메뉴 건너뛰기




Volumn 94, Issue , 2016, Pages 88-104

Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data

Author keywords

Adaptive learning; Imbalanced data; Multiple classifier system; Oil reservoir

Indexed keywords

ALGORITHMS; DATA MINING; FEATURE EXTRACTION; OIL BEARING FORMATIONS; OIL FIELDS; OIL WELL LOGGING; PETROLEUM RESERVOIR ENGINEERING; PETROLEUM RESERVOIRS; WELL LOGGING;

EID: 84953638515     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.11.013     Document Type: Article
Times cited : (158)

References (68)
  • 1
    • 84937523920 scopus 로고    scopus 로고
    • Random balance: Ensembles of variable priors classifiers for imbalanced data
    • Díez-Pastor J.F., Rodríguez J.J., García-Osorio C. et al. Random balance: ensembles of variable priors classifiers for imbalanced data Knowl.-Based Syst. 85 2015 96 111
    • (2015) Knowl.-Based Syst. , vol.85 , pp. 96-111
    • Díez-Pastor, J.F.1    Rodríguez, J.J.2    García-Osorio, C.3
  • 2
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recogn. 46 2013 3460 3471
    • (2013) Pattern Recogn. , vol.46 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3
  • 3
    • 84921279740 scopus 로고    scopus 로고
    • Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms
    • P. Vorraboot, S. Rasmequan, K. Chinnasarn Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms Neurocomputing 152 2015 429 443
    • (2015) Neurocomputing , vol.152 , pp. 429-443
    • Vorraboot, P.1    Rasmequan, S.2    Chinnasarn, K.3
  • 4
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Z. Sun, Q. Song, X. Zhu A novel ensemble method for classifying imbalanced data Pattern Recogn. 48 2015 1623 1637
    • (2015) Pattern Recogn. , vol.48 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3
  • 6
    • 84891860723 scopus 로고    scopus 로고
    • Training and assessing classification rules with imbalanced data
    • G. Menardi, N. Torelli Training and assessing classification rules with imbalanced data Data Min. Knowl. Discov. 2014 92 122
    • (2014) Data Min. Knowl. Discov. , pp. 92-122
    • Menardi, G.1    Torelli, N.2
  • 7
    • 84906691312 scopus 로고    scopus 로고
    • Feature selection for high-dimensional class-imbalanced data sets using support vector machines
    • S. Maldonado, R. Weber, F. Famili Feature selection for high-dimensional class-imbalanced data sets using support vector machines Inf. Sci. 286 2014 228 246
    • (2014) Inf. Sci. , vol.286 , pp. 228-246
    • Maldonado, S.1    Weber, R.2    Famili, F.3
  • 8
    • 52149095977 scopus 로고    scopus 로고
    • Application of fuzzy closeness degree in reservoir recognition
    • G.Q. Feng, Y. Li, D.H. Tan Application of fuzzy closeness degree in reservoir recognition J. Southwest Pet. Inst. 21 4 1999 46 49
    • (1999) J. Southwest Pet. Inst. , vol.21 , Issue.4 , pp. 46-49
    • Feng, G.Q.1    Li, Y.2    Tan, D.H.3
  • 9
    • 77957900643 scopus 로고    scopus 로고
    • Optimizing reservoir features in oil exploration management based on fusion of soft computing
    • Guo H.X., Liao X.W., Zhu K.J. Optimizing reservoir features in oil exploration management based on fusion of soft computing Appl. Soft Comput. 11 2011 1144 1155
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1144-1155
    • Guo, H.X.1    Liao, X.W.2    Zhu, K.J.3
  • 10
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic minority over-sampling technique
    • N.V. Chawla, K.W. Bowyer, L.O. Hall SMOTE: synthetic minority over-sampling technique Artif. Intell. Res. 16 2002 321 357
    • (2002) Artif. Intell. Res. , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 11
    • 84921279740 scopus 로고    scopus 로고
    • Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms
    • P. Vorraboot, S. Rasmequan, K. Chinnasarn Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms Neurocomputing 152 2015 429 443
