메뉴 건너뛰기




Volumn 22, Issue 6, 2014, Pages 1472-1488

Construction of neurofuzzy models for imbalanced data classification

Author keywords

Cross validation; forward selection; identification; imbalanced datasets; leave one out (LOO); neurofuzzy model (NFM)

Indexed keywords


EID: 84914167532     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2013.2296091     Document Type: Article
Times cited : (16)

References (47)
  • 1
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone, "Cross-validatory choice and assessment of statistical predictions," J. Roy. Statist. Soc. Series B (Methodological), vol. 36, no. 2, pp. 111-147, 1974.
    • (1974) J. Roy. Statist. Soc. Series B (Methodological) , vol.36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 3
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their applications to non-linear system identification
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their applications to non-linear system identification," Int. J. Contr., vol. 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Contr. , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 4
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model construction using forward regression and the PRESS statistic
    • X.Hong, P. M. Sharkey, andK.Warwick, "Automatic nonlinear predictive model construction using forward regression and the PRESS statistic," Proc. Inst. Elect. Eng. - Contr. Theory Appl., vol. 150, no. 3, pp. 245-254, 2003.
    • (2003) Proc. Inst. Elect. Eng. - Contr. Theory Appl. , vol.150 , Issue.3 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 5
    • 38349160227 scopus 로고    scopus 로고
    • A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
    • X. Hong, S. Chen, and C. J. Harris, "A fast linear-in-the-parameters classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate," Int. J. Syst. Sci., vol. 39, no. 2, pp. 119-25, 2008.
    • (2008) Int. J. Syst. Sci. , vol.39 , Issue.2 , pp. 119-125
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 6
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L. A. Zadeh, "Fuzzy sets," Inf. Contr., vol. 8, no. 1, pp. 338-353, 1965.
    • (1965) Inf. Contr. , vol.8 , Issue.1 , pp. 338-353
    • Zadeh, L.A.1
  • 7
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • Jun
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability-oriented review," IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 426-443, Jun. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 8
    • 21444459088 scopus 로고    scopus 로고
    • From a gaussian mixture model to additive fuzzy systems
    • Jun
    • M. Gan, M. Hanmandlu, and A. H. Tan, "From a gaussian mixture model to additive fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 13, no. 3, pp. 303-316, Jun. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.3 , pp. 303-316
    • Gan, M.1    Hanmandlu, M.2    Tan, A.H.3
  • 9
    • 0032642545 scopus 로고    scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," Int. J. Man-Mach. Stud., vol. 51, pp. 135-147, 1999.
    • (1999) Int. J. Man-Mach. Stud. , vol.51 , pp. 135-147
    • Mamdani, E.H.1    Assilian, S.2
  • 10
    • 0018885952 scopus 로고
    • Industrial applications of fuzzy logic control
    • P. M. Larsen, "Industrial applications of fuzzy logic control," Int. J. Man-Mach. Stud., vol. 12, no. 1, pp. 3-10, 1980.
    • (1980) Int. J. Man-Mach. Stud. , vol.12 , Issue.1 , pp. 3-10
    • Larsen, P.M.1
  • 11
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Jan./Feb
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116-132, Jan./Feb. 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 12
    • 0005619704 scopus 로고    scopus 로고
    • Generalization of adaptive neuro-fuzzy inference systems
    • Nov
    • M. F. Azeem, M. Hanmandlu, and N. Ahmad, "Generalization of adaptive neuro-fuzzy inference systems," IEEE Trans. Neural Netw., vol. 11, no. 6, pp. 1332-1346, Nov. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.6 , pp. 1332-1346
    • Azeem, M.F.1    Hanmandlu, M.2    Ahmad, N.3
  • 15
    • 84861850577 scopus 로고    scopus 로고
    • Universal approximation of a class of interval type-2 fuzzy neural networks illustrated with the case of non-linear identification
