-
2
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
Springer, Machine learning: ECML 2004
-
Akbani R., Kwek S., Japkowicz N. Applying support vector machines to imbalanced datasets. Lecture notes in computer science 2004, Vol. 3201:39-50. Springer. 10.1007/978-3-540-30115-8_7.
-
(2004)
Lecture notes in computer science
, vol.3201
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
3
-
-
0032786569
-
Improving support vector machine classifiers by modifying kernel functions
-
Amari S.-i., Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Networks 1999, 12:783-789. 10.1016/S0893-6080(99)00032-5.
-
(1999)
Neural Networks
, vol.12
, pp. 783-789
-
-
Amari, S.-I.1
Wu, S.2
-
4
-
-
79952317256
-
Learning from imbalanced datasets with a min-max modular support vector machine
-
Bao-Liang L., Xiao-Lin W., Yang Y., Hai Z. Learning from imbalanced datasets with a min-max modular support vector machine. Frontiers of Electrical and Electronic Engineering in China 2011, 6:56-71. 10.1007/s11460-011-0127-1.
-
(2011)
Frontiers of Electrical and Electronic Engineering in China
, vol.6
, pp. 56-71
-
-
Bao-Liang, L.1
Xiao-Lin, W.2
Yang, Y.3
Hai, Z.4
-
6
-
-
85076265982
-
Class imbalance learning methods for support vector machines
-
John Wiley & Sons, Inc.
-
Batuwita R., Palade V. Class imbalance learning methods for support vector machines. Imbalanced learning: foundations, algorithms, and applications 2013, 83-99. John Wiley & Sons, Inc. 10.1002/9781118646106.ch5.
-
(2013)
Imbalanced learning: foundations, algorithms, and applications
, pp. 83-99
-
-
Batuwita, R.1
Palade, V.2
-
7
-
-
67049135615
-
Statlog repository.
-
URL: [2007-10-22].
-
Brazdil, P., & Gama, J. (1991). Statlog repository. URL: [2007-10-22]. http://www.liacc%2Cup.pt/ML/statlog/datasets.html.
-
(1991)
-
-
Brazdil, P.1
Gama, J.2
-
8
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2:121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.1
-
9
-
-
84893568690
-
An optimized cost-sensitive SVM for imbalanced data learning
-
Springer, Advances in knowledge discovery and data mining
-
Cao P., Zhao D., Zaiane O. An optimized cost-sensitive SVM for imbalanced data learning. Lecture notes in computer science 2013, Vol. 7819:280-292. Springer. 10.1007/978-3-642-37456-2_24.
-
(2013)
Lecture notes in computer science
, vol.7819
, pp. 280-292
-
-
Cao, P.1
Zhao, D.2
Zaiane, O.3
-
10
-
-
84918787208
-
Imbalanced data classification via support vector machines and genetic algorithms
-
Cervantes J., Li X., Yu W. Imbalanced data classification via support vector machines and genetic algorithms. Connection Science 2014, 26:335-348. 10.1080/09540091.2014.924902.
-
(2014)
Connection Science
, vol.26
, pp. 335-348
-
-
Cervantes, J.1
Li, X.2
Yu, W.3
-
12
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 2002, 16:321-357. 10.1613/jair.953.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
13
-
-
84918776556
-
A selective sampling method for imbalanced data learning on support vector machines
-
(Ph.D. thesis). Ames, IA, USA.
-
Choi, J.M. (2010). A selective sampling method for imbalanced data learning on support vector machines (Ph.D. thesis). Ames, IA, USA.
-
(2010)
-
-
Choi, J.M.1
-
14
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20:273-297. 10.1023/A:1022627411411.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
15
-
-
84905860696
-
Imbalanced data classification using cost-sensitive support vector machine based on information entropy
-
Duan W., Jing L., Lu X.Y. Imbalanced data classification using cost-sensitive support vector machine based on information entropy. Advanced Materials Research 2014, 989:1756-1761. 10.4028/www.scientific.net/AMR.989-994.1756.