    • (2015) Neurocomputing , vol.152 , pp. 429-443
    • Vorraboot, P.1    Rasmequan, S.2    Chinnasarn, K.3
  • 12
    • 84937523920 scopus 로고    scopus 로고
    • Random balance: Ensembles of variable priors classifiers for imbalanced data
    • Díez-Pastor J.F., Rodríguez J.J., García-Osorio C. et al. Random balance: ensembles of variable priors classifiers for imbalanced data Knowl.-Based Syst. 85 2015 96 111
    • (2015) Knowl.-Based Syst. , vol.85 , pp. 96-111
    • Díez-Pastor, J.F.1    Rodríguez, J.J.2    García-Osorio, C.3
  • 13
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Yoav Freund Boosting a weak learning algorithm by majority Inf. Comput. 121 2 1995 256 285
    • (1995) Inf. Comput. , vol.121 , Issue.2 , pp. 256-285
    • Yoav, F.1
  • 14
    • 84926016915 scopus 로고    scopus 로고
    • A new approach for imbalanced data classification based on data gravitation
    • Peng L., Zhang H., Yang B. et al. A new approach for imbalanced data classification based on data gravitation Inf. Sci. 288 2014 347 373
    • (2014) Inf. Sci. , vol.288 , pp. 347-373
    • Peng, L.1    Zhang, H.2    Yang, B.3
  • 15
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Z. Sun, Q. Song, X. Zhu A novel ensemble method for classifying imbalanced data Pattern Recogn. 48 2015 1623 1637
    • (2015) Pattern Recogn. , vol.48 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3
  • 17
    • 84911445875 scopus 로고    scopus 로고
    • Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
    • V. López, S. Río, J.M. Benítez et al. Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data Fuzzy Sets Syst. 258 2015 5 38
    • (2015) Fuzzy Sets Syst. , vol.258 , pp. 5-38
    • López, V.1    Río, S.2    Benítez, J.M.3
  • 18
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • B. Krawczyk, M. Wozniak, G. Schaefer Cost-sensitive decision tree ensembles for effective imbalanced classification Appl. Soft Comput. 14 2014 554 562
    • (2014) Appl. Soft Comput. , vol.14 , pp. 554-562
    • Krawczyk, B.1    Wozniak, M.2    Schaefer, G.3
  • 19
    • 84937927040 scopus 로고    scopus 로고
    • Near-Bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs
    • Datta S., Das S. Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs Neural Netw. 70 2015 39 52
    • (2015) Neural Netw. , vol.70 , pp. 39-52
    • Datta, S.1    Das, S.2
  • 20
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • L. Yin, Y. Ge, K. Xiao Feature selection for high-dimensional imbalanced data Neurocomputing 105 2013 3 11
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3
  • 21
    • 84867580242 scopus 로고    scopus 로고
    • DBFS: An effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets
    • M. Alibeigi, S. Hashemi, A. Hamzeh DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets Data Knowl. Eng. 81-82 4 2012 67 103
    • (2012) Data Knowl. Eng. , vol.81-82 , Issue.4 , pp. 67-103
    • Alibeigi, M.1    Hashemi, S.2    Hamzeh, A.3
  • 23
    • 84930483289 scopus 로고    scopus 로고
    • Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets
    • Ii W.A.Y., Nykl S.L., Weckman G.R. et al. Using Voronoi diagrams to improve classification performances when modeling imbalanced datasets Neural Comput. Appl. 26 2015 1 14
    • (2015) Neural Comput. Appl. , vol.26 , pp. 1-14
    • Ii, W.A.Y.1    Nykl, S.L.2    Weckman, G.R.3
  • 26
    • 84868621497 scopus 로고    scopus 로고
    • ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data
    • H. Yu, J. Ni, J. Zhao ACOSampling: an ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data Neurocomputing 101 2013 309 318
    • (2013) Neurocomputing , vol.101 , pp. 309-318
    • Yu, H.1    Ni, J.2    Zhao, J.3
  • 28
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García et al. An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 2013 113 141
