메뉴 건너뛰기




Volumn 70, Issue , 2015, Pages 39-52

Near-Bayesian Support Vector Machines for imbalanced data classification with equal or unequal misclassification costs

Author keywords

Bayes error; Decision boundary shift; Imbalanced data; Multi class classification; Support vector machines; Unequal costs

Indexed keywords

CLASSIFICATION (OF INFORMATION); COSTS; OPTIMIZATION; PHILOSOPHICAL ASPECTS; VECTORS;

EID: 84937927040     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.06.005     Document Type: Article
Times cited : (153)

References (52)
  • 2
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • Springer, Machine learning: ECML 2004
    • Akbani R., Kwek S., Japkowicz N. Applying support vector machines to imbalanced datasets. Lecture notes in computer science 2004, Vol. 3201:39-50. Springer. 10.1007/978-3-540-30115-8_7.
    • (2004) Lecture notes in computer science , vol.3201 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 3
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • Amari S.-i., Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Networks 1999, 12:783-789. 10.1016/S0893-6080(99)00032-5.
    • (1999) Neural Networks , vol.12 , pp. 783-789
    • Amari, S.-I.1    Wu, S.2
  • 7
    • 67049135615 scopus 로고
    • Statlog repository.
    • URL: [2007-10-22].
    • Brazdil, P., & Gama, J. (1991). Statlog repository. URL: [2007-10-22]. http://www.liacc%2Cup.pt/ML/statlog/datasets.html.
    • (1991)
    • Brazdil, P.1    Gama, J.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2:121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 9
    • 84893568690 scopus 로고    scopus 로고
    • An optimized cost-sensitive SVM for imbalanced data learning
    • Springer, Advances in knowledge discovery and data mining
    • Cao P., Zhao D., Zaiane O. An optimized cost-sensitive SVM for imbalanced data learning. Lecture notes in computer science 2013, Vol. 7819:280-292. Springer. 10.1007/978-3-642-37456-2_24.
    • (2013) Lecture notes in computer science , vol.7819 , pp. 280-292
    • Cao, P.1    Zhao, D.2    Zaiane, O.3
  • 10
    • 84918787208 scopus 로고    scopus 로고
    • Imbalanced data classification via support vector machines and genetic algorithms
    • Cervantes J., Li X., Yu W. Imbalanced data classification via support vector machines and genetic algorithms. Connection Science 2014, 26:335-348. 10.1080/09540091.2014.924902.
    • (2014) Connection Science , vol.26 , pp. 335-348
    • Cervantes, J.1    Li, X.2    Yu, W.3
  • 13
    • 84918776556 scopus 로고    scopus 로고
    • A selective sampling method for imbalanced data learning on support vector machines
    • (Ph.D. thesis). Ames, IA, USA.
    • Choi, J.M. (2010). A selective sampling method for imbalanced data learning on support vector machines (Ph.D. thesis). Ames, IA, USA.
    • (2010)
    • Choi, J.M.1
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20:273-297. 10.1023/A:1022627411411.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 84905860696 scopus 로고    scopus 로고
    • Imbalanced data classification using cost-sensitive support vector machine based on information entropy
    • Duan W., Jing L., Lu X.Y. Imbalanced data classification using cost-sensitive support vector machine based on information entropy. Advanced Materials Research 2014, 989:1756-1761. 10.4028/www.scientific.net/AMR.989-994.1756.
    • (2014) Advanced Materials Research , vol.989 , pp. 1756-1761
    • Duan, W.1    Jing, L.2    Lu, X.Y.3
  • 17
    • 85037992344 scopus 로고    scopus 로고
    • Addressing the classification with imbalanced data: open problems and new challenges on class distribution
    • Springer, Hybrid artificial intelligent systems
    • Fernández A., García S., Herrera F. Addressing the classification with imbalanced data: open problems and new challenges on class distribution. Lecture notes in computer science 2011, Vol. 6678:1-10. Springer. 10.1007/978-3-642-21219-2_1.
    • (2011) Lecture notes in computer science , vol.6678 , pp. 1-10