-
(2014)
Advanced Materials Research
, vol.989
, pp. 1756-1761
-
-
Duan, W.1
Jing, L.2
Lu, X.Y.3
-
16
-
-
84937867508
-
-
(Ph.D. thesis), University Park, PA, USA
-
Ertekin S. Learning in extreme conditions: Online and active learning with massive, imbalanced and noisy data 2009, (Ph.D. thesis), University Park, PA, USA.
-
(2009)
Learning in extreme conditions: Online and active learning with massive, imbalanced and noisy data
-
-
Ertekin, S.1
-
17
-
-
85037992344
-
Addressing the classification with imbalanced data: open problems and new challenges on class distribution
-
Springer, Hybrid artificial intelligent systems
-
Fernández A., García S., Herrera F. Addressing the classification with imbalanced data: open problems and new challenges on class distribution. Lecture notes in computer science 2011, Vol. 6678:1-10. Springer. 10.1007/978-3-642-21219-2_1.
-
(2011)
Lecture notes in computer science
, vol.6678
, pp. 1-10
-
-
Fernández, A.1
García, S.2
Herrera, F.3
-
18
-
-
84862515469
-
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
-
Galar M., Fernandez A., Barrenechea E., Bustince H., Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews 2012, 42:463-484. 10.1109/TSMCC.2011.2161285.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews
, vol.42
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
19
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
-
Special Issue on Intelligent Distributed Information Systems
-
García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 2010, 180:2044-2064. Special Issue on Intelligent Distributed Information Systems. 10.1016/j.ins.2009.12.010.
-
(2010)
Information Sciences
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
22
-
-
84886393706
-
Z-SVM: An SVM for improved classification of imbalanced data
-
Springer, AI 2006: advances in artificial intelligence
-
Imam T., Ting K.M., Kamruzzaman J. z-SVM: An SVM for improved classification of imbalanced data. Lecture notes in computer science 2006, Vol.~4304:264-273. Springer. 10.1007/11941439_30.
-
(2006)
Lecture notes in computer science
, vol.4304
, pp. 264-273
-
-
Imam, T.1
Ting, K.M.2
Kamruzzaman, J.3
-
23
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi S.S., Shevade S.K., Bhattacharyya C., Murthy K.R.K. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation 2001, 13:637-649. 10.1162/089976601300014493.
-
(2001)
Neural Computation
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
25
-
-
0001972236
-
Addressing the curse of imbalanced training sets: one-sided selection
-
Morgan Kaufmann, Nashville, USA
-
Kubat M., Matwin S., et al. Addressing the curse of imbalanced training sets: one-sided selection. Proceedings of the fourteenth international conference on machine learning 1997, 179-186. Morgan Kaufmann, Nashville, USA.
-
(1997)
Proceedings of the fourteenth international conference on machine learning
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
26
-
-
84918829213
-
Unbalanced data classification using support vector machines with active learning on scleroderma lung disease patterns
-
Lee J., Wu Y., Kim H. Unbalanced data classification using support vector machines with active learning on scleroderma lung disease patterns. Journal of Applied Statistics 2014, 42:676-689. 10.1080/02664763.2014.978270.
-
(2014)
Journal of Applied Statistics
, vol.42
, pp. 676-689
-
-
Lee, J.1
Wu, Y.2
Kim, H.3
-
27
-
-
84886567160
-
UCI machine learning repository
-
Lichman, M. (2013). UCI machine learning repository. URL: . http://archive.ics.uci.edu/ml.
-
(2013)
-
-
Lichman, M.1
-
28
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
Lin Y., Lee Y., Wahba G. Support vector machines for classification in nonstandard situations. Machine Learning 2002, 46:191-202. 10.1023/A:1012406528296.
-
(2002)
Machine Learning
, vol.46
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
29
-
-
84888640664
-
Adjusted f-measure and kernel scaling for imbalanced data learning
-
Maratea A., Petrosino A., Manzo M. Adjusted f-measure and kernel scaling for imbalanced data learning. Information Sciences 2014, 257:331-341. 10.1016/j.ins.2013.04.016.
