-
2
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol.46, nos. 1-3, pp. 389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
4
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman, "An Extensive Empirical Study of Feature Selection Metrics for Text Classification," J. Machine Learning Research, vol.3, pp. 1289-1305, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
5
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Z. Zheng, X. Wu, and R. Srihari, "Feature Selection for Text Categorization on Imbalanced Data," ACM SIGKDD Explorations Newsletter, vol.6, pp. 80-89, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
6
-
-
0742268532
-
Feature reduction and morphological processing for hyperspectral image data
-
D. Casasent and X. Chen, "Feature Reduction and Morphological Processing for Hyperspectral Image Data," Applied Optics, vol.43, no.2, pp. 1-10, 2004.
-
(2004)
Applied Optics
, vol.43
, Issue.2
, pp. 1-10
-
-
Casasent, D.1
Chen, X.2
-
9
-
-
6344256780
-
A study of sample size with neural network
-
Y.J. Cui, S. Davis, C.k. Cheng, and X. Bai, "A Study of Sample Size with Neural Network," Proc. Third Int'l Conf. Machine Learning and Cybernetics, pp. 3444-3448, 2004.
-
(2004)
Proc. Third Int'l Conf. Machine Learning and Cybernetics
, pp. 3444-3448
-
-
Cui, Y.J.1
Davis, S.2
Cheng, C.K.3
Bai, X.4
-
11
-
-
20844458491
-
Mining with rarity: A unifying framework
-
G. Weiss, "Mining with Rarity: A Unifying Framework," ACM SIGKDD Explorations Newsletter, vol.6, no.1, pp. 7-19, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.1
-
12
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. Weiss and F. Provost, "Learning when Training Data Are Costly: The Effect of Class Distribution on Tree Induction," J. Artificial Intelligence Research, vol.19, pp. 315-354, 2003.
-
(2003)
J. Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.1
Provost, F.2
-
13
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. Chawla, N. Japkowicz, and A. Kotcz, "Editorial: Special Issue on Learning from Imbalanced Data Sets," ACM SIGKDD Explorations Newsletter, vol.6, no.1, pp. 1-6, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.1
Japkowicz, N.2
Kotcz, A.3
-
14
-
-
0001972236
-
Addressing the curse of imbalanced data sets: One sided sampling
-
M. Kubat and S. Matwin, "Addressing the Curse of Imbalanced Data Sets: One Sided Sampling," Proc. 14th Int'l Conf. Machine Learning, pp. 179-186, 1997.
-
(1997)
Proc. 14th Int'l Conf. Machine Learning
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
15
-
-
33750117549
-
Pruning support vectors for imbalanced data classification
-
X. Chen, B. Gerlach, and D. Casasent, "Pruning Support Vectors for Imbalanced Data Classification," Proc. Int'l Joint Conf. Neural Networks, pp. 1883-1888, 2005.
-
(2005)
Proc. Int'l Joint Conf. Neural Networks
, pp. 1883-1888
-
-
Chen, X.1
Gerlach, B.2
Casasent, D.3
-
17
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. Chawla, K. Bowyer, L. Hall, and P. Kegelmeyer, "SMOTE: Synthetic Minority Over-Sampling Technique," J. Artificial Intelligence Research, vol.16, pp. 321-357, 2002.
-
(2002)
J. Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.1
Bowyer, K.2
Hall, L.3
Kegelmeyer, P.4
-
18
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz, "A Multiple Resampling Method for Learning from Imbalanced Data Sets," Computational Intelligence, vol.20, no.1, pp. 18-36, 2004.
-
(2004)
Computational Intelligence
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
19
-
-
0004708854
-
Exploiting the cost (In)sensitivity of decision tree splitting criteria
-
C. Drummond and R.C. Holte, "Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria," Proc. 17th Int'l Conf. Machine Learning, pp. 239-246, 2000.
-
(2000)
Proc. 17th Int'l Conf. Machine Learning
, pp. 239-246
-
-
Drummond, C.1
Holte, R.C.2
-
20
-
-
0034825091
-
Supervised versus unsupervised binary learning by feedforward neural networks
-
N. Japkowicz, "Supervised versus Unsupervised Binary Learning by Feedforward Neural Networks," Machine Learning, vol.42, nos. 1/2, pp. 97-122, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 97-122
-
-
Japkowicz, N.1
-
21
-
-
32344438970
-
Extreme rebalancing for SVMs: A SVM study
-
A. Raskutti and A. Kowalczyk, "Extreme Rebalancing for SVMs: A SVM Study," ACM SIGKDD Explorations Newsletter, vol.6, no.1, pp. 60-69, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 60-69
-
-
Raskutti, A.1
Kowalczyk, A.2
-
22
-
-
85096855936
-
One-Class SVMs for document classification
-
L.M. Manevitz and M. Yousef, "One-Class SVMs for Document Classification," J. Machine Learning Research, vol.2, pp. 139-154, 2001.
