메뉴 건너뛰기




Volumn 49, Issue , 2016, Pages 176-193

BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification

Author keywords

Classification; Ensemble; Feature selection; Imbalanced data; Oil reservoir

Indexed keywords

ADAPTIVE BOOSTING; ALGORITHMS; FEATURE EXTRACTION; LEARNING ALGORITHMS; OIL BEARING FORMATIONS; OIL FIELDS; OIL WELL LOGGING; PETROLEUM RESERVOIR ENGINEERING; PETROLEUM RESERVOIRS; WELL LOGGING;

EID: 84962476443     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2015.09.011     Document Type: Article
Times cited : (165)

References (60)
  • 1
    • 84867580242 scopus 로고    scopus 로고
    • DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets
    • M. Alibeigi, S. Hashemi, and A. Hamzeh DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets Data Knowl. Eng. 2012 67 103
    • (2012) Data Knowl. Eng. , pp. 67-103
    • Alibeigi, M.1    Hashemi, S.2    Hamzeh, A.3
  • 2
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • F. Alberto, L. Victoria, G. Mikel, and et al. Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches Knowl.-Based Syst. 42 2013 97 110
    • (2013) Knowl.-Based Syst. , vol.42 , pp. 97-110
    • Alberto, F.1    Victoria, L.2    Mikel, G.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 84857049821 scopus 로고    scopus 로고
    • A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior
    • W. Bin, P. Qinke, Z. Jing, and et al. A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior Eur. J. Oper. Res. 219 2012 224 233
    • (2012) Eur. J. Oper. Res. , vol.219 , pp. 224-233
    • Bin, W.1    Qinke, P.2    Jing, Z.3
  • 5
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science Irvine, CA
    • K. Bache, and M. Lichman UCI Machine Learning Repository 2013 University of California, School of Information and Computer Science Irvine, CA
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 6
    • 84908219488 scopus 로고
    • Statistical methods for assessing agreement between two methods of clinical measurement
    • J.M. Bland, and D.G. Altman Statistical methods for assessing agreement between two methods of clinical measurement Lancet 8476 1986 307 310
    • (1986) Lancet , vol.8476 , pp. 307-310
    • Bland, J.M.1    Altman, D.G.2
  • 7
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic minority over-sampling technique
    • N.V. Chawla, K.W. Bowyer, and L.O. Hall SMOTE: synthetic minority over-sampling technique Artif. Intell. Res. 16 2002 321 357
    • (2002) Artif. Intell. Res. , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 8
    • 84879871165 scopus 로고    scopus 로고
    • Advance and prospects of AdaBoost algorithm
    • Cao, Miao, Liu, and et al. Advance and prospects of AdaBoost algorithm Acta Autom. Sin. 39 6 2013 745 758
    • (2013) Acta Autom. Sin. , vol.39 , Issue.6 , pp. 745-758
    • Cao1    Miao2    Liu3
  • 9
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special Issue on Learning from Imbalanced Data Sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: Special Issue on Learning from Imbalanced Data Sets ACM SIGKDD Explor. Newsl. 6 1 2004 1 6
    • (2004) ACM SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 10
    • 0003562954 scopus 로고    scopus 로고
    • A Simple generalization of the area under the ROC curve for multiple class classification problems
    • J.H. David, and J.T. Robert A Simple generalization of the area under the ROC curve for multiple class classification problems Mach. Learn. 45 2001 171 186
    • (2001) Mach. Learn. , vol.45 , pp. 171-186
    • David, J.H.1    Robert, J.T.2
  • 13
    • 52149095977 scopus 로고    scopus 로고
    • Application of fuzzy closeness degree in reservoir recognition
    • G.Q. Feng, Y. Li, and D.H. Tan Application of fuzzy closeness degree in reservoir recognition J. Southwest Petrol. Ins. 21 4 1999 46 49
    • (1999) J. Southwest Petrol. Ins. , vol.21 , Issue.4 , pp. 46-49
    • Feng, G.Q.1    Li, Y.2    Tan, D.H.3
  • 14
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Yoav Freund Boosting a weak learning algorithm by majority Inf. Comput. 121 2 1995 256 285
    • (1995) Inf. Comput. , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 16
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Tom Fawcett An introduction to ROC analysis Pattern Recognit. Lett. 27 2006 861 874
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav Freund, and Robert E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 19
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea, and et al. EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recognit. 46 2013 3460 3471