-
(2014)
Information Sciences
, vol.257
, pp. 331-341
-
-
Maratea, A.1
Petrosino, A.2
Manzo, M.3
-
32
-
-
84937886564
-
Imbalanced data SVM classification method based on cluster boundary sampling and DT-KNN pruning
-
Peng L., Xiao-yang Y., Ting-ting B., Jiu-ling H. Imbalanced data SVM classification method based on cluster boundary sampling and DT-KNN pruning. International Journal of Signal Processing, Image Processing and Pattern Recognition 2014, 7:61-68.
-
(2014)
International Journal of Signal Processing, Image Processing and Pattern Recognition
, vol.7
, pp. 61-68
-
-
Peng, L.1
Xiao-yang, Y.2
Ting-ting, B.3
Jiu-ling, H.4
-
36
-
-
33845933299
-
IDA benchmark repository.
-
Rätsch, G. (2001). IDA benchmark repository. URL: . http://ida.first.fhg.de/projects/bench/benchmarks.htm.
-
(2001)
-
-
Rätsch, G.1
-
37
-
-
84890096063
-
Classification of large imbalanced credit client data with cluster based SVM
-
Springer, Challenges at the interface of data analysis, computer science, and optimization
-
Stecking R., Schebesch K.B. Classification of large imbalanced credit client data with cluster based SVM. Studies in classification, data analysis, and knowledge organization 2012, 443-451. Springer. 10.1007/978-3-642-24466-7_45.
-
(2012)
Studies in classification, data analysis, and knowledge organization
, pp. 443-451
-
-
Stecking, R.1
Schebesch, K.B.2
-
38
-
-
61549114384
-
SVMs modeling for highly imbalanced classification
-
Tang Y., Zhang Y.-Q., Chawla N.V., Krasser S. SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 2009, 39:281-288. 10.1109/TSMCB.2008.2002909.
-
(2009)
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics
, vol.39
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.-Q.2
Chawla, N.V.3
Krasser, S.4
-
39
-
-
28244467848
-
Posterior probability support vector machines for unbalanced data
-
Tao Q., Wu G.-W., Wang F.-Y., Wang J. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks 2005, 16:1561-1573. 10.1109/TNN.2005.857955.
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, pp. 1561-1573
-
-
Tao, Q.1
Wu, G.-W.2
Wang, F.-Y.3
Wang, J.4
-
40
-
-
0002648330
-
Controlling the sensitivity of support vector machines.
-
Veropoulos, K., Campbell, C., & Cristianini, N. et al. (1999). Controlling the sensitivity of support vector machines. In Proceedings of the international joint conference on AI, IJCAI (pp. 55-60).
-
(1999)
In Proceedings of the international joint conference on AI, IJCAI
, pp. 55-60
-
-
Veropoulos, K.1
Campbell, C.2
Cristianini, N.3
-
41
-
-
84903526747
-
A hybrid sampling SVM approach to imbalanced data classification
-
Hindawi Publishing Corporation
-
Wang Q. A hybrid sampling SVM approach to imbalanced data classification. Abstract and applied analysis 2014, Hindawi Publishing Corporation. 10.1155/2014/972786.
-
(2014)
Abstract and applied analysis
-
-
Wang, Q.1
-
42
-
-
77957583037
-
Boosting support vector machines for imbalanced datasets
-
Wang B.X., Japkowicz N. Boosting support vector machines for imbalanced datasets. Knowledge and Information Systems 2010, 25:1-20. 10.1007/s10115-009-0198-y.
-
(2010)
Knowledge and Information Systems
, vol.25
, pp. 1-20
-
-
Wang, B.X.1
Japkowicz, N.2
-
43
-
-
84865100973
-
Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning
-
IEEE
-
Wang S., Li Z., Chao W., Cao Q. Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning. The 2012 international joint conference on neural networks (IJCNN) 2012, 1-8. IEEE. 10.1109/IJCNN.2012.6252696.
