메뉴 건너뛰기




Volumn 45, Issue 1, 2008, Pages 110-122

Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks

Author keywords

AdaBoost; Corporate Failure Prediction; Neural Network

Indexed keywords

ERROR ANALYSIS; FAILURE ANALYSIS; LEARNING ALGORITHMS;

EID: 41149115573     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2007.12.002     Document Type: Article
Times cited : (244)

References (58)
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23 4 (1968) 589-609
    • (1968) Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: comparison using linear discriminant analysis and neural networks (the Italian experience)
    • Altman E.I., Marco G., and Varetto F. Corporate distress diagnosis: comparison using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance 18 (1994) 505-529
    • (1994) Journal of Banking and Finance , vol.18 , pp. 505-529
    • Altman, E.I.1    Marco, G.2    Varetto, F.3
  • 4
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: a survey and new results
    • Atiya A.F. Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Transaction on Neural Networks 12 4 (2001) 929-935
    • (2001) IEEE Transaction on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 8
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithm: bagging, boosting and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithm: bagging, boosting and variants. Machine Learning 36 (1999) 105-142
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. The Annals of Statistics 26 3 (1998) 801-849
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 15
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Chang Lee K., Han I., and Kwon Y. Hybrid neural network models for bankruptcy predictions. Decision Support Systems 18 1 (1996) 63-72
    • (1996) Decision Support Systems , vol.18 , Issue.1 , pp. 63-72
    • Chang Lee, K.1    Han, I.2    Kwon, Y.3
  • 16
    • 0034562990 scopus 로고    scopus 로고
    • Comparative analysis of artificial neural network models: application in bankruptcy prediction
    • Charalambous C., Charitou A., and Kaorou F. Comparative analysis of artificial neural network models: application in bankruptcy prediction. Annals of Operation Research 99 4 (2000) 403-425
    • (2000) Annals of Operation Research , vol.99 , Issue.4 , pp. 403-425
    • Charalambous, C.1    Charitou, A.2    Kaorou, F.3
  • 18
    • 0000152448 scopus 로고
    • Application forecasting with neural networks. An application using bankruptcy data
    • Fletcher D., and Goss E. Application forecasting with neural networks. An application using bankruptcy data. Information and Management 24 (1993) 159-167
    • (1993) Information and Management , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 20
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Freund Y., Schapire R.E., Bartlett P., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics 26 5 (1998) 1651-1686
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Freund, Y.1    Schapire, R.E.2    Bartlett, P.3    Lee, W.S.4
  • 22
    • 26844494532 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. The Annals of Statistics 38 2 (2000) 391-393
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 391-393
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: the case of financial distress
    • Frydman H., Altman E., and Kao D. Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance (1985) 269-291
    • (1985) Journal of Finance , pp. 269-291
    • Frydman, H.1    Altman, E.2    Kao, D.3
  • 27
    • 0345404391 scopus 로고    scopus 로고
    • Predicting bankruptcies with self organizing maps
    • Kiviluoto K. Predicting bankruptcies with self organizing maps. Neurocomputing 21 (1998) 191-201
    • (1998) Neurocomputing , vol.21 , pp. 191-201
    • Kiviluoto, K.1
  • 30
    • 0042857342 scopus 로고    scopus 로고
    • Comparative analysis of failure prediction methods: the Finish case
    • Laitinen T., and Kankaanpaa M. Comparative analysis of failure prediction methods: the Finish case. European Accounting Review 8 1 (1999) 67-92
    • (1999) European Accounting Review , vol.8 , Issue.1 , pp. 67-92
    • Laitinen, T.1    Kankaanpaa, M.2
  • 31
    • 2442655599 scopus 로고    scopus 로고
    • Neural network techniques for financial performance prediction: integrating fundamental and technical analysis
    • Lam M. Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems 37 (2004) 567-581
    • (2004) Decision Support Systems , vol.37 , pp. 567-581
    • Lam, M.1
  • 32
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Lee K.C., Han I., and Kwon Y. Hybrid neural network models for bankruptcy predictions. Decision Support Systems 18 (1996) 63-72
    • (1996) Decision Support Systems , vol.18 , pp. 63-72
    • Lee, K.C.1    Han, I.2    Kwon, Y.3
  • 33
    • 16244365542 scopus 로고    scopus 로고
    • A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
    • Lee K., Booth D., and Alam P. A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications 29 (2005) 1-16
    • (2005) Expert Systems with Applications , vol.29 , pp. 1-16
    • Lee, K.1    Booth, D.2    Alam, P.3
  • 34
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: the bankruptcy case
    • Leshno M., and Spector Y. Neural network prediction analysis: the bankruptcy case. Neurocomputing 10 (1996) 125-147
    • (1996) Neurocomputing , vol.10 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 36
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Olshon J.A. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18 1 (1980) 5-12