    • (2013) Pattern Recognit. , vol.46 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3
  • 20
    • 77957900643 scopus 로고    scopus 로고
    • Optimizing reservoir features in oil exploration management based on fusion of soft computing
    • H.X. Guo, X.W. Liao, K.J. Zhu, and et al. Optimizing reservoir features in oil exploration management based on fusion of soft computing Appl. Soft Comput. 11 2011 1144 1155
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1144-1155
    • Guo, H.X.1    Liao, X.W.2    Zhu, K.J.3
  • 21
    • 84862515469 scopus 로고    scopus 로고
    • A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
    • M. Galar, A. Fernández, and E. Barrenechea A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches IEEE Trans. Syst. Man Cybern C: Appl. Rev. 42 4 2012 463 484
    • (2012) IEEE Trans. Syst. Man Cybern C: Appl. Rev. , vol.42 , Issue.4 , pp. 463-484
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3
  • 22
    • 84914167532 scopus 로고    scopus 로고
    • Construcion of neurofuzzy models for imbalanced data classification
    • Ming Gao, Xia Hong, and J. Chris Construcion of neurofuzzy models for imbalanced data classification IEEE Trans. Fuzzy Syst. 22 6 2014 1473 1488
    • (2014) IEEE Trans. Fuzzy Syst. , vol.22 , Issue.6 , pp. 1473-1488
    • Gao, M.1    Hong, X.2    Chris, J.3
  • 25
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure, Scand
    • S. Holm A simple sequentially rejective multiple test procedure, Scand J. Stat 6 1979 65 70
    • (1979) J. Stat , vol.6 , pp. 65-70
    • Holm, S.1
  • 26
    • 84887826239 scopus 로고    scopus 로고
    • Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis
    • H. Inbarani, A. Azar, and G. Jothi Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis Comput. Methods Progr. Biomed. 113 2014 175 185
    • (2014) Comput. Methods Progr. Biomed. , vol.113 , pp. 175-185
    • Inbarani, H.1    Azar, A.2    Jothi, G.3
  • 27
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • B. Krawczyk, M. Wozniak, and G. Schaefer Cost-sensitive decision tree ensembles for effective imbalanced classification Appl. Soft Comput. 14 2014 554 562
    • (2014) Appl. Soft Comput. , vol.14 , pp. 554-562
    • Krawczyk, B.1    Wozniak, M.2    Schaefer, G.3
  • 31
    • 84925071406 scopus 로고    scopus 로고
    • Weighted one-class classification for different types of minority class examples in imbalanced data, Computational Intelligence and Data Mining (CIDM)
    • B. Krawczyk, M. Wozniak, and F. Herrera Weighted one-class classification for different types of minority class examples in imbalanced data, Computational Intelligence and Data Mining (CIDM) IEEE Symposium on 2014 337 344
    • (2014) IEEE Symposium on , pp. 337-344
    • Krawczyk, B.1    Wozniak, M.2    Herrera, F.3
  • 32
    • 84906309048 scopus 로고    scopus 로고
    • Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data
    • Krawczyk, B., Woźniak, M., 2015. Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data. Advances in Intelligent Systems Computing.
    • (2015) Advances in Intelligent Systems Computing
    • Krawczyk, B.1    Woźniak, M.2
  • 33
    • 84871621085 scopus 로고    scopus 로고
    • A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
    • V. López, A. Fernández, M.J. del Jesuse, and et al. A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets Knowl.-Based Syst. 38 2013 85 104
    • (2013) Knowl.-Based Syst. , vol.38 , pp. 85-104
    • López, V.1    Fernández, A.2    Del Jesuse, M.J.3
  • 34
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García, and et al. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 2013 113 141
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3
  • 35
    • 84911445875 scopus 로고    scopus 로고
    • Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data
    • V. López, S. Río, J.M. Benítez, and et al. Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data Fuzzy Sets and Syst 258 2015 5 38
    • (2015) Fuzzy Sets and Syst , vol.258 , pp. 5-38
    • López, V.1    Río, S.2    Benítez, J.M.3
  • 37
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García, and et al. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 2013 2006 113 141
    • (2006) Inf. Sci. , vol.250 , Issue.2013 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3
  • 39
    • 84891860723 scopus 로고    scopus 로고
    • Training and assessing classification rules with imbalanced data
    • G. Menardi, and N. Torelli Training and assessing classification rules with imbalanced data Data Min. Knowl. Discov. 2014 92 122