-
(2001)
J. Machine Learning Research
, vol.2
, pp. 139-154
-
-
Manevitz, L.M.1
Yousef, M.2
-
23
-
-
58149180961
-
Learning classifiers from only positive and unlabeled data
-
C. Elkan and K. Noto, "Learning Classifiers from Only Positive and Unlabeled Data," Proc. ACM SIGKDD '08, pp. 213-220, 2008.
-
(2008)
Proc. ACM SIGKDD '08
, pp. 213-220
-
-
Elkan, C.1
Noto, K.2
-
25
-
-
9444297357
-
SMOTEBoost: Improving prediction of the minority class in boosting
-
N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, "SMOTEBoost: Improving Prediction of the Minority Class in Boosting," Proc. Seventh European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 107-119, 2003.
-
(2003)
Proc. Seventh European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD)
, pp. 107-119
-
-
Chawla, N.1
Lazarevic, A.2
Hall, L.3
Bowyer, K.4
-
26
-
-
67049152595
-
Boosting for learning multiple classes with imbalanced class distribution
-
Y. Sun, M. Kamel, and Y. Wang, "Boosting for Learning Multiple Classes with Imbalanced Class Distribution," Proc. Sixth Int'l Conf. Data Mining, pp. 592-602, 2006.
-
(2006)
Proc. Sixth Int'l Conf. Data Mining
, pp. 592-602
-
-
Sun, Y.1
Kamel, M.2
Wang, Y.3
-
27
-
-
0002106691
-
MetaCost: A general method for making classifiers cost-sensitive
-
P. Domingos, "MetaCost: A General Method for Making Classifiers Cost-Sensitive," Proc. ACM SIGKDD '99, pp. 155-164, 1999.
-
(1999)
Proc. ACM SIGKDD '99
, pp. 155-164
-
-
Domingos, P.1
-
28
-
-
0013113240
-
Adaptive fraud detection
-
T. Fawcett and F. Provost, "Adaptive Fraud Detection," Data Mining and Knowledge Discovery, vol.1, no.3, pp. 291-316, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 291-316
-
-
Fawcett, T.1
Provost, F.2
-
29
-
-
12244287068
-
An iterative method for multi-class cost-sensitive learning
-
N. Abe, B. Zadrozny, and J. Langford, "An Iterative Method for Multi-Class Cost-Sensitive Learning," Proc. ACM SIGKDD '04, pp. 3-11, 2004.
-
(2004)
Proc. ACM SIGKDD '04
, pp. 3-11
-
-
Abe, N.1
Zadrozny, B.2
Langford, J.3
-
31
-
-
5044220135
-
Learning classifiers from imbalanced data based on biased minimax probability machine
-
K. Huang, H. Yang, I. King, and M. Lyu, "Learning Classifiers from Imbalanced Data Based on Biased Minimax Probability Machine," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, vol.2, no.27, pp. II-558-II-563, 2004.
-
(2004)
Proc. IEEE CS Conf. Computer Vision and Pattern Recognition
, vol.2
, Issue.27
-
-
Huang, K.1
Yang, H.2
King, I.3
Lyu, M.4
-
32
-
-
0003032306
-
The problem of small disjuncts: Its remedy on decision Trees
-
K. Ting, "The Problem of Small Disjuncts: Its Remedy on Decision Trees," Proc. 10th Canadian Conf. Artificial Intelligence, pp. 91-97, 1994.
-
(1994)
Proc. 10th Canadian Conf. Artificial Intelligence
, pp. 91-97
-
-
Ting, K.1
-
34
-
-
33749563073
-
Training linear SVMs in linear time
-
T. Joachims, "Training Linear SVMs in Linear Time," Proc. ACM SIGKDD '06, pp. 217-226, 2006.
-
(2006)
Proc. ACM SIGKDD '06
, pp. 217-226
-
-
Joachims, T.1
-
35
-
-
33746131974
-
Kernel-based distance metric learning for microarray data classification
-
H. Xiong and X. Chen, "Kernel-Based Distance Metric Learning for Microarray Data Classification," BMC Bioinformatics, vol.7, no.299, pp. 1-11, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.299
, pp. 1-11
-
-
Xiong, H.1
Chen, X.2
-
36
-
-
3242765279
-
A Bias-variance analysis of a real world learning problem: The coil challenge 2000
-
P.V. der Putten and M. van Someren, "A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000," Machine Learning, vol.57, nos. 1/2, pp. 177-195, 2004.
-
(2004)
Machine Learning
, vol.57
, Issue.1-2
, pp. 177-195
-
-
Der Putten, P.V.1
Van Someren, M.2
-
37
-
-
58049141286
-
FAST: A ROC-based feature selection metric for small samples and imbalanced data classification problems
-
X. Chen and M. Wasikowski, "FAST: A ROC-Based Feature Selection Metric for Small Samples and Imbalanced Data Classification Problems," Proc. ACM SIGKDD '08, pp. 124-133, 2008.