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3
  • 30
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class ROC analysis from a multi-objective optimization perspective
    • Richard M., Jonathan E. Multi-class ROC analysis from a multi-objective optimization perspective Pattern Recogn. Lett. 27 2006 916 927
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 916-927
    • Richard, M.1    Jonathan, E.2
  • 33
    • 84857049821 scopus 로고    scopus 로고
    • A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior
    • W. Bin, P. Qinke, Z. Jing A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior Eur. J. Oper. Res. 219 2012 224 233
    • (2012) Eur. J. Oper. Res. , vol.219 , pp. 224-233
    • Bin, W.1    Qinke, P.2    Jing, Z.3
  • 36
    • 85009220341 scopus 로고    scopus 로고
    • Classifying imbalanced data in distance-based feature space
    • Ando S. Classifying imbalanced data in distance-based feature space Knowl. Inf. Syst. 2015 1 24
    • (2015) Knowl. Inf. Syst. , pp. 1-24
    • Ando, S.1
  • 37
    • 84942249246 scopus 로고    scopus 로고
    • Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
    • R.C. Prati, Gustavo E., DiegoF. Silva Class imbalance revisited: a new experimental setup to assess the performance of treatment methods Knowl. Inf. Syst. 45 2015 247 270
    • (2015) Knowl. Inf. Syst. , vol.45 , pp. 247-270
    • Prati, R.C.1    Gustavo, E.2    Silva DiegoF.3
  • 38
    • 84867863746 scopus 로고    scopus 로고
    • Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
    • Liu Z., Cao H., Chen X. et al. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings Neurocomputing 99 1 2013 399 410
    • (2013) Neurocomputing , vol.99 , Issue.1 , pp. 399-410
    • Liu, Z.1    Cao, H.2    Chen, X.3
  • 40
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • Alberto F., Victoria L., Mikel G. et al. Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches Knowl.-Based Syst. 42 2013 97 110
    • (2013) Knowl.-Based Syst. , vol.42 , pp. 97-110
    • Alberto, F.1    Victoria, L.2    Mikel, G.3
  • 41
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometr. Bull. 6 1945 80 83
    • (1945) Biometr. Bull. , vol.6 , pp. 80-83
    • Wilcoxon, F.1
  • 43
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure Scand. J. Stat. 6 1979 65 70
    • (1979) Scand. J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1
  • 44
    • 84907532927 scopus 로고    scopus 로고
    • Training algorithms for radial basis function networks to tackle learning processes with imbalanced data-sets
    • M.D. Pérez-Godoy, Rivera A.J, Carmona C.J. et al. Training algorithms for radial basis function networks to tackle learning processes with imbalanced data-sets Appl. Soft Comput. 25 2014 26 39
    • (2014) Appl. Soft Comput. , vol.25 , pp. 26-39
    • Pérez-Godoy, M.D.1    Rivera, A.J.2    Carmona, C.J.3
  • 45
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated pre-dictions
    • RobertE. Schapire, Yoram Singer Improved boosting algorithms using confidence-rated pre-dictions Mach. Learn. 37 3 1999 297 336
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire RobertE.1    Singer, Y.2
  • 46
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav Freund, RobertE. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire RobertE.2
  • 48
    • 84899475632 scopus 로고    scopus 로고
    • A novel selective ensemble algorithm for imbalanced data classification based on exploratory undersampling
    • Yin Q.Y., Zhang J.S., Zhang C.X. et al. A novel selective ensemble algorithm for imbalanced data classification based on exploratory undersampling Math. Prob. Eng. 71 3 2014 741 764
    • (2014) Math. Prob. Eng. , vol.71 , Issue.3 , pp. 741-764
    • Yin, Q.Y.1    Zhang, J.S.2    Zhang, C.X.3
  • 49