-
(2012)
The 2012 international joint conference on neural networks (IJCNN)
, pp. 1-8
-
-
Wang, S.1
Li, Z.2
Chao, W.3
Cao, Q.4
-
44
-
-
21544432483
-
Individual comparisons by ranking methods
-
Springer, Breakthroughs in statistics
-
Wilcoxon F. Individual comparisons by ranking methods. Springer series in statistics 1992, 196-202. Springer. 10.1007/978-1-4612-4380-9_16.
-
(1992)
Springer series in statistics
, pp. 196-202
-
-
Wilcoxon, F.1
-
46
-
-
20844441675
-
KBA: Kernel boundary alignment considering imbalanced data distribution
-
Wu G., Chang E.Y. KBA: Kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering 2005, 17:786-795. 10.1109/TKDE.2005.95.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, pp. 786-795
-
-
Wu, G.1
Chang, E.Y.2
-
47
-
-
84875712277
-
On generalizable low false-positive learning using asymmetric support vector machines
-
Wu S.-H., Lin K.-P., Chien H.-H., Chen C.-M., Chen M.-S. On generalizable low false-positive learning using asymmetric support vector machines. IEEE Transactions on Knowledge and Data Engineering 2013, 25:1083-1096. 10.1109/TKDE.2012.46.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, pp. 1083-1096
-
-
Wu, S.-H.1
Lin, K.-P.2
Chien, H.-H.3
Chen, C.-M.4
Chen, M.-S.5
-
48
-
-
70350728414
-
Margin calibration in SVM class-imbalanced learning
-
Yang C.-Y., Yang J.-S., Wang J.-J. Margin calibration in SVM class-imbalanced learning. Neurocomputing 2009, 73:397-411. 10.1016/j.neucom.2009.08.006.
-
(2009)
Neurocomputing
, vol.73
, pp. 397-411
-
-
Yang, C.-Y.1
Yang, J.-S.2
Wang, J.-J.3
-
49
-
-
55949127886
-
A Bayesian approach to support vector machines for the binary classification
-
Yu J., Cheng F., Xiong H., Qu W., Chen X.-w. A Bayesian approach to support vector machines for the binary classification. Neurocomputing 2008, 72:177-185. 10.1016/j.neucom.2008.06.010.
-
(2008)
Neurocomputing
, vol.72
, pp. 177-185
-
-
Yu, J.1
Cheng, F.2
Xiong, H.3
Qu, W.4
Chen, X.-W.5
-
50
-
-
84897347020
-
Imbalanced data classification based on scaling kernel-based support vector machine
-
Zhang Y., Fu P., Liu W., Chen G. Imbalanced data classification based on scaling kernel-based support vector machine. Neural Computing and Applications 2014, 25:927-935. 10.1007/s00521-014-1584-2.
-
(2014)
Neural Computing and Applications
, vol.25
, pp. 927-935
-
-
Zhang, Y.1
Fu, P.2
Liu, W.3
Chen, G.4
-
51
-
-
79956154382
-
Learning SVM with weighted maximum margin criterion for classification of imbalanced data
-
Zhao Z., Zhong P., Zhao Y. Learning SVM with weighted maximum margin criterion for classification of imbalanced data. Mathematical and Computer Modelling 2011, 54:1093-1099. 10.1016/j.mcm.2010.11.040.
-
(2011)
Mathematical and Computer Modelling
, vol.54
, pp. 1093-1099
-
-
Zhao, Z.1
Zhong, P.2
Zhao, Y.3
-
52
-
-
84929773806
-
Support vector machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling.
-
Cape Town, South Africa
-
Zughrat, A., Mahfouf, M., Yang, Y., & Thornton, S. (2014). Support vector machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling. In 19th world congress of the international federation of automatic control (pp. 8756-8761). Cape Town, South Africa, . http://dx.doi.org/10.3182/20140824-6-ZA-1003.00794.
-
(2014)
In 19th world congress of the international federation of automatic control
, pp. 8756-8761
-
-
Zughrat, A.1
Mahfouf, M.2
Yang, Y.3
Thornton, S.4
|