메뉴 건너뛰기




Volumn 40, Issue 7, 2016, Pages

An Imbalanced Learning based MDR-TB Early Warning System

Author keywords

Disease prediction; Early warning system; Imbalanced learning; MDR TB

Indexed keywords

ACCURACY; ADOLESCENT; ADULT; AGED; ARTICLE; CHILD; CLASSIFICATION AND REGRESSION TREE; CONTROLLED STUDY; DECISION TREE; DISEASE CLASSIFICATION; FEMALE; HUMAN; LEARNING ALGORITHM; MAJOR CLINICAL STUDY; MALE; MIDDLE AGED; MULTIDRUG RESISTANT TUBERCULOSIS; PRESCHOOL CHILD; RECEIVER OPERATING CHARACTERISTIC; RISK ASSESSMENT; VERY ELDERLY; YOUNG ADULT; ALGORITHM; COMPLICATION; MACHINE LEARNING; MEDICATION COMPLIANCE; PATHOPHYSIOLOGY; STATISTICS AND NUMERICAL DATA; TUBERCULOSIS; TUBERCULOSIS, MULTIDRUG-RESISTANT;

EID: 84971647404     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-016-0517-2     Document Type: Article
Times cited : (14)

References (53)
  • 1
    • 54349105873 scopus 로고    scopus 로고
    • Rising standards for tuberculosis drug development
    • COI: 1:CAS:528:DC%2BD1cXhtlaqt7nE, PID: 18799223
    • Balganesh, T. S., Alzari, P. M., and Cole, S. T., Rising standards for tuberculosis drug development. Trends Pharmacol. Sci. 29(11):576–581, 2008.
    • (2008) Trends Pharmacol. Sci. , vol.29 , Issue.11 , pp. 576-581
    • Balganesh, T.S.1    Alzari, P.M.2    Cole, S.T.3
  • 3
    • 84867754043 scopus 로고    scopus 로고
    • Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study
    • COI: 1:CAS:528:DC%2BC38Xht1yqu7%2FM, PID: 22938757
    • Dalton, T., Cegielski, P., Akksilp, S., Asencios, L., Caoili, J. C., Cho, S.-N., Erokhin, V. V., Ershova, J., Gler, M. T., and Kazennyy, B. Y., Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. Lancet 380(9851): 1406–1417, 2012.
    • (2012) Lancet , vol.380 , Issue.9851 , pp. 1406-1417
    • Dalton, T.1    Cegielski, P.2    Akksilp, S.3    Asencios, L.4    Caoili, J.C.5    Cho, S.-N.6    Erokhin, V.V.7    Ershova, J.8    Gler, M.T.9    Kazennyy, B.Y.10
  • 4
    • 84971653369 scopus 로고    scopus 로고
    • Nelson, K. E., and Williams, C. M., Infectious disease epidemiology: theory and practice Jones & Bartlett Publishers (2014)
    • Nelson, K. E., and Williams, C. M., Infectious disease epidemiology: theory and practice Jones & Bartlett Publishers (2014)
  • 5
    • 84867301569 scopus 로고    scopus 로고
    • Classification of juvenile myoclonic epilepsy data acquired through scanning electromyography with machine learning algorithms
    • PID: 21681512
    • Goker, I., Osman, O., Ozekes, S., Baslo, M. B., Ertas, M., and Ulgen, Y., Classification of juvenile myoclonic epilepsy data acquired through scanning electromyography with machine learning algorithms. J. Med. Syst. 36(5):2705–2711, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.5 , pp. 2705-2711
    • Goker, I.1    Osman, O.2    Ozekes, S.3    Baslo, M.B.4    Ertas, M.5    Ulgen, Y.6
  • 6
    • 84940107821 scopus 로고    scopus 로고
    • A machine learning method for power prediction on the mobile devices
    • Daren, C., Chen, Y., Linchih, C., Hsu, M., and Chiang, K., A machine learning method for power prediction on the mobile devices. J. Med. Syst. 39(10):1–11, 2015.
    • (2015) J. Med. Syst. , vol.39 , Issue.10 , pp. 1-11
    • Daren, C.1    Chen, Y.2    Linchih, C.3    Hsu, M.4    Chiang, K.5
  • 7
    • 84864060173 scopus 로고    scopus 로고
    • Breast alert: an on-line tool for predicting the lifetime risk of women breast cancer
    • PID: 20890721
    • Rodrigues, J., Reis, N., Moutinho, J., and Torre, I., Breast alert: an on-line tool for predicting the lifetime risk of women breast cancer. J. Med. Syst. 36(3):1417–1424, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.3 , pp. 1417-1424
    • Rodrigues, J.1    Reis, N.2    Moutinho, J.3    Torre, I.4
  • 8
    • 0031178659 scopus 로고    scopus 로고
