-
1
-
-
0032377357
-
Approximate is better than exact for interval estimation of binomial proportions
-
Agresti A., Coull B.A. Approximate is better than exact for interval estimation of binomial proportions. Statistical Science 1998, 52:119-126.
-
(1998)
Statistical Science
, vol.52
, pp. 119-126
-
-
Agresti, A.1
Coull, B.A.2
-
2
-
-
34547998923
-
The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks
-
ACM, New York, NY, USA
-
Azran A. The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks. Proceedings of the 24th international conference on machine learning 2007, 49-56. ACM, New York, NY, USA.
-
(2007)
Proceedings of the 24th international conference on machine learning
, pp. 49-56
-
-
Azran, A.1
-
3
-
-
9444289383
-
Regularization and semi-supervised learning on large graphs
-
Springer
-
Belkin M., Matveeva I., Niyogi P. Regularization and semi-supervised learning on large graphs. COLT 2004, 624-638. Springer.
-
(2004)
COLT
, pp. 624-638
-
-
Belkin, M.1
Matveeva, I.2
Niyogi, P.3
-
5
-
-
34547969350
-
Label propagation and quadratic criterion
-
MIT Press, O. Chapelle, B. Scholkopf, A. Zien (Eds.)
-
Bengio Y., Delalleau O., Le Roux N. Label propagation and quadratic criterion. Semi-supervised learning 2006, 193-216. MIT Press. O. Chapelle, B. Scholkopf, A. Zien (Eds.).
-
(2006)
Semi-supervised learning
, pp. 193-216
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
-
6
-
-
80052409679
-
COSNet: a cost sensitive neural network for semi-supervised learning in graphs
-
Springer, Berlin, Heidelberg
-
Bertoni A., Frasca M., Valentini G. COSNet: a cost sensitive neural network for semi-supervised learning in graphs. Machine learning and knowledge discovery in databases- European conference on machine learning and principles and practice of knowledge discovery in databases 2011, 219-234. Springer, Berlin, Heidelberg.
-
(2011)
Machine learning and knowledge discovery in databases- European conference on machine learning and principles and practice of knowledge discovery in databases
, pp. 219-234
-
-
Bertoni, A.1
Frasca, M.2
Valentini, G.3
-
8
-
-
60149086627
-
Network analysis in the social sciences
-
Borgatti S., Mehra A., Brass D., Labianca G. Network analysis in the social sciences. Science 2009, 232:892-895.
-
(2009)
Science
, vol.232
, pp. 892-895
-
-
Borgatti, S.1
Mehra, A.2
Brass, D.3
Labianca, G.4
-
11
-
-
84865223440
-
Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
-
Cesa-Bianchi N., Re M., Valentini G. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine Learning 2012, 88:209-241.
-
(2012)
Machine Learning
, vol.88
, pp. 209-241
-
-
Cesa-Bianchi, N.1
Re, M.2
Valentini, G.3
-
12
-
-
79952857163
-
Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
-
Cesa-Bianchi N., Valentini G. Hierarchical cost-sensitive algorithms for genome-wide gene function prediction. Journal of Machine Learning Research, W&C Proceedings, Machine Learning in Systems Biology 2010, 8:14-29.
-
(2010)
Journal of Machine Learning Research, W&C Proceedings, Machine Learning in Systems Biology
, vol.8
, pp. 14-29
-
-
Cesa-Bianchi, N.1
Valentini, G.2
-
13
-
-
33745619564
-
Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
-
Chua H.N., Sung W.-K., Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 2006, 22:1623-1630.
-
(2006)
Bioinformatics
, vol.22
, pp. 1623-1630
-
-
Chua, H.N.1
Sung, W.-K.2
Wong, L.3
-
14
-
-
36949038721
-
An efficient strategy for extensive integration of diverse biological data for protein function prediction
-
Chua H., Sung W., Wong L. An efficient strategy for extensive integration of diverse biological data for protein function prediction. Bioinformatics 2007, 23:3364-3373.
-
(2007)
Bioinformatics
, vol.23
, pp. 3364-3373
-
-
Chua, H.1
Sung, W.2
Wong, L.3
-
15
-
-
84862619225
-
-
In R. G. Cowell, & Z. Ghahramani (Eds.), Proceedings of the tenth international workshop on artificial intelligence and statistics, January 6-8, 2005, Savannah Hotel, Barbados
-
Delalleau, O., Bengio, Y., & Le Roux, N. (2005). Efficient non-parametric function induction in semi-supervised learning. In R. G. Cowell, & Z. Ghahramani (Eds.), Proceedings of the tenth international workshop on artificial intelligence and statistics, January 6-8, 2005, Savannah Hotel, Barbados (pp. 96-103).
