메뉴 건너뛰기




Volumn 46, Issue , 2016, Pages 405-416

Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets

Author keywords

Classification; Clustering; Imbalanced dataset; Oversampling

Indexed keywords

INFORMATION SYSTEMS;

EID: 84947569019     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.10.031     Document Type: Article
Times cited : (237)

References (31)
  • 1
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • Springer
    • Akbani R., Kwek S., Japkowicz N. Applying support vector machines to imbalanced datasets Machine Learning: ECML 2004 2004 Springer 39 50
    • (2004) Machine Learning: ECML 2004 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 2
    • 84915749948 scopus 로고    scopus 로고
    • A proposal for evolutionary fuzzy systems using feature weighting: Dealing with overlapping in imbalanced datasets
    • Alshomrani S., Bawakid A., Shim S.-O., Fernández A., Herrera F. A proposal for evolutionary fuzzy systems using feature weighting: Dealing with overlapping in imbalanced datasets Knowledge-Based Systems 73 2015 1 17
    • (2015) Knowledge-Based Systems , vol.73 , pp. 1-17
    • Alshomrani, S.1    Bawakid, A.2    Shim, S.-O.3    Fernández, A.4    Herrera, F.5
  • 4
    • 84921689324 scopus 로고    scopus 로고
    • Classifying imbalanced data sets using similarity based hierarchical decomposition
    • Beyan C., Fisher R. Classifying imbalanced data sets using similarity based hierarchical decomposition Pattern Recognition 48 5 2014 1653 1672
    • (2014) Pattern Recognition , vol.48 , Issue.5 , pp. 1653-1672
    • Beyan, C.1    Fisher, R.2
  • 5
    • 67650694660 scopus 로고    scopus 로고
    • Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
    • Springer
    • Bunkhumpornpat C., Sinapiromsaran K., Lursinsap C. Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem Advances in Knowledge Discovery and Data Mining 2009 Springer 475 482
    • (2009) Advances in Knowledge Discovery and Data Mining , pp. 475-482
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 14
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo Y., Hastie T., Tibshirani R. Regularized linear discriminant analysis and its application in microarrays Biostatistics 8 2007 86 100
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • Springer
    • Han H., Wang W.Y., Mao B.H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning Advances in intelligent computing 2005 Springer 878 887
    • (2005) Advances in Intelligent Computing , pp. 878-887
    • Han, H.1    Wang, W.Y.2    Mao, B.H.3
  • 18
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz N., Stephen S. The class imbalance problem: A systematic study Intelligent data analysis 6 2002 429 449
    • (2002) Intelligent Data Analysis , vol.6 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 22
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • López V., Fernández A., García S., Palade V., Herrera F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics Information Sciences 250 2013 113 141
    • (2013) Information Sciences , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 24
    • 84866546295 scopus 로고    scopus 로고
    • Synthetic pattern generation for imbalanced learning in image retrieval
    • Piras L., Giacinto G. Synthetic pattern generation for imbalanced learning in image retrieval Pattern Recognition Letters 33 2012 2198 2205
    • (2012) Pattern Recognition Letters , vol.33 , pp. 2198-2205
    • Piras, L.1    Giacinto, G.2
  • 25
    • 84941557105 scopus 로고    scopus 로고
    • Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
    • Prati R.C., Batista G.E., Silva D.F. Class imbalance revisited: a new experimental setup to assess the performance of treatment methods Knowledge and Information Systems 2014 1 24
    • (2014) Knowledge and Information Systems , pp. 1-24
    • Prati, R.C.1    Batista, G.E.2    Silva, D.F.3
  • 26
    • 84885955704 scopus 로고    scopus 로고
    • A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition
    • Thammasiri D., Delen D., Meesad P., Kasap N. A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition Expert Systems with Applications 41 2014 321 330
    • (2014) Expert Systems with Applications , vol.41 , pp. 321-330
    • Thammasiri, D.1    Delen, D.2    Meesad, P.3    Kasap, N.4
  • 27
    • 0022906994 scopus 로고
    • Implementing agglomerative hierarchic clustering algorithms for use in document retrieval
    • Voorhees E.M. Implementing agglomerative hierarchic clustering algorithms for use in document retrieval Information Processing & Management 22 1986 465 476
    • (1986) Information Processing & Management , vol.22 , pp. 465-476
    • Voorhees, E.M.1
  • 28
    • 84878915608 scopus 로고    scopus 로고
    • Effective detection of sophisticated online banking fraud on extremely imbalanced data
    • Wei W., Li J., Cao L., Ou Y., Chen J. Effective detection of sophisticated online banking fraud on extremely imbalanced data World Wide Web 16 2013 449 475
    • (2013) World Wide Web , vol.16 , pp. 449-475
    • Wei, W.1    Li, J.2    Cao, L.3    Ou, Y.4    Chen, J.5
  • 29
    • 58349090428 scopus 로고    scopus 로고
    • Cluster-based under-sampling approaches for imbalanced data distributions
    • Yen S.-J., Lee Y.-S. Cluster-based under-sampling approaches for imbalanced data distributions Expert Systems with Applications 36 2009 5718 5727
    • (2009) Expert Systems with Applications , vol.36 , pp. 5718-5727
    • Yen, S.-J.1    Lee, Y.-S.2
  • 31
    • 84873725663 scopus 로고    scopus 로고
    • Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods
    • Zhou L. Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods Knowledge-Based Systems 41 2013 16 25
    • (2013) Knowledge-Based Systems , vol.41 , pp. 16-25
    • Zhou, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.