    • (2014) Data Min. Knowl. Discov. , pp. 92-122
    • Menardi, G.1    Torelli, N.2
  • 40
    • 84906691312 scopus 로고    scopus 로고
    • Feature selection for high-dimensional class-imbalanced data sets using support vector machines
    • S. Maldonado, R. Weber, and F. Famili Feature selection for high-dimensional class-imbalanced data sets using support vector machines Inf. Sci. 286 2014 228 246
    • (2014) Inf. Sci. , vol.286 , pp. 228-246
    • Maldonado, S.1    Weber, R.2    Famili, F.3
  • 43
    • 84894304676 scopus 로고    scopus 로고
    • Covariance-guided One-Class Support Vector Machine
    • M.K. Naimul, K. Riadh, and S.A. Imran Covariance-guided One-Class Support Vector Machine Pattern Recognit. 47 6 2014 2165 2177
    • (2014) Pattern Recognit. , vol.47 , Issue.6 , pp. 2165-2177
    • Naimul, M.K.1    Riadh, K.2    Imran, S.A.3
  • 44
    • 7944220109 scopus 로고    scopus 로고
    • Ordered multiple-class ROC analysis with continuous measurements
    • C.T. Nakas, and C.T. Yiannoutsos Ordered multiple-class ROC analysis with continuous measurements Stat. Med. 23 22 2004 3437 3449
    • (2004) Stat. Med. , vol.23 , Issue.22 , pp. 3437-3449
    • Nakas, C.T.1    Yiannoutsos, C.T.2
  • 45
    • 84926525100 scopus 로고    scopus 로고
    • Coupling different methods for overcoming the class imbalance problem
    • L. Nanni, C. Fantozzi, and N. Lazzarini Coupling different methods for overcoming the class imbalance problem Neurocomputing 158 2015 48 61
    • (2015) Neurocomputing , vol.158 , pp. 48-61
    • Nanni, L.1    Fantozzi, C.2    Lazzarini, N.3
  • 46
    • 84942249246 scopus 로고    scopus 로고
    • Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
    • R.C. Prati, E. Gustavo, and Diego F. Silva Class imbalance revisited: a new experimental setup to assess the performance of treatment methods Knowl. Inf. Syst. 2015 10.1007/s10115-014-0794-3
    • (2015) Knowl. Inf. Syst.
    • Prati, R.C.1    Gustavo, E.2    Silva, D.F.3
  • 47
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class ROC analysis from a multi-objective optimization perspective
    • M. Richard, and E. Jonathan Multi-class ROC analysis from a multi-objective optimization perspective Pattern Recognit. Lett. 27 2006 916 927
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 916-927
    • Richard, M.1    Jonathan, E.2
  • 48
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Z. Sun, Q. Song, X. Zhu, and et al. A novel ensemble method for classifying imbalanced data Pattern Recognit. 48 2015 1623 1637
    • (2015) Pattern Recognit. , vol.48 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3
  • 50
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated pre-dictions
    • Robert E. Schapire, and Yoram Singer Improved boosting algorithms using confidence-rated pre-dictions Mach. Learn. 37 3 1999 297 336
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 52
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • K. Sathiya, C. Olivier, and D. Dennis Building support vector machines with reduced classifier complexity J. Mach. Learn. Res. 7 2006 1493 1515
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1493-1515
    • Sathiya, K.1    Olivier, C.2    Dennis, D.3
  • 53
    • 79951771270 scopus 로고    scopus 로고
    • Imbalanced classification using support vector machine ensemble
    • J. Tian, H. Gu, and W. Liu Imbalanced classification using support vector machine ensemble Neural Comput. Appl. 20 2 2011 203 209
    • (2011) Neural Comput. Appl. , vol.20 , Issue.2 , pp. 203-209
    • Tian, J.1    Gu, H.2    Liu, W.3
  • 56
    • 84921279740 scopus 로고    scopus 로고
    • Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms
    • P. Vorraboot, S. Rasmequan, K. Chinnasarn, and et al. Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms Neurocomputing 152 2015 429 443
    • (2015) Neurocomputing , vol.152 , pp. 429-443
    • Vorraboot, P.1    Rasmequan, S.2    Chinnasarn, K.3
  • 58
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biom. Bull. 6 1945 80 83
    • (1945) Biom. Bull. , vol.6 , pp. 80-83
    • Wilcoxon, F.1
  • 59
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • L. Yin, Y. Ge, K. Xiao, and et al. Feature selection for high-dimensional imbalanced data Neurocomputing 105 2013 3 11
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3
  • 60
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • L. Yin, Y. Ge, and K. Xiao Feature selection for high-dimensional imbalanced data Neurocomputing 105 3 2013 3 11
    • (2013) Neurocomputing , vol.105 , Issue.3 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.