    • J. R. Castro, O.Castillo, P.Melin, and A. R. Díaz, O. Mendoza, "Universal approximation of a class of interval type-2 fuzzy neural networks illustrated with the case of non-linear identification," in Proc. IFSA/EUSFLAT Conf., Corfu, Greece, 2009, pp. 1382-1387.
    • (2009) Proc. IFSA/EUSFLAT Conf., Corfu, Greece , pp. 1382-1387
    • Castro, J.R.1    Castillo, O.2    Melin, P.3    Díaz, A.R.4    Mendoza, O.5
  • 17
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Aug
    • H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 516-524, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 18
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • J. Roubos, M. Setnes, and J. Abonyi, "Learning fuzzy classification rules from labeled data," Inf. Sci., vol. 150, pp. 77-93, 2003.
    • (2003) Inf. Sci. , vol.150 , pp. 77-93
    • Roubos, J.1    Setnes, M.2    Abonyi, J.3
  • 19
    • 58149524919 scopus 로고    scopus 로고
    • Fully evolvable optimal neurofuzzy controller using adaptive critic designs
    • Dec
    • S. Mohagheghi, G. Venayagamoorthy, and R. Harley, "Fully evolvable optimal neurofuzzy controller using adaptive critic designs," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1450-1461, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1450-1461
    • Mohagheghi, S.1    Venayagamoorthy, G.2    Harley, R.3
  • 20
    • 84904393402 scopus 로고    scopus 로고
    • A unified neurofuzzy model for classification
    • press
    • M. Gao, X. Hong, and C. J. Harris, "A unified neurofuzzy model for classification," Int. J. Syst. Sci., pp. 1-14, 2013, in press. DOI: 10.1080/00207721.2013.763301.
    • (2013) Int. J. Syst. Sci. , pp. 1-14
    • Gao, M.1    Hong, X.2    Harris, C.J.3
  • 22
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformationmethods
    • Feb
    • J. Yen and L.Wang, "Simplifying fuzzy rule-based models using orthogonal transformationmethods," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 29, no. 1, pp. 13-24, Feb. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. B: Cybern. , vol.29 , Issue.1 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 23
    • 0033114942 scopus 로고    scopus 로고
    • Implementation of evolutionary fuzzy systems
    • Apr
    • Y. Shi, R. Eberhart, and Y. Chen, "Implementation of evolutionary fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 109-119, Apr. 1999.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.2 , pp. 109-119
    • Shi, Y.1    Eberhart, R.2    Chen, Y.3
  • 24
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • Oct
    • M. Setnes and H. Roubos, "GA-fuzzy modeling and classification: Complexity and performance," IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 509-522, Oct. 2000.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 25
    • 0041376987 scopus 로고    scopus 로고
    • A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition
    • Aug
    • X. Hong and C. J. Harris, "A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition," IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 528-541, Aug. 2003.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.4 , pp. 528-541
    • Hong, X.1    Harris, C.J.2
  • 26
    • 0030081841 scopus 로고    scopus 로고
    • An adaptive densityweighted contrast enhancement filter for mammographic breast mass detection
    • Feb
    • N. Petrick, H. P. Chan, B. Sahiner, and D. Wei, "An adaptive densityweighted contrast enhancement filter for mammographic breast mass detection," IEEE Trans. Med. Imag., vol. 15, no. 1, pp. 59-67, Feb. 1996.
    • (1996) IEEE Trans. Med. Imag. , vol.15 , Issue.1 , pp. 59-67
    • Petrick, N.1    Chan, H.P.2    Sahiner, B.3    Wei, D.4
  • 28
    • 11244253349 scopus 로고    scopus 로고
    • Handling imbalanced datasets in insurance risk modeling
    • Tech. Rep.
    • E. P. D. Pednault, B. K. Rosen, and C. Apte, "Handling imbalanced datasets in insurance risk modeling," IBM Res. Rep. RC-21731, Tech. Rep., 2000.
    • (2000) IBM Res. Rep.
    • Pednault, E.P.D.1    Rosen, B.K.2    Apte, C.3
  • 29
