    scopus 로고
    • Boosted SVM with active learning strategy for imbalanced data
    • Zięba, M., Tomczak, J.M., Boosted SVM with active learning strategy for imbalanced data. Soft Computing 19:12 (2015), 3357–3368.
    • (2015) Soft Computing , vol.19 , Issue.12 , pp. 3357-3368
    • Zięba, M.1    Tomczak, J.M.2
  • 299
    • 84888298686 scopus 로고    scopus 로고
    • Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients
    • Zięba, M., Tomczak, J.M., Lubicz, M., Świątek, J., Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients. Applied Soft Computing 14 (2014), 99–108.
    • (2014) Applied Soft Computing , vol.14 , pp. 99-108
    • Zięba, M.1    Tomczak, J.M.2    Lubicz, M.3    Świątek, J.4
  • 300
    • 84957837140 scopus 로고    scopus 로고
    • Finding the Best Classification Threshold in Imbalanced Classification
    • Zou, Q., Xie, S., Lin, Z., Wu, M., Ju, Y., Finding the Best Classification Threshold in Imbalanced Classification. Big Data Research, 2016.
    • (2016) Big Data Research
    • Zou, Q.1    Xie, S.2    Lin, Z.3    Wu, M.4    Ju, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.