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • L. Yin, Y. Ge, K. Xiao Feature selection for high-dimensional imbalanced data Neurocomputing 105 3 2013 3 11
    • (2013) Neurocomputing , vol.105 , Issue.3 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3
  • 52
    • 84921279740 scopus 로고    scopus 로고
    • Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms
    • Vorraboot P., Rasmequan S., Lursinsap C. et al. Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms Neurocomputing 152 2015 429 443
    • (2015) Neurocomputing , vol.152 , pp. 429-443
    • Vorraboot, P.1    Rasmequan, S.2    Lursinsap, C.3
  • 54
    • 79951771270 scopus 로고    scopus 로고
    • Imbalanced classification using support vector machine ensemble
    • Tian J., Gu H., Liu W. Imbalanced classification using support vector machine ensemble Neural Comput. Appl. 20 2 2011 203 209
    • (2011) Neural Comput. Appl. , vol.20 , Issue.2 , pp. 203-209
    • Tian, J.1    Gu, H.2    Liu, W.3
  • 56
    • 84953640240 scopus 로고    scopus 로고
    • Boosted SVM with active learning strategy for imbalanced data
    • Zięba M., Tomczak J.M. Boosted SVM with active learning strategy for imbalanced data Soft Comput. 2014 1 12
    • (2014) Soft Comput. , pp. 1-12
    • Zięba, M.1    Tomczak, J.M.2
  • 58
    • 84908127920 scopus 로고    scopus 로고
    • Improving class probability estimates for imbalanced data
    • Wallace B.C., Dahabreh I.J. Improving class probability estimates for imbalanced data Knowl. Inf. Syst. 41 1 2014 33 52
    • (2014) Knowl. Inf. Syst. , vol.41 , Issue.1 , pp. 33-52
    • Wallace, B.C.1    Dahabreh, I.J.2
  • 59
    • 84888645340 scopus 로고    scopus 로고
    • On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed
    • López V., Fernández A., Herrera F. On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed Inf. Sci. 257 2 2014 1 13
    • (2014) Inf. Sci. , vol.257 , Issue.2 , pp. 1-13
    • López, V.1    Fernández, A.2    Herrera, F.3
  • 63
    • 84926525100 scopus 로고    scopus 로고
    • Coupling different methods for overcoming the class imbalance problem
    • Nanni L., Fantozzi C., &Lazzarini N. Coupling different methods for overcoming the class imbalance problem Neurocomputing 158 2015 48 61
    • (2015) Neurocomputing , vol.158 , pp. 48-61
    • Nanni, L.1    Fantozzi, C.2    Lazzarini, N.3
  • 64
    • 84893196110 scopus 로고    scopus 로고
    • ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography
    • Song B., Zhang G., Wei Z. et al. ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography Int. J. Comput. Assist. Radiol. Surg. 9 1 2014 79 89
    • (2014) Int. J. Comput. Assist. Radiol. Surg. , vol.9 , Issue.1 , pp. 79-89
    • Song, B.1    Zhang, G.2    Wei, Z.3
  • 65
    • 84942363608 scopus 로고    scopus 로고
    • Addressing imbalanced data with argument based rule learning
    • Jerzy S., Krystyna N. Addressing imbalanced data with argument based rule learning Exp. Syst. Appl. 24 2015 9468 9481
    • (2015) Exp. Syst. Appl. , vol.24 , pp. 9468-9481
    • Jerzy, S.1    Krystyna, N.2
  • 66
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relvance and redundancy
    • Yu L., Liu H., Yu L. et al. Efficient feature selection via analysis of relvance and redundancy J. Mach. Learn. Res. 5 4 2004 1205 1224
    • (2004) J. Mach. Learn. Res. , vol.5 , Issue.4 , pp. 1205-1224
    • Yu, L.1    Liu, H.2    Yu, L.3
  • 68
    • 33750695043 scopus 로고    scopus 로고
    • A novel classification method based on data gravitation, neural networks and brain, 2005
    • Peng L., Chen Y., Yang B. et al. A novel classification method based on data gravitation, neural networks and brain, 2005 ICNN&B '05. International Conference on IEEE 2005 667 672
    • (2005) ICNN&B '05. International Conference on IEEE , pp. 667-672
    • Peng, L.1    Chen, Y.2    Yang, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.