-
(2005)
Efficient non-parametric function induction in semi-supervised learning
, pp. 96-103
-
-
Delalleau, O.1
Bengio, Y.2
Le Roux, N.3
-
16
-
-
3142622851
-
An integrated probabilistic model for functional prediction of proteins
-
Deng M., Chen T., Sun F. An integrated probabilistic model for functional prediction of proteins. Journal of Computational Biology 2004, 11:463-475.
-
(2004)
Journal of Computational Biology
, vol.11
, pp. 463-475
-
-
Deng, M.1
Chen, T.2
Sun, F.3
-
18
-
-
0031743421
-
Profile hidden Markov models
-
Eddy S.R. Profile hidden Markov models. Bioinformatics 1998, 14:755-763.
-
(1998)
Bioinformatics
, vol.14
, pp. 755-763
-
-
Eddy, S.R.1
-
19
-
-
75549090603
-
The Pfam protein families database
-
Finn R., Mistry J., Tate J., Coggill P., Heger A., Pollington J., et al. The Pfam protein families database. Nucleic Acids Research 2010, 38:D211-D222.
-
(2010)
Nucleic Acids Research
, vol.38
-
-
Finn, R.1
Mistry, J.2
Tate, J.3
Coggill, P.4
Heger, A.5
Pollington, J.6
-
20
-
-
33748776559
-
Automated protein function prediction-the genomic challenge
-
Friedberg I. Automated protein function prediction-the genomic challenge. Briefings in Bioinformatics 2006, 7:225-242.
-
(2006)
Briefings in Bioinformatics
, vol.7
, pp. 225-242
-
-
Friedberg, I.1
-
21
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
Gasch P., et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 2000, 11:4241-4257.
-
(2000)
Molecular Biology of the Cell
, vol.11
, pp. 4241-4257
-
-
Gasch, P.1
-
22
-
-
0024090156
-
A new approach to the maximum flow problem
-
Goldberg A., Tarjan R. A new approach to the maximum flow problem. Journal of the ACM (JACM) 1988, 35:921-940.
-
(1988)
Journal of the ACM (JACM)
, vol.35
, pp. 921-940
-
-
Goldberg, A.1
Tarjan, R.2
-
25
-
-
84858738634
-
Efficient and accurate lp-norm multiple kernel learning
-
Kloft M., Brefeld U., Sonnenburg S., Laskov P., Müller K.-R., Zien A. Efficient and accurate lp-norm multiple kernel learning. Advances in Neural Information Processing Systems 2009, 22:997-1005.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Müller, K.-R.5
Zien, A.6
-
26
-
-
2442674422
-
-
Lanckriet, G.R., Deng, M., Cristianini, N., Jordan, M.I., & Noble, W.S. (2004). Kernel-based data fusion and its application to protein function prediction in yeast. In Pacific symposium on biocomputing. Pacific symposium on biocomputing (pp. 300-311).
-
(2004)
Kernel-based data fusion and its application to protein function prediction in yeast. In Pacific symposium on biocomputing. Pacific symposium on biocomputing
, pp. 300-311
-
-
Lanckriet, G.R.1
Deng, M.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
27
-
-
76849095353
-
Gene function prediction with gene interaction networks: a context graph kernel approach
-
Li X., Chen H., Li J., Zhang Z. Gene function prediction with gene interaction networks: a context graph kernel approach. IEEE Transactions on Information Technology in Biomedicine 2010, 14:119-128.
-
(2010)
IEEE Transactions on Information Technology in Biomedicine
, vol.14
, pp. 119-128
-
-
Li, X.1
Chen, H.2
Li, J.3
Zhang, Z.4
-
29
-
-
0033523854
-
A combined algorithm for genome-wide prediction of protein function
-
Marcotte E., Pellegrini M., Thompson M., Yeates T., Eisenberg D. A combined algorithm for genome-wide prediction of protein function. Nature 1999, 402:83-86.
-
(1999)
Nature
, vol.402
, pp. 83-86
-
-
Marcotte, E.1
Pellegrini, M.2
Thompson, M.3
Yeates, T.4
Eisenberg, D.5
-
30
-
-
47549107689
-
Genemania: a real-time multiple association network integration algorithm for predicting gene function
-
Mostafavi S., Ray D., Farley D.W., Grouios C., Morris Q. Genemania: a real-time multiple association network integration algorithm for predicting gene function. Genome Biology 2008, 9:S4+.
-
(2008)
Genome Biology
, vol.9
-
-
Mostafavi, S.1
Ray, D.2
Farley, D.W.3
Grouios, C.4
Morris, Q.5
-
32
-
-
29144442904
-
Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps
-
Nabieva E., Jim K., Agarwal A., Chazelle B., Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 2005, 21:302-310.