    • Using computer-based medical records to predict mortality risk for inner-city patients with reactive airways disease
    • COI: 1:STN:280:DyaK2szms1ahtQ%3D%3D, PID: 9223037
    • Tierney, W. M., Murray, M. D., Gaskins, D. L., and Zhou, X.-H., Using computer-based medical records to predict mortality risk for inner-city patients with reactive airways disease. J. Am. Med. Inform. Assoc. 4(4):313–321, 1997.
    • (1997) J. Am. Med. Inform. Assoc. , vol.4 , Issue.4 , pp. 313-321
    • Tierney, W.M.1    Murray, M.D.2    Gaskins, D.L.3    Zhou, X.-H.4
  • 9
    • 57349200719 scopus 로고    scopus 로고
    • Generic data modeling for clinical repositories
    • COI: 1:STN:280:DyaK2s%2FjsFShtg%3D%3D, PID: 8880680
    • Johnson, S. B., Generic data modeling for clinical repositories. J. Am. Med. Inform. Assoc. 3:328–339, 1996.
    • (1996) J. Am. Med. Inform. Assoc. , vol.3 , pp. 328-339
    • Johnson, S.B.1
  • 10
    • 0346724473 scopus 로고    scopus 로고
    • Comparison of time series and case-crossover analyses of air pollution and hospital admission data
    • PID: 14681275
    • Fung, K. Y., Krewski, D., Chen, Y., Burnett, R., and Cakmak, S., Comparison of time series and case-crossover analyses of air pollution and hospital admission data. Int. J. Epidemiol. 32(6):1064–1070, 2003.
    • (2003) Int. J. Epidemiol. , vol.32 , Issue.6 , pp. 1064-1070
    • Fung, K.Y.1    Krewski, D.2    Chen, Y.3    Burnett, R.4    Cakmak, S.5
  • 11
    • 0345059789 scopus 로고    scopus 로고
    • A lengthy look at the daily grind: time series analysis of events, mood, stress, and satisfaction
    • PID: 14640813
    • Fuller, J. A., Stanton, J. M., Fisher, G. G., Spitzmüller, C., Russell, S. S., and Smith, P. C., A lengthy look at the daily grind: time series analysis of events, mood, stress, and satisfaction. J. Appl. Psychol. 88(6):1019, 2003.
    • (2003) J. Appl. Psychol. , vol.88 , Issue.6 , pp. 1019
    • Fuller, J.A.1    Stanton, J.M.2    Fisher, G.G.3    Spitzmüller, C.4    Russell, S.S.5    Smith, P.C.6
  • 12
    • 84971674689 scopus 로고    scopus 로고
    • Biostatistics 201: linear regression analysis
    • Chan, Y., Biostatistics 201: linear regression analysis. Age (years) 80:140, 2004.
    • (2004) Age (years) , vol.80 , pp. 140
    • Chan, Y.1
  • 13
    • 0242710075 scopus 로고    scopus 로고
    • Linear regression analysis and its application to the multivariate spectral calibrations for the multiresolution of a ternary mixture of caffeine, paracetamol and metamizol in tablets
    • PID: 14623586
    • Dinç, E., Linear regression analysis and its application to the multivariate spectral calibrations for the multiresolution of a ternary mixture of caffeine, paracetamol and metamizol in tablets. J. Pharm. Biomed. Anal. 33 (4):605–615, 2003.
    • (2003) J. Pharm. Biomed. Anal. , vol.33 , Issue.4 , pp. 605-615
    • Dinç, E.1
  • 14
    • 1842665823 scopus 로고    scopus 로고
    • Communicating complex information: the interpretation of statistical interaction in multiple logistic regression analysis
    • PID: 12948938
    • Chen, J., Communicating complex information: the interpretation of statistical interaction in multiple logistic regression analysis. Am. J. Public Health 93(9):1376, 2003.
    • (2003) Am. J. Public Health , vol.93 , Issue.9 , pp. 1376
    • Chen, J.1
  • 15
    • 84971611571 scopus 로고
    • Research on a grey model for disease surveillema and forecast
    • Jinzhong, C., Research on a grey model for disease surveillema and forecast. J. Xiamen University (National Science) 1(1):121–126, 1995.
    • (1995) J. Xiamen University (National Science) , vol.1 , Issue.1 , pp. 121-126
    • Jinzhong, C.1
  • 16
    • 84971639001 scopus 로고    scopus 로고
    • Grey forcaset to epidemic tendency of hiv/aids in shenzhen