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 5-12
    • Olshon, J.A.1
  • 38
    • 31944447514 scopus 로고    scopus 로고
    • Artificial neural networks and bankruptcy forecasting: a state of the art
    • Pérez M. Artificial neural networks and bankruptcy forecasting: a state of the art. Neural Computing & Applications 15 2 (2006) 154-163
    • (2006) Neural Computing & Applications , vol.15 , Issue.2 , pp. 154-163
    • Pérez, M.1
  • 39
    • 0032021890 scopus 로고    scopus 로고
    • Using feature construction to improve the performance of the neural networks
    • Piramuthu S., Ragavan H., and Shaw M.J. Using feature construction to improve the performance of the neural networks. Management Sciences 44 3 (1998)
    • (1998) Management Sciences , vol.44 , Issue.3
    • Piramuthu, S.1    Ragavan, H.2    Shaw, M.J.3
  • 40
    • 33744584654 scopus 로고
    • Induction on decision trees
    • Quinlan J.R. Induction on decision trees. Mach. Learn. 1 (1986) 81-106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 43
    • 24744450083 scopus 로고    scopus 로고
    • Bankruptcy prediction by neural networks
    • Trippi R.R., and Turban E. (Eds), Irwin Professional Pub., Burr Ridge
    • Rahimian E., Singh S., Thammachote T., and Virmani R. Bankruptcy prediction by neural networks. In: Trippi R.R., and Turban E. (Eds). Neural Networks in Finance and Investing (1996), Irwin Professional Pub., Burr Ridge
    • (1996) Neural Networks in Finance and Investing
    • Rahimian, E.1    Singh, S.2    Thammachote, T.3    Virmani, R.4
  • 44
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review
    • Ravi Kumar P., and Ravi V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review. European Journal of Operational Research 180 (2007) 1-28
    • (2007) European Journal of Operational Research , vol.180 , pp. 1-28
    • Ravi Kumar, P.1    Ravi, V.2
  • 46
    • 84988828223 scopus 로고
    • Neural networks: a tool for predicting thrift failures
    • Salchenberger L., Mine C., and Lash N. Neural networks: a tool for predicting thrift failures. Decision Sciences 23 (1992) 899-916
    • (1992) Decision Sciences , vol.23 , pp. 899-916
    • Salchenberger, L.1    Mine, C.2    Lash, N.3
  • 47
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • Serrano-Cinca C. Self organizing neural networks for financial diagnosis. Decision Support Systems 17 3 (1996) 227-238
    • (1996) Decision Support Systems , vol.17 , Issue.3 , pp. 227-238
    • Serrano-Cinca, C.1
  • 48
    • 0004398518 scopus 로고    scopus 로고
    • Feedforward neural networks in the classification of financial information
    • Serrano-Cinca C. Feedforward neural networks in the classification of financial information. European Journal of Finance 3 3 (1997) 183-202
    • (1997) European Journal of Finance , vol.3 , Issue.3 , pp. 183-202
    • Serrano-Cinca, C.1
  • 50
    • 33846316737 scopus 로고    scopus 로고
    • Off-site monitoring for predicting bank under performance: a comparison of neural networks, discriminant analysis and professional human judgement
    • Swicegood P., and Clark J.A. Off-site monitoring for predicting bank under performance: a comparison of neural networks, discriminant analysis and professional human judgement. International Journal in Accounting, Finance and Management 10 (2001) 169-186
    • (2001) International Journal in Accounting, Finance and Management , vol.10 , pp. 169-186
    • Swicegood, P.1    Clark, J.A.2
  • 51
    • 0001273663 scopus 로고
    • Neural networks models and the prediction of bank bankruptcy
    • Tam K.Y. Neural networks models and the prediction of bank bankruptcy. Omega 19 5 (1991) 429-445
    • (1991) Omega , vol.19 , Issue.5 , pp. 429-445
    • Tam, K.Y.1
  • 52
    • 33846279365 scopus 로고
    • Predicting bank failures: a neural network approach
    • Tam K.Y., and Kiang M. Predicting bank failures: a neural network approach. Decision Sciences 23 (1992) 926-947
    • (1992) Decision Sciences , vol.23 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.2
  • 53
    • 0000126580 scopus 로고
    • Predicting Japanese corporate bankruptcy in terms of finance data using neural network
    • Tsukuda J., and Baba S.I. Predicting Japanese corporate bankruptcy in terms of finance data using neural network. Computers and Industrial Engineering 27 1-4 (1994) 445-448
    • (1994) Computers and Industrial Engineering , vol.27 , Issue.1-4 , pp. 445-448
    • Tsukuda, J.1    Baba, S.I.2
  • 55
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural network
    • Wilson R.L., and Sharda R. Bankruptcy prediction using neural network. Decision Support Systems 11 (1994) 545-557
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 57
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks and bankruptcy prediction general framework and cross-validated analysis
    • Zhang G., Hu M.Y., Patuwo B.E., and Indro D.C. Artificial neural networks and bankruptcy prediction general framework and cross-validated analysis. European Journal of Operational Research 116 (1999) 16-32
    • (1999) European Journal of Operational Research , vol.116 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4
  • 58
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • Zmijewski M. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research 22 (1984) 59-86
    • (1984) Journal of Accounting Research , vol.22 , pp. 59-86
    • Zmijewski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.