-
(2005)
Bioinformatics
, vol.21
, pp. 302-310
-
-
Nabieva, E.1
Jim, K.2
Agarwal, A.3
Chazelle, B.4
Singh, M.5
-
33
-
-
0034628487
-
Guilt-by-association goes global
-
Oliver S. Guilt-by-association goes global. Nature 2000, 403:601-603.
-
(2000)
Nature
, vol.403
, pp. 601-603
-
-
Oliver, S.1
-
34
-
-
0036100116
-
Learning gene functional classifications from multiple data types
-
Pavlidis P., Cai J., Weston J., Noble W.S. Learning gene functional classifications from multiple data types. Journal of Computational Biology 2002, 9:401-411.
-
(2002)
Journal of Computational Biology
, vol.9
, pp. 401-411
-
-
Pavlidis, P.1
Cai, J.2
Weston, J.3
Noble, W.S.4
-
35
-
-
47549116997
-
A critical assessment of Mus musculus gene function prediction using integrated genomic evidence
-
Pena-Castillo L., et al. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology 2008, 9:S1.
-
(2008)
Genome Biology
, vol.9
-
-
Pena-Castillo, L.1
-
37
-
-
84870859088
-
Cancer module genes ranking using kernelized score functions
-
Re M., Valentini G. Cancer module genes ranking using kernelized score functions. BMC Bioinformatics 2012, 13:S14.
-
(2012)
BMC Bioinformatics
, vol.13
-
-
Re, M.1
Valentini, G.2
-
39
-
-
9144257282
-
The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
-
Ruepp A., et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research 2004, 32:5539-5545.
-
(2004)
Nucleic Acids Research
, vol.32
, pp. 5539-5545
-
-
Ruepp, A.1
-
41
-
-
9444285502
-
Kernel and regularization on graphs
-
Springer, B. Scholkopf, M. Warmuth (Eds.) Proc. of the annual conf. on computational learning theory
-
Smola A., Kondor I. Kernel and regularization on graphs. Lecture notes in computer science 2003, 144-158. Springer. B. Scholkopf, M. Warmuth (Eds.).
-
(2003)
Lecture notes in computer science
, pp. 144-158
-
-
Smola, A.1
Kondor, I.2
-
42
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg S., Rätsch G., Schäfer C., Schölkopf B. Large scale multiple kernel learning. Journal of Machine Learning Research 2006, 7:1531-1565.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
43
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
Spellman P.T., et al. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9:3273-3297.
-
(1998)
Molecular Biology of the Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
-
44
-
-
33644873184
-
Biogrid: a general repository for interaction datasets
-
Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M. Biogrid: a general repository for interaction datasets. Nucleic Acids Research 2006, 34:D535-D539.
-
(2006)
Nucleic Acids Research
, vol.34
-
-
Stark, C.1
Breitkreutz, B.J.2
Reguly, T.3
Boucher, L.4
Breitkreutz, A.5
Tyers, M.6
-
47
-
-
27544435126
-
Fast protein classification with multiple networks
-
Tsuda K., Shin H., Scholkopf B. Fast protein classification with multiple networks. Bioinformatics 2005, 21:ii59-ii65.
-
(2005)
Bioinformatics
, vol.21
-
-
Tsuda, K.1
Shin, H.2
Scholkopf, B.3
-
49
-
-
0038699587
-
Global protein function prediction from protein-protein interaction networks
-
Vazquez A., Flammini A., Maritan A., Vespignani A. Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 2003, 21:697-700.
-
(2003)
Nature Biotechnology
, vol.21
, pp. 697-700
-
-
Vazquez, A.1
Flammini, A.2
Maritan, A.3
Vespignani, A.4
-
50
-
-
0037161731
-
Comparative assessment of large-scale data sets of protein-protein interactions
-
Von Mering C., et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417:399-403.
-
(2002)
Nature
, vol.417
, pp. 399-403
-
-
Von Mering, C.1
-
52
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945, 1:80-83.
-
(1945)
Biometrics
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
54
-
-
21744462288
-
Applications of a neural network to watermarking capacity of digital image
-
Zhang F., Zhang H. Applications of a neural network to watermarking capacity of digital image. Neurocomputing 2005, 67:345-349.
-
(2005)
Neurocomputing
, vol.67
, pp. 345-349
-
-
Zhang, F.1
Zhang, H.2
-
56
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
Zhu X., Ghahramani Z., Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. ICML 2003, 912-919.
-
(2003)
ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
57
-
-
77956235987
-
Semantic and layered protein function prediction from ppi networks
-
Zhu W., Hou J., Chen Y.-P.P. Semantic and layered protein function prediction from ppi networks. Journal of Theoretical Biology 2010, 267:129-136.
-
(2010)
Journal of Theoretical Biology
, vol.267
, pp. 129-136
-
-
Zhu, W.1
Hou, J.2
Chen, Y.-P.P.3
|