-
(2008)
Proc. ACM SIGKDD '08
, pp. 124-133
-
-
Chen, X.1
Wasikowski, M.2
-
38
-
-
0035789256
-
Magical thinking in data mining: Lessons from coil challenge 2000
-
C. Elkan, "Magical Thinking in Data Mining: Lessons from CoIL Challenge 2000," Proc. ACM SIGKDD '01, pp. 426-431, 2001.
-
(2001)
Proc. ACM SIGKDD '01
, pp. 426-431
-
-
Elkan, C.1
-
39
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol.3, pp. 1157- 1182, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
41
-
-
0001001098
-
Feature selection for support vector machines
-
MIT Press
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, "Feature Selection for Support Vector Machines," Advances in Neural Information Processing Systems, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
42
-
-
0038329332
-
An improved branch and bound algorithm for feature selection
-
X. Chen, "An Improved Branch and Bound Algorithm for Feature Selection," Pattern Recognition Letters, vol.24, no.12, pp. 1925-1933, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.12
, pp. 1925-1933
-
-
Chen, X.1
-
43
-
-
34547984193
-
Minimum reference set based feature selection for small sample classifications
-
X. Chen and J.C. Jeong, "Minimum Reference Set Based Feature Selection for Small Sample Classifications," Proc. 24th Int'l Conf. Machine Learning, pp. 153-160, 2006.
-
(2006)
Proc. 24th Int'l Conf. Machine Learning
, pp. 153-160
-
-
Chen, X.1
Jeong, J.C.2
-
44
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu and H. Liu, "Efficient Feature Selection via Analysis of Relevance and Redundancy," J. Machine Learning Research, vol.5, pp. 1205-1224, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
45
-
-
0028547556
-
Floating search methods in feature selection
-
P. Pudil, J. Novovicova, and J. Kittler, "Floating Search Methods in Feature Selection," Pattern Recognition Letters, vol.15, pp. 1119-1125, 1994.
-
(1994)
Pattern Recognition Letters
, vol.15
, pp. 1119-1125
-
-
Pudil, P.1
Novovicova, J.2
Kittler, J.3
-
46
-
-
33646413711
-
-
MIT Press
-
O. Lund, M. Nielsen, C. Lundegaard, C. Kesmir, and S. Brunak, Immunological Bioinformatics, pp. 99-101. MIT Press, 2005.
-
(2005)
Immunological Bioinformatics
, pp. 99-101
-
-
Lund, O.1
Nielsen, M.2
Lundegaard, C.3
Kesmir, C.4
Brunak, S.5
-
48
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander, "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol.286, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
49
-
-
34547995826
-
Experimental perspectives on learning from imbalanced data
-
J.V. Hulse, T.M. Khoshgoftaar, and A. Napolitano, "Experimental Perspectives on Learning from Imbalanced Data," Proc. 24th Int'l Conf. Machine Learning, pp. 935-942, 2007.
-
(2007)
Proc. 24th Int'l Conf. Machine Learning
, pp. 935-942
-
-
Hulse, J.V.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
50
-
-
27344448597
-
Feature selection and the class imbalance problem in predicting protein function from sequence
-
A. Al Shahib, R. Breitling, and D. Gilbert, "Feature Selection and the Class Imbalance Problem in Predicting Protein Function from Sequence," Applied Bioinformatics, vol.4, pp. 195-203, 2005.
-
(2005)
Applied Bioinformatics
, vol.4
, pp. 195-203
-
-
Al Shahib, A.1
Breitling, R.2
Gilbert, D.3
-
51
-
-
85146422424
-
The feature selection problem: Traditional methods and new algorithm
-
K. Kira and L. Rendell, "The Feature Selection Problem: Traditional Methods and New Algorithm," Proc. Ninth Int'l Conf. Machine Learning, pp. 249-256, 1992.
-
(1992)
Proc. Ninth Int'l Conf. Machine Learning
, pp. 249-256
-
-
Kira, K.1
Rendell, L.2
-
55
-
-
56449101965
-
Confidence-weighted linear classification
-
M. Dredze, K. Crammer, and F. Pereira, "Confidence-Weighted Linear Classification," Proc. 25th Int'l Conf. Machine Learning, pp. 264-271, 2008.
-
(2008)
Proc. 25th Int'l Conf. Machine Learning
, pp. 264-271
-
-
Dredze, M.1
Crammer, K.2
Pereira, F.3
-
56
-
-
33749239457
-
Learning a kernel function for classification with small training samples
-
T. Hertz, A.B. Hillel, and D. Weinshall, "Learning a Kernel Function for Classification with Small Training Samples," Proc. 23rd Int'l Conf. Machine Learning, pp. 401-408, 2006.
-
(2006)
Proc. 23rd Int'l Conf. Machine Learning
, pp. 401-408
-
-
Hertz, T.1
Hillel, A.B.2
Weinshall, D.3
-
58
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
F. Fleuret, "Fast Binary Feature Selection with Conditional Mutual Information," J. Machine Learning Research, vol.5, pp. 1531-1555, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 1531-1555
-
-
Fleuret, F.1
-
59
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
Aug.
-
H. Peng, F. Long, and C. Ding, "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, " IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.8, pp. 1226-1238, Aug. 2005.
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
|