    • Fernández, A.1    García, S.2    Herrera, F.3
  • 19
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • Special Issue on Intelligent Distributed Information Systems
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 2010, 180:2044-2064. Special Issue on Intelligent Distributed Information Systems. 10.1016/j.ins.2009.12.010.
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 22
    • 84886393706 scopus 로고    scopus 로고
    • Z-SVM: An SVM for improved classification of imbalanced data
    • Springer, AI 2006: advances in artificial intelligence
    • Imam T., Ting K.M., Kamruzzaman J. z-SVM: An SVM for improved classification of imbalanced data. Lecture notes in computer science 2006, Vol.~4304:264-273. Springer. 10.1007/11941439_30.
    • (2006) Lecture notes in computer science , vol.4304 , pp. 264-273
    • Imam, T.1    Ting, K.M.2    Kamruzzaman, J.3
  • 26
    • 84918829213 scopus 로고    scopus 로고
    • Unbalanced data classification using support vector machines with active learning on scleroderma lung disease patterns
    • Lee J., Wu Y., Kim H. Unbalanced data classification using support vector machines with active learning on scleroderma lung disease patterns. Journal of Applied Statistics 2014, 42:676-689. 10.1080/02664763.2014.978270.
    • (2014) Journal of Applied Statistics , vol.42 , pp. 676-689
    • Lee, J.1    Wu, Y.2    Kim, H.3
  • 27
    • 84886567160 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Lichman, M. (2013). UCI machine learning repository. URL: . http://archive.ics.uci.edu/ml.
    • (2013)
    • Lichman, M.1
  • 28
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin Y., Lee Y., Wahba G. Support vector machines for classification in nonstandard situations. Machine Learning 2002, 46:191-202. 10.1023/A:1012406528296.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 29
    • 84888640664 scopus 로고    scopus 로고
    • Adjusted f-measure and kernel scaling for imbalanced data learning
    • Maratea A., Petrosino A., Manzo M. Adjusted f-measure and kernel scaling for imbalanced data learning. Information Sciences 2014, 257:331-341. 10.1016/j.ins.2013.04.016.
    • (2014) Information Sciences , vol.257 , pp. 331-341
    • Maratea, A.1    Petrosino, A.2    Manzo, M.3
  • 35
    • 32344438970 scopus 로고    scopus 로고
    • Extreme re-balancing for SVMs: A case study
    • Raskutti B., Kowalczyk A. Extreme re-balancing for SVMs: A case study. SIGKDD Explorations Newsletter 2004, 6:60-69. 10.1145/1007730.1007739.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 36
    • 33845933299 scopus 로고    scopus 로고
    • IDA benchmark repository.
    • Rätsch, G. (2001). IDA benchmark repository. URL: . http://ida.first.fhg.de/projects/bench/benchmarks.htm.
    • (2001)
    • Rätsch, G.1
  • 37
    • 84890096063 scopus 로고    scopus 로고
    • Classification of large imbalanced credit client data with cluster based SVM
    • Springer, Challenges at the interface of data analysis, computer science, and optimization
    • Stecking R., Schebesch K.B. Classification of large imbalanced credit client data with cluster based SVM. Studies in classification, data analysis, and knowledge organization 2012, 443-451. Springer. 10.1007/978-3-642-24466-7_45.
    • (2012) Studies in classification, data analysis, and knowledge organization , pp. 443-451
    • Stecking, R.1    Schebesch, K.B.2
  • 39
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • Tao Q., Wu G.-W., Wang F.-Y., Wang J. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks 2005, 16:1561-1573. 10.1109/TNN.2005.857955.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 1561-1573
    • Tao, Q.1    Wu, G.-W.2    Wang, F.-Y.3    Wang, J.4
  • 41
    • 84903526747 scopus 로고    scopus 로고
    • A hybrid sampling SVM approach to imbalanced data classification
    • Hindawi Publishing Corporation
    • Wang Q. A hybrid sampling SVM approach to imbalanced data classification. Abstract and applied analysis 2014, Hindawi Publishing Corporation. 10.1155/2014/972786.
