메뉴 건너뛰기




Volumn 43, Issue , 2013, Pages 84-98

A neural network algorithm for semi-supervised node label learning from unbalanced data

Author keywords

Hopfield neural networks; Learning from unbalanced data; Node label prediction; Semi supervised learning in graphs

Indexed keywords

COST-SENSITIVE NEURAL NETWORKS; EXPERIMENTAL ANALYSIS; LABEL PREDICTIONS; NEURAL NETWORK ALGORITHM; OPTIMIZATION PROCEDURES; SEMI-SUPERVISED LEARNING; SOCIAL NETWORK ANALYSIS; UNBALANCED DATA;

EID: 84875251066     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.01.021     Document Type: Article
Times cited : (47)

References (57)
  • 1
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than exact for interval estimation of binomial proportions
    • Agresti A., Coull B.A. Approximate is better than exact for interval estimation of binomial proportions. Statistical Science 1998, 52:119-126.
    • (1998) Statistical Science , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2
  • 2
    • 34547998923 scopus 로고    scopus 로고
    • The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks
    • ACM, New York, NY, USA
    • Azran A. The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks. Proceedings of the 24th international conference on machine learning 2007, 49-56. ACM, New York, NY, USA.
    • (2007) Proceedings of the 24th international conference on machine learning , pp. 49-56
    • Azran, A.1
  • 3
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • Springer
    • Belkin M., Matveeva I., Niyogi P. Regularization and semi-supervised learning on large graphs. COLT 2004, 624-638. Springer.
    • (2004) COLT , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 5
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • MIT Press, O. Chapelle, B. Scholkopf, A. Zien (Eds.)
    • Bengio Y., Delalleau O., Le Roux N. Label propagation and quadratic criterion. Semi-supervised learning 2006, 193-216. MIT Press. O. Chapelle, B. Scholkopf, A. Zien (Eds.).
    • (2006) Semi-supervised learning , pp. 193-216
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 8
    • 60149086627 scopus 로고    scopus 로고
    • Network analysis in the social sciences
    • Borgatti S., Mehra A., Brass D., Labianca G. Network analysis in the social sciences. Science 2009, 232:892-895.
    • (2009) Science , vol.232 , pp. 892-895
    • Borgatti, S.1    Mehra, A.2    Brass, D.3    Labianca, G.4
  • 10
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion
    • Brown L.D., Cai T.T., Dasgupta A. Interval estimation for a binomial proportion. Statistical Science 2001, 16:101-133.
    • (2001) Statistical Science , vol.16 , pp. 101-133
    • Brown, L.D.1    Cai, T.T.2    Dasgupta, A.3
  • 11
    • 84865223440 scopus 로고    scopus 로고
    • Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference
    • Cesa-Bianchi N., Re M., Valentini G. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine Learning 2012, 88:209-241.
    • (2012) Machine Learning , vol.88 , pp. 209-241
    • Cesa-Bianchi, N.1    Re, M.2    Valentini, G.3
  • 13
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • Chua H.N., Sung W.-K., Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 2006, 22:1623-1630.
    • (2006) Bioinformatics , vol.22 , pp. 1623-1630
    • Chua, H.N.1    Sung, W.-K.2    Wong, L.3
  • 14
    • 36949038721 scopus 로고    scopus 로고
    • An efficient strategy for extensive integration of diverse biological data for protein function prediction
    • Chua H., Sung W., Wong L. An efficient strategy for extensive integration of diverse biological data for protein function prediction. Bioinformatics 2007, 23:3364-3373.
    • (2007) Bioinformatics , vol.23 , pp. 3364-3373
    • Chua, H.1    Sung, W.2    Wong, L.3
  • 15
    • 84862619225 scopus 로고    scopus 로고
    • In R. G. Cowell, & Z. Ghahramani (Eds.), Proceedings of the tenth international workshop on artificial intelligence and statistics, January 6-8, 2005, Savannah Hotel, Barbados
    • Delalleau, O., Bengio, Y., & Le Roux, N. (2005). Efficient non-parametric function induction in semi-supervised learning. In R. G. Cowell, & Z. Ghahramani (Eds.), Proceedings of the tenth international workshop on artificial intelligence and statistics, January 6-8, 2005, Savannah Hotel, Barbados (pp. 96-103).
    • (2005) Efficient non-parametric function induction in semi-supervised learning , pp. 96-103
    • Delalleau, O.1    Bengio, Y.2    Le Roux, N.3
  • 16
    • 3142622851 scopus 로고    scopus 로고
    • An integrated probabilistic model for functional prediction of proteins
    • Deng M., Chen T., Sun F. An integrated probabilistic model for functional prediction of proteins. Journal of Computational Biology 2004, 11:463-475.
    • (2004) Journal of Computational Biology , vol.11 , pp. 463-475
    • Deng, M.1    Chen, T.2    Sun, F.3
  • 18
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • Eddy S.R. Profile hidden Markov models. Bioinformatics 1998, 14:755-763.
    • (1998) Bioinformatics , vol.14 , pp. 755-763
    • Eddy, S.R.1
  • 20
    • 33748776559 scopus 로고    scopus 로고
    • Automated protein function prediction-the genomic challenge
    • Friedberg I. Automated protein function prediction-the genomic challenge. Briefings in Bioinformatics 2006, 7:225-242.
    • (2006) Briefings in Bioinformatics , vol.7 , pp. 225-242
    • Friedberg, I.1
  • 21
