메뉴 건너뛰기




Volumn 38, Issue 3, 2013, Pages 315-330

Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data

Author keywords

Classification; Educational data mining; Grammar based genetic programming; Predicting student performance; Student failure

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION RULES; COST SENSITIVE CLASSIFICATIONS; EDUCATIONAL DATA MINING; GENETIC PROGRAMMING ALGORITHMS; GRAMMAR-BASED GENETIC PROGRAMMING; HIGH SCHOOL STUDENTS; STUDENT PERFORMANCE;

EID: 84876194131     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-012-0374-8     Document Type: Article
Times cited : (165)

References (45)
  • 1
    • 23044534550 scopus 로고    scopus 로고
    • Not all school dropouts are the same: Ethnic differences in the relation between reason for leaving school and adolescent substance use
    • 10.1002/pits.10054
    • Aloise-Young PA, Chavez EL (2002) Not all school dropouts are the same: Ethnic differences in the relation between reason for leaving school and adolescent substance use. Psychol Sch 39(5):539-547
    • (2002) Psychol Sch , vol.39 , Issue.5 , pp. 539-547
    • Aloise-Young, P.A.1    Chavez, E.L.2
  • 2
    • 67650260875 scopus 로고    scopus 로고
    • Factors influencing university drop out rates
    • 10.1016/j.compedu.2009.03.013
    • Araque F, Roldan C, Salguero A (2009) Factors influencing university drop out rates. Comput Educ 53:563-574
    • (2009) Comput Educ , vol.53 , pp. 563-574
    • Araque, F.1    Roldan, C.2    Salguero, A.3
  • 5
    • 0024103809 scopus 로고
    • Prism: An algorithm for inducing modular rules
    • 0638.68110 10.1016/S0020-7373(87)80003-2
    • Cendrowska J (1987) Prism: an algorithm for inducing modular rules. Int J Man-Mach Stud 27(4):349-370
    • (1987) Int J Man-Mach Stud , vol.27 , Issue.4 , pp. 349-370
    • Cendrowska, J.1
  • 8
    • 84862152671 scopus 로고    scopus 로고
    • Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters
    • 10.1007/s10489-010-0260-1
    • Diosan L, Rogozan A, Pecuchet J (2012) Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters. Appl Intell 36:280-294
    • (2012) Appl Intell , vol.36 , pp. 280-294
    • Diosan, L.1    Rogozan, A.2    Pecuchet, J.3
  • 10
    • 34047173470 scopus 로고    scopus 로고
    • Typology of students at risk of dropping out of school: Description by personal, family and school factors
    • 10.1007/BF03173508
    • Fourtin L, Marcotte D, Potvin P, Roger E, Joly J (2006) Typology of students at risk of dropping out of school: description by personal, family and school factors. Eur J Psychol Educ 21(4):363-383
    • (2006) Eur J Psychol Educ , vol.21 , Issue.4 , pp. 363-383
    • Fourtin, L.1    Marcotte, D.2    Potvin, P.3    Roger, E.4    Joly, J.5
  • 16
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • 0850.68278 10.1023/A:1022631118932
    • Holte RC (1993) Very simple classification rules perform well on most commonly used datasets. Mach Learn 11:63-91
    • (1993) Mach Learn , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 19
    • 84857478947 scopus 로고    scopus 로고
    • Educational data mining: A case study for predicting dropout-prone students
    • 10.1504/IJKESDP.2009.022718
    • Kotsiantis S (2009) Educational data mining: a case study for predicting dropout-prone students. Int J Knowl Eng Soft Data Paradig 1(2):101-111
    • (2009) Int J Knowl Eng Soft Data Paradig , vol.1 , Issue.2 , pp. 101-111
    • Kotsiantis, S.1
  • 20
    • 77954923145 scopus 로고    scopus 로고
    • A combinational incremental ensemble of classifiers as a technique for predicting students performance in distance education
    • 10.1016/j.knosys.2010.03.010
    • Kotsiantis S, Patriarcheas K, Xenos M (2010) A combinational incremental ensemble of classifiers as a technique for predicting students performance in distance education. Knowl-Based Syst 23(6):529-535
    • (2010) Knowl-Based Syst , vol.23 , Issue.6 , pp. 529-535
    • Kotsiantis, S.1    Patriarcheas, K.2    Xenos, M.3
  • 22
    • 67650236153 scopus 로고    scopus 로고
    • Dropout prediction in e-learning courses through the combination of machine learning techniques
    • 10.1016/j.compedu.2009.05.010
    • Lykourentzou I, Giannoukos I, Nikolopoulos V, Mpardis G, Loumos V (2009) Dropout prediction in e-learning courses through the combination of machine learning techniques. Comput Educ 53:950-965
    • (2009) Comput Educ , vol.53 , pp. 950-965
    • Lykourentzou, I.1    Giannoukos, I.2    Nikolopoulos, V.3    Mpardis, G.4    Loumos, V.5
  • 25
    • 77958152552 scopus 로고    scopus 로고
    • Predicting student success
    • McDonald B (2004) Predicting student success. J Math Teach Learn 1:1-14
    • (2004) J Math Teach Learn , vol.1 , pp. 1-14
    • McDonald, B.1
  • 26
    • 39749145052 scopus 로고    scopus 로고
    • Factors associated with persistence in science and engineering majors: An exploratory study using classification trees and random forests