    • (2014) Abstract and applied analysis
    • Wang, Q.1
  • 42
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced datasets
    • Wang B.X., Japkowicz N. Boosting support vector machines for imbalanced datasets. Knowledge and Information Systems 2010, 25:1-20. 10.1007/s10115-009-0198-y.
    • (2010) Knowledge and Information Systems , vol.25 , pp. 1-20
    • Wang, B.X.1    Japkowicz, N.2
  • 43
    • 84865100973 scopus 로고    scopus 로고
    • Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning
    • IEEE
    • Wang S., Li Z., Chao W., Cao Q. Applying adaptive over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning. The 2012 international joint conference on neural networks (IJCNN) 2012, 1-8. IEEE. 10.1109/IJCNN.2012.6252696.
    • (2012) The 2012 international joint conference on neural networks (IJCNN) , pp. 1-8
    • Wang, S.1    Li, Z.2    Chao, W.3    Cao, Q.4
  • 44
    • 21544432483 scopus 로고
    • Individual comparisons by ranking methods
    • Springer, Breakthroughs in statistics
    • Wilcoxon F. Individual comparisons by ranking methods. Springer series in statistics 1992, 196-202. Springer. 10.1007/978-1-4612-4380-9_16.
    • (1992) Springer series in statistics , pp. 196-202
    • Wilcoxon, F.1
  • 46
    • 20844441675 scopus 로고    scopus 로고
    • KBA: Kernel boundary alignment considering imbalanced data distribution
    • Wu G., Chang E.Y. KBA: Kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering 2005, 17:786-795. 10.1109/TKDE.2005.95.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 48
    • 70350728414 scopus 로고    scopus 로고
    • Margin calibration in SVM class-imbalanced learning
    • Yang C.-Y., Yang J.-S., Wang J.-J. Margin calibration in SVM class-imbalanced learning. Neurocomputing 2009, 73:397-411. 10.1016/j.neucom.2009.08.006.
    • (2009) Neurocomputing , vol.73 , pp. 397-411
    • Yang, C.-Y.1    Yang, J.-S.2    Wang, J.-J.3
  • 49
    • 55949127886 scopus 로고    scopus 로고
    • A Bayesian approach to support vector machines for the binary classification
    • Yu J., Cheng F., Xiong H., Qu W., Chen X.-w. A Bayesian approach to support vector machines for the binary classification. Neurocomputing 2008, 72:177-185. 10.1016/j.neucom.2008.06.010.
    • (2008) Neurocomputing , vol.72 , pp. 177-185
    • Yu, J.1    Cheng, F.2    Xiong, H.3    Qu, W.4    Chen, X.-W.5
  • 50
    • 84897347020 scopus 로고    scopus 로고
    • Imbalanced data classification based on scaling kernel-based support vector machine
    • Zhang Y., Fu P., Liu W., Chen G. Imbalanced data classification based on scaling kernel-based support vector machine. Neural Computing and Applications 2014, 25:927-935. 10.1007/s00521-014-1584-2.
    • (2014) Neural Computing and Applications , vol.25 , pp. 927-935
    • Zhang, Y.1    Fu, P.2    Liu, W.3    Chen, G.4
  • 51
    • 79956154382 scopus 로고    scopus 로고
    • Learning SVM with weighted maximum margin criterion for classification of imbalanced data
    • Zhao Z., Zhong P., Zhao Y. Learning SVM with weighted maximum margin criterion for classification of imbalanced data. Mathematical and Computer Modelling 2011, 54:1093-1099. 10.1016/j.mcm.2010.11.040.
    • (2011) Mathematical and Computer Modelling , vol.54 , pp. 1093-1099
    • Zhao, Z.1    Zhong, P.2    Zhao, Y.3
  • 52
    • 84929773806 scopus 로고    scopus 로고
    • Support vector machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling.
    • Cape Town, South Africa
    • Zughrat, A., Mahfouf, M., Yang, Y., & Thornton, S. (2014). Support vector machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling. In 19th world congress of the international federation of automatic control (pp. 8756-8761). Cape Town, South Africa, . http://dx.doi.org/10.3182/20140824-6-ZA-1003.00794.
    • (2014) In 19th world congress of the international federation of automatic control , pp. 8756-8761
    • Zughrat, A.1    Mahfouf, M.2    Yang, Y.3    Thornton, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.