메뉴 건너뛰기




Volumn 47, Issue 5, 2014, Pages 2070-2079

Imbalanced data classification using second-order cone programming support vector machines

Author keywords

Class imbalanced data; LP SVM; SOCP SVM; Support Vector Machines

Indexed keywords

CLASS-IMBALANCED DATA; CLASSIFICATION PERFORMANCE; IMBALANCED CLASSIFICATION; IMBALANCED DATA SETS; LP-SVM; REGULARIZATION PARAMETERS; SECOND-ORDER CONE PROGRAMMING; SOCP-SVM;

EID: 84893704508     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2013.11.021     Document Type: Article
Times cited : (77)

References (40)
  • 2
    • 2342458706 scopus 로고    scopus 로고
    • Second-order cone programming
    • F. Alizadeh, and D. Goldfarb Second-order cone programming Math. Progr. 95 2003 3 51
    • (2003) Math. Progr. , vol.95 , pp. 3-51
    • Alizadeh, F.1    Goldfarb, D.2
  • 3
    • 77955575625 scopus 로고    scopus 로고
    • Interior proximal algorithm with variable metric for second-order cone programming applications to structural optimization and support vector machines
    • F. Alvarez, J. López, and H.C. Ramírez Interior proximal algorithm with variable metric for second-order cone programming applications to structural optimization and support vector machines Optim. Methods Softw. 25 6 2010 859 881
    • (2010) Optim. Methods Softw. , vol.25 , Issue.6 , pp. 859-881
    • Alvarez, F.1    López, J.2    Ramírez, H.C.3
  • 5
    • 33747350759 scopus 로고    scopus 로고
    • Considering cost asymmetry in learning classifiers
    • F. R Bach, D. Heckerman, and E. Horvitz Considering cost asymmetry in learning classifiers J. Mach. Learn. Res. 7 2006 1713 1741
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1713-1741
    • Bach F, R.1    Heckerman, D.2    Horvitz, E.3
  • 7
    • 33646748885 scopus 로고    scopus 로고
    • Second order cone programming formulations for feature selection
    • C. Bhattacharyya Second order cone programming formulations for feature selection J. Mach. Learn. Res. 5 2004 1417 1433
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1417-1433
    • Bhattacharyya, C.1
  • 9
    • 27144549260 scopus 로고    scopus 로고
    • Editorial special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial special issue on learning from imbalanced data sets SIGKDD Explor. 6 2004 1 6
    • (2004) SIGKDD Explor. , vol.6 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 79953050208 scopus 로고    scopus 로고
    • A dynamic over-sampling procedure based on sensitivity for multi-class problems
    • F. Fernández-Navarro, C. Hervás-Martínez, and P.A. Gutiérrez A dynamic over-sampling procedure based on sensitivity for multi-class problems Pattern Recognit. 44 2011 1821 1833
    • (2011) Pattern Recognit. , vol.44 , pp. 1821-1833
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutiérrez, P.A.3
  • 16
  • 17
    • 70449111090 scopus 로고    scopus 로고
    • Predicting credit card customer churn in banks using data mining
    • D.A. Kumar, and V. Ravi Predicting credit card customer churn in banks using data mining Int. J. Data Anal. Tech. Strateg. 1 2008 4 28
    • (2008) Int. J. Data Anal. Tech. Strateg. , vol.1 , pp. 4-28
    • Kumar, D.A.1    Ravi, V.2
  • 19
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • S. Maldonado, and R. Weber A wrapper method for feature selection using support vector machines Inf. Sci. 179 2009 2208 2217
    • (2009) Inf. Sci. , vol.179 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 20
    • 77958106713 scopus 로고    scopus 로고
    • Kernel-penalized SVM for feature selection
    • S. Maldonado, R. Weber, and J. Basak Kernel-penalized SVM for feature selection Inf. Sci. 181 1 2011 115 128
    • (2011) Inf. Sci. , vol.181 , Issue.1 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 21
    • 0036817951 scopus 로고    scopus 로고
    • A finite newton method for classification
    • O.L. Mangasarian A finite newton method for classification Optim. Methods Softw. 17 5 2002 913 929
    • (2002) Optim. Methods Softw. , vol.17 , Issue.5 , pp. 913-929
    • Mangasarian, O.L.1
  • 23
    • 80055055460 scopus 로고    scopus 로고
    • Building sparse twin support vector machine classifiers in primal space