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M.Kubat, R. C. Holte, and S.Matwin, "Machine learning for the detection of oil spills in satellite radar images," Mach. Learn., vol. 30, pp. 195-215, 1998.
    • (1998) Mach. Learn. , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 32
    • 64049115860 scopus 로고    scopus 로고
    • On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data sets
    • Z. Ferandez, M. J. Jesus, and F. Herrera, "On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data sets," Expert Syst. Appl., vol. 36, pp. 9805-9812, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9805-9812
    • Ferandez, Z.1    Jesus, M.J.2    Herrera, F.3
  • 33
    • 80052951934 scopus 로고    scopus 로고
    • A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems
    • M. Gao, X. Hong, S. Chen, and C. J. Harris, "A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems," Neurocomput., vol. 74, no. 17, pp. 3456-3466, 2011.
    • (2011) Neurocomput. , vol.74 , Issue.17 , pp. 3456-3466
    • Gao, M.1    Hong, X.2    Chen, S.3    Harris, C.J.4
  • 34
    • 84865104071 scopus 로고    scopus 로고
    • Probability density function estimation based over-sampling for imbalanced two-class problems
    • M. Gao, X. Hong, S. Chen, and C. Harris, "Probability density function estimation based over-sampling for imbalanced two-class problems," in Proc. Int. Joint Conf. Neural Netw., 2012, pp. 1-8.
    • (2012) Proc. Int. Joint Conf. Neural Netw. , pp. 1-8
    • Gao, M.1    Hong, X.2    Chen, S.3    Harris, C.4
  • 35
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. P. Bradley, "The use of the area under the ROC curve in the evaluation of machine learning algorithms," Pattern Recogn., vol. 30, pp. 1145-1159, 1997.
    • (1997) Pattern Recogn. , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 37
    • 33846046907 scopus 로고    scopus 로고
    • A kernel-based two-class classifier for imbalanced data sets
    • Jan
    • X. Hong, S. Chen, and C. J. Harris, "A kernel-based two-class classifier for imbalanced data sets," IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 28-41, Jan. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.1 , pp. 28-41
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 38
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • Seattle, WA, USA
    • C. Elkan, "The foundations of cost-sensitive learning," in Proc. 17th Int. Joint Conf. Artif. Intell., Seattle, WA, USA, 2001, pp. 973-978.
    • (2001) Proc. 17th Int. Joint Conf. Artif. Intell. , pp. 973-978
    • Elkan, C.1
  • 39
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • May/Jun
    • K. M. Ting, "An instance-weighting method to induce cost-sensitive trees," IEEE Trans. Knowl. Data Eng., vol. 14, no. 3, pp. 659-665, May/Jun. 2002.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 40
    • 0033177739 scopus 로고    scopus 로고
    • Fuzzy local linearization and local basis function expansion in nonlinear system modeling
    • Aug
    • Q. Gan and C. J. Harris, "Fuzzy local linearization and local basis function expansion in nonlinear system modeling," IEEE Trans. Syst., Man, Cybern., vol. 29, no. 4, pp. 559-565, Aug. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. , vol.29 , Issue.4 , pp. 559-565
    • Gan, Q.1    Harris, C.J.2
  • 41
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Statist. Soc., Series B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Statist. Soc., Series B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 45
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units," Neural Computat., vol. 1, pp. 281-294, 1989.
    • (1989) Neural Computat. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 47
    • 80054740946 scopus 로고    scopus 로고
    • On combination of SMOTE and particle swarm optimization based radial basis function classifier for imbalanced problems
    • M. Gao, X. Hong, S. Chen, and C. Harris, "On combination of SMOTE and particle swarm optimization based radial basis function classifier for imbalanced problems," in Proc. Int. Joint Conf. Neural Netw., 2011, pp. 1146-1153.
    • (2011) Proc. Int. Joint Conf. Neural Netw. , pp. 1146-1153
    • Gao, M.1    Hong, X.2    Chen, S.3    Harris, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.