메뉴 건너뛰기




Volumn 2015-September, Issue , 2015, Pages

Credit card fraud detection and concept-drift adaptation with delayed supervised information

Author keywords

Anomaly Detection; Concept Drift; Data Streams; Fraud Detection; Unbalanced Data

Indexed keywords

NEURAL NETWORKS;

EID: 84951012186     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2015.7280527     Document Type: Conference Paper
Times cited : (104)

References (38)
  • 5
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • R. Bolton and D. Hand. Statistical fraud detection: A review. Statistical Science, pages 235-249, 2002.
    • (2002) Statistical Science , pp. 235-249
    • Bolton, R.1    Hand, D.2
  • 6
  • 8
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • L. Breiman. Stacked regressions. Machine learning, 24(1):49-64, 1996.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 79952737601 scopus 로고    scopus 로고
    • Towards incremental learning of nonstationary imbalanced data stream: A mUltiple selectively recursive approach
    • S. Chen and H. He. Towards incremental learning of nonstationary imbalanced data stream: A mUltiple selectively recursive approach. Evolving Systems, 2(1):35-50, 2011.
    • (2011) Evolving Systems , vol.2 , Issue.1 , pp. 35-50
    • Chen, S.1    He, H.2
  • 14
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over mUltiple data sets
    • J. Demsar. Statistical comparisons of classifiers over mUltiple data sets. The Journal of Machine Learning Research, 7: 1-30, 2006.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 16
    • 0031192174 scopus 로고    scopus 로고
    • Neural fraud detection in credit card operations
    • J. Dorronsoro, F. Ginel, C. Sgnchez, and C. Cruz. Neural fraud detection in credit card operations. Neural Networks, 8(4):827-834, 1997.
    • (1997) Neural Networks , vol.8 , Issue.4 , pp. 827-834
    • Dorronsoro, J.1    Ginel, F.2    Sgnchez, C.3    Cruz, C.4
  • 18
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200):675-701, 1937.
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 20
    • 57049173376 scopus 로고    scopus 로고
    • Classifying data streams with skewed class distributions and concept drifts
    • J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu. Classifying data streams with skewed class distributions and concept drifts. Internet Compltling, 12(6):37-49, 2008.
    • (2008) Internet Compltling , vol.12 , Issue.6 , pp. 37-49
    • Gao, J.1    Ding, B.2    Fan, W.3    Han, J.4    Yu, P.S.5
  • 21
    • 77957885321 scopus 로고    scopus 로고
    • A general framework for mining concept-drifting data streams with skewed distributions
    • J. Gao, W. Fan, J. Han, and S. Y Philip. A general framework for mining concept-drifting data streams with skewed distributions. In SDM, 2007.
    • (2007) SDM
    • Gao, J.1    Fan, W.2    Han, J.3    Philip, S.Y.4
  • 26
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research, 8:2755-2790, 2007.
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 28
    • 77957058214 scopus 로고    scopus 로고
    • Adaptive methods for classification in arbitrarily imbalanced and drifting data streams
    • Springer
    • R. N. LichtenwaIter and N. Y. Chawla. Adaptive methods for classification in arbitrarily imbalanced and drifting data streams. In New Frontiers in Applied Data Mining, pages 53-75. Springer, 2010.
    • (2010) New Frontiers in Applied Data Mining , pp. 53-75
    • LichtenwaIter, R.N.1    Chawla, N.Y.2
  • 31
    • 48749094245 scopus 로고    scopus 로고
    • Real-time credit card fraud detection using computational intelligence
    • J. T. Quah and M. Sriganesh. Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4):1721-1732, 2008.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1721-1732
    • Quah, J.T.1    Sriganesh, M.2
  • 32
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • J. C. Schlimmer and R. H. Granger Jr. Incremental learning from noisy data. Machine learning, 1(3):317-354, 1986.
    • (1986) Machine Learning , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 34
    • 67349148172 scopus 로고    scopus 로고
    • Unsupervised clustering in streaming data
    • D. K. Tasoulis, N. M. Adams, and D. J. Hand. Unsupervised clustering in streaming data. In ICDM Workshops, pages 638-642, 2006.
    • (2006) ICDM Workshops , pp. 638-642
    • Tasoulis, D.K.1    Adams, N.M.2    Hand, D.J.3
  • 38
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine learning, 23(1):69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.