    • X. Peng Building sparse twin support vector machine classifiers in primal space Inf. Sci. 181 18 2011 3967 3980
    • (2011) Inf. Sci. , vol.181 , Issue.18 , pp. 3967-3980
    • Peng, X.1
  • 24
    • 79953301764 scopus 로고    scopus 로고
    • Active learning and subspace clustering for anomaly detection
    • K. Pichara, and A. Soto Active learning and subspace clustering for anomaly detection Intell. Data Anal. 15 2011 151 171
    • (2011) Intell. Data Anal. , vol.15 , pp. 151-171
    • Pichara, K.1    Soto, A.2
  • 25
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA
    • J. Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 26
    • 32344438970 scopus 로고    scopus 로고
    • Extreme rebalancing for SVMS a case study
    • (Special Issue on Learning from Imbalanced Datasets)
    • B. Raskutti, and A. Kowalczyk Extreme rebalancing for SVMS a case study ACM SIGKDD Explor. Newslett. 6 2004 60 69 (Special Issue on Learning from Imbalanced Datasets)
    • (2004) ACM SIGKDD Explor. Newslett. , vol.6 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 29
    • 33745800909 scopus 로고    scopus 로고
    • Second order cone programming approaches for handling missing and uncertain data
    • P.K. Shivaswamy, C. Bhattacharyya, and A.J. Smola Second order cone programming approaches for handling missing and uncertain data J. Mach. Learn. Res. 7 2006 1283 1314
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1283-1314
    • Shivaswamy, P.K.1    Bhattacharyya, C.2    Smola, A.J.3
  • 30
    • 51849156137 scopus 로고    scopus 로고
    • Beyond accuracy, f-score and ROC: A family of discriminant measures for performance evaluation
    • Springer, Berlin, Heidelberg
    • M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond accuracy, f-score and ROC: a family of discriminant measures for performance evaluation, in: Advances in Artificial Intelligence, Springer, Berlin, Heidelberg, 2006, pp. 1015-1021.
    • (2006) Advances in Artificial Intelligence , pp. 1015-1021
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 31
    • 0033296299 scopus 로고    scopus 로고
    • Using sedumi 10.2, a matlab toolbox for optimization over symmetric cones
    • (Special Issue on Interior Point Methods (CD supplement with software))
    • J.F. Sturm Using sedumi 10.2, a matlab toolbox for optimization over symmetric cones Optim. Methods Softw. 11 12 1999 625 653 (Special Issue on Interior Point Methods (CD supplement with software))
    • (1999) Optim. Methods Softw. , vol.11 , Issue.12 , pp. 625-653
    • Sturm, J.F.1
  • 32
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y.M. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognit. 40 2007 3358 3378
    • (2007) Pattern Recognit. , vol.40 , pp. 3358-3378
    • Sun, Y.M.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 34
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R. Duin Support vector data description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.2
  • 36
    • 80055010583 scopus 로고    scopus 로고
    • Extract minimum positive and maximum negative features for imbalanced binary classification
    • J. Wang, J. You, Q. Li, and Y. Xu Extract minimum positive and maximum negative features for imbalanced binary classification Pattern Recognit. 45 2012 1136 1145
    • (2012) Pattern Recognit. , vol.45 , pp. 1136-1145
    • Wang, J.1    You, J.2    Li, Q.3    Xu, Y.4
  • 37
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity a unifying framework
    • G.M. Weiss Mining with rarity a unifying framework ACM SIGKDD Explor. Newslett. 6 2004 7 19
    • (2004) ACM SIGKDD Explor. Newslett. , vol.6 , pp. 7-19
    • Weiss, G.M.1
  • 39
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Z. Zheng, X. Wu, and R. Srihari Feature selection for text categorization on imbalanced data SIGKDD Explor. 6 2004 80 89
    • (2004) SIGKDD Explor. , vol.6 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 40
    • 0036887673 scopus 로고    scopus 로고
    • Linear programming support vector machines
    • W. Zhou, L. Zhang, and L. Jiao Linear programming support vector machines Pattern Recognit. 35 2002 2927 2936
    • (2002) Pattern Recognit. , vol.35 , pp. 2927-2936
    • Zhou, W.1    Zhang, L.2    Jiao, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.