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch P., et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 2000, 11:4241-4257.
    • (2000) Molecular Biology of the Cell , vol.11 , pp. 4241-4257
    • Gasch, P.1
  • 22
    • 0024090156 scopus 로고
    • A new approach to the maximum flow problem
    • Goldberg A., Tarjan R. A new approach to the maximum flow problem. Journal of the ACM (JACM) 1988, 35:921-940.
    • (1988) Journal of the ACM (JACM) , vol.35 , pp. 921-940
    • Goldberg, A.1    Tarjan, R.2
  • 29
    • 0033523854 scopus 로고    scopus 로고
    • A combined algorithm for genome-wide prediction of protein function
    • Marcotte E., Pellegrini M., Thompson M., Yeates T., Eisenberg D. A combined algorithm for genome-wide prediction of protein function. Nature 1999, 402:83-86.
    • (1999) Nature , vol.402 , pp. 83-86
    • Marcotte, E.1    Pellegrini, M.2    Thompson, M.3    Yeates, T.4    Eisenberg, D.5
  • 30
    • 47549107689 scopus 로고    scopus 로고
    • Genemania: a real-time multiple association network integration algorithm for predicting gene function
    • Mostafavi S., Ray D., Farley D.W., Grouios C., Morris Q. Genemania: a real-time multiple association network integration algorithm for predicting gene function. Genome Biology 2008, 9:S4+.
    • (2008) Genome Biology , vol.9
    • Mostafavi, S.1    Ray, D.2    Farley, D.W.3    Grouios, C.4    Morris, Q.5
  • 32
    • 29144442904 scopus 로고    scopus 로고
    • Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps
    • Nabieva E., Jim K., Agarwal A., Chazelle B., Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 2005, 21:302-310.
    • (2005) Bioinformatics , vol.21 , pp. 302-310
    • Nabieva, E.1    Jim, K.2    Agarwal, A.3    Chazelle, B.4    Singh, M.5
  • 33
    • 0034628487 scopus 로고    scopus 로고
    • Guilt-by-association goes global
    • Oliver S. Guilt-by-association goes global. Nature 2000, 403:601-603.
    • (2000) Nature , vol.403 , pp. 601-603
    • Oliver, S.1
  • 35
    • 47549116997 scopus 로고    scopus 로고
    • A critical assessment of Mus musculus gene function prediction using integrated genomic evidence
    • Pena-Castillo L., et al. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology 2008, 9:S1.
    • (2008) Genome Biology , vol.9
    • Pena-Castillo, L.1
  • 37
    • 84870859088 scopus 로고    scopus 로고
    • Cancer module genes ranking using kernelized score functions
    • Re M., Valentini G. Cancer module genes ranking using kernelized score functions. BMC Bioinformatics 2012, 13:S14.
    • (2012) BMC Bioinformatics , vol.13
    • Re, M.1    Valentini, G.2
  • 39
    • 9144257282 scopus 로고    scopus 로고
    • The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
    • Ruepp A., et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research 2004, 32:5539-5545.
    • (2004) Nucleic Acids Research , vol.32 , pp. 5539-5545
    • Ruepp, A.1
  • 41
    • 9444285502 scopus 로고    scopus 로고
    • Kernel and regularization on graphs
    • Springer, B. Scholkopf, M. Warmuth (Eds.) Proc. of the annual conf. on computational learning theory
    • Smola A., Kondor I. Kernel and regularization on graphs. Lecture notes in computer science 2003, 144-158. Springer. B. Scholkopf, M. Warmuth (Eds.).
    • (2003) Lecture notes in computer science , pp. 144-158
    • Smola, A.1    Kondor, I.2
  • 43
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman P.T., et al. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9:3273-3297.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 46
  • 47
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • Tsuda K., Shin H., Scholkopf B. Fast protein classification with multiple networks. Bioinformatics 2005, 21:ii59-ii65.
    • (2005) Bioinformatics , vol.21
    • Tsuda, K.1    Shin, H.2    Scholkopf, B.3
  • 49
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • Vazquez A., Flammini A., Maritan A., Vespignani A. Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 2003, 21:697-700.
    • (2003) Nature Biotechnology , vol.21 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 50
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • Von Mering C., et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002, 417:399-403.
    • (2002) Nature , vol.417 , pp. 399-403
    • Von Mering, C.1
  • 52
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945, 1:80-83.
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 54
    • 21744462288 scopus 로고    scopus 로고
    • Applications of a neural network to watermarking capacity of digital image
    • Zhang F., Zhang H. Applications of a neural network to watermarking capacity of digital image. Neurocomputing 2005, 67:345-349.
    • (2005) Neurocomputing , vol.67 , pp. 345-349
    • Zhang, F.1    Zhang, H.2
  • 56
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • Zhu X., Ghahramani Z., Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. ICML 2003, 912-919.
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 57
    • 77956235987 scopus 로고    scopus 로고
    • Semantic and layered protein function prediction from ppi networks
    • Zhu W., Hou J., Chen Y.-P.P. Semantic and layered protein function prediction from ppi networks. Journal of Theoretical Biology 2010, 267:129-136.
    • (2010) Journal of Theoretical Biology , vol.267 , pp. 129-136
    • Zhu, W.1    Hou, J.2    Chen, Y.-P.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.