    • Mendez G, Buskirk TD, Lohr S, Haag S (2008) Factors associated with persistence in science and engineering majors: an exploratory study using classification trees and random forests. J Eng Educ 97:57-70
    • (2008) J Eng Educ , vol.97 , pp. 57-70
    • Mendez, G.1    Buskirk, T.D.2    Lohr, S.3    Haag, S.4
  • 27
    • 41949129128 scopus 로고    scopus 로고
    • Predicting who will drop out of nursing courses: A machine learning exercise
    • 10.1016/j.nedt.2007.07.012
    • Moseley LG, Mead DM (2008) Predicting who will drop out of nursing courses: a machine learning exercise. Nurse Educ Today 28:469-475
    • (2008) Nurse Educ Today , vol.28 , pp. 469-475
    • Moseley, L.G.1    Mead, D.M.2
  • 28
    • 84862117598 scopus 로고    scopus 로고
    • The use of genetic programming for the construction of a financial management model in an enterprise
    • 10.1007/s10489-010-0259-7
    • Pan W (2012) The use of genetic programming for the construction of a financial management model in an enterprise. Appl Intell 36:271-279
    • (2012) Appl Intell , vol.36 , pp. 271-279
    • Pan, W.1
  • 29
    • 3843142878 scopus 로고    scopus 로고
    • A study of variables that predict dropout from distance education
    • Parker A (1999) A study of variables that predict dropout from distance education. Int J Educ Technol 1(2):1-11
    • (1999) Int J Educ Technol , vol.1 , Issue.2 , pp. 1-11
    • Parker, A.1
  • 30
    • 84876176113 scopus 로고    scopus 로고
    • Drop out feature of student data for academic performance using decision tree techniques
    • Quadril MN, Kalyankar NV (2010) Drop out feature of student data for academic performance using decision tree techniques. J Comput Sci Technol 10:2-5
    • (2010) J Comput Sci Technol , vol.10 , pp. 2-5
    • Quadril, M.N.1    Kalyankar, N.V.2
  • 32
    • 68349148286 scopus 로고    scopus 로고
    • Two decades of RDR research
    • 10.1017/S0269888909000241
    • Richards D (2009) Two decades of RDR research. Knowl Eng Rev 24(2):159-184
    • (2009) Knowl Eng Rev , vol.24 , Issue.2 , pp. 159-184
    • Richards, D.1
  • 35
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: A review of the state of the art
    • Romero C, Ventura S (2010) Educational data mining: a review of the state of the art. IEEE Trans Syst Man Cybern 6:601-618
    • (2010) IEEE Trans Syst Man Cybern , vol.6 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 36
    • 33748338418 scopus 로고    scopus 로고
    • Master's thesis, University of Canterbury, Christchurch, New Zealand
    • Roy S (2002) Nearest neighbor with generalization. Master's thesis, University of Canterbury, Christchurch, New Zealand
    • (2002) Nearest Neighbor with Generalization
    • Roy, S.1
  • 37
    • 38449115187 scopus 로고    scopus 로고
    • Reducing high-dimensional data by principal component analysis vs random projection for nearest neighbor classification
    • Deegalla S, Bostrom H (2006) Reducing high-dimensional data by principal component analysis vs random projection for nearest neighbor classification. In: International conference on machine learning and applications, pp 245-250
    • (2006) International Conference on Machine Learning and Applications , pp. 245-250
    • Deegalla, S.1    Bostrom, H.2
  • 38
    • 61849186005 scopus 로고    scopus 로고
    • Determination of factors influencing the achievement of the first-year university students using data mining methods
    • Superby JF, Vandamme JP, Meskens N (2006) Determination of factors influencing the achievement of the first-year university students using data mining methods. In: Educational data mining workshop, pp 1-8
    • (2006) Educational Data Mining Workshop , pp. 1-8
    • Superby, J.F.1    Vandamme, J.P.2    Meskens, N.3
  • 41
    • 84951717416 scopus 로고    scopus 로고
    • Identifying characteristics of high school dropouts: Data mining with a decision tree model
    • Veitch W (2004) Identifying characteristics of high school dropouts: data mining with a decision tree model. In: Annual meeting of the American educational Research Association, pp 1-11
    • (2004) Annual Meeting of the American Educational Research Association , pp. 1-11
    • Veitch, W.1
  • 42
    • 0036497945 scopus 로고    scopus 로고
    • Predictors of web-based performance: The role of self-efficacy and reasons for taking an on-line class
    • 10.1016/S0747-5632(01)00042-5
    • Wang AY, Newlin MH (2002) Predictors of web-based performance: the role of self-efficacy and reasons for taking an on-line class. Comput Hum Behav J 18:151-163
    • (2002) Comput Hum Behav J , vol.18 , pp. 151-163
    • Wang, A.Y.1    Newlin, M.H.2
  • 43
    • 43249084952 scopus 로고    scopus 로고
    • Leisure boredom and high school dropout in Cape Town, South Africa
    • 10.1016/j.adolescence.2007.09.004
    • Wegner L, Flisher AJ, Chikobvu P, Lombard C, King G (2008) Leisure boredom and high school dropout in Cape Town, South Africa. J Adolesc 31:421-431
    • (2008) J Adolesc , vol.31 , pp. 421-431
    • Wegner, L.1    Flisher, A.J.2    Chikobvu, P.3    Lombard, C.4    King, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.