    • Lai, Y., HONG, F., and ZENG, X., Grey forcaset to epidemic tendency of hiv/aids in shenzhen, Modern Preventive Medicine, 3 (2003)
    • (2003) Modern Preventive Medicine , pp. 3
    • Lai, Y.1    HONG, F.2    ZENG, X.3
  • 17
    • 84863561121 scopus 로고    scopus 로고
    • Application of grey model to forecast incidence trend of intestinal infectious diseases
    • Lianxin, H., Yanyan, C., Jie, L., Jian, D., BeiLing, Z., ShuJuan, S., and ZhiTao, Y., Application of grey model to forecast incidence trend of intestinal infectious diseases. Dis. Surv. 24(2):135–136, 2009.
    • (2009) Dis. Surv. , vol.24 , Issue.2 , pp. 135-136
    • Lianxin, H.1    Yanyan, C.2    Jie, L.3    Jian, D.4    BeiLing, Z.5    ShuJuan, S.6    ZhiTao, Y.7
  • 18
    • 77954067701 scopus 로고    scopus 로고
    • Tuberculosis disease diagnosis using artificial neural networks
    • PID: 20503614
    • Er, O., Temurtas, F., and Tanrıkulu, A. Ç., Tuberculosis disease diagnosis using artificial neural networks. J. Med. Syst. 34(3):299–302, 2010.
    • (2010) J. Med. Syst. , vol.34 , Issue.3 , pp. 299-302
    • Er, O.1    Temurtas, F.2    Tanrıkulu, A.Ç.3
  • 19
    • 84856234816 scopus 로고    scopus 로고
    • A software tool for determination of breast cancer treatment methods using data mining approach
    • akr, A., and Demirel, B., A software tool for determination of breast cancer treatment methods using data mining approach. J. Med. Syst. 35(6):1503–11, 2011.
    • (2011) J. Med. Syst. , vol.35 , Issue.6 , pp. 1503-1511
    • akr, A.1    Demirel, B.2
  • 20
    • 84873029818 scopus 로고    scopus 로고
    • Early warning system for financially distressed hospitals via data mining application
    • PID: 21626293
    • Koyuncugil, A. S., and Ozgulbas, N., Early warning system for financially distressed hospitals via data mining application. J. Med. Syst. 36(4):2271–87, 2011.
    • (2011) J. Med. Syst. , vol.36 , Issue.4 , pp. 2271-2287
    • Koyuncugil, A.S.1    Ozgulbas, N.2
  • 21
    • 84937796378 scopus 로고    scopus 로고
    • ENN: Extended Nearest neighbor method for pattern recognition [research frontier]
    • Tang, B., and He, H., ENN: Extended Nearest neighbor method for pattern recognition [research frontier]. IEEE Comput. Intell. Mag. 10(3):52–60, 2015.
    • (2015) IEEE Comput. Intell. Mag. , vol.10 , Issue.3 , pp. 52-60
    • Tang, B.1    He, H.2
  • 22
    • 84873048938 scopus 로고    scopus 로고
    • Svm feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of parkinson disease
    • PID: 21547504
    • Ozcift, A., Svm feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of parkinson disease. J. Med. Syst. 36(4):2141–2147, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.4 , pp. 2141-2147
    • Ozcift, A.1
  • 23
    • 84913582161 scopus 로고    scopus 로고
    • Three-dimensional svm with latent variable: application for detection of lung lesions in ct images
    • Wang, Q., Zhu, W., and Wang, B., Three-dimensional svm with latent variable: application for detection of lung lesions in ct images. J. Med. Syst. 39(1):1–8, 2015.
    • (2015) J. Med. Syst. , vol.39 , Issue.1 , pp. 1-8
    • Wang, Q.1    Zhu, W.2    Wang, B.3
  • 25
    • 84904042856 scopus 로고    scopus 로고
    • Comparison of ai techniques for prediction of liver fibrosis in hepatitis patients
    • Keltch, B., Lin, Y., and Bayrak, C., Comparison of ai techniques for prediction of liver fibrosis in hepatitis patients. J. Med. Syst. 38(8):1–8, 2014.
    • (2014) J. Med. Syst. , vol.38 , Issue.8 , pp. 1-8
    • Keltch, B.1    Lin, Y.2    Bayrak, C.3
  • 26
    • 84971671751 scopus 로고    scopus 로고
    • Evaluation of new information management model of tb prevention and control in yichang
    • Zhengchao, F., Xiaojun, L., Pei, Z., Evaluation of new information management model of tb prevention and control in yichang. Chin. J. Antibiot. 36(5):346–349, 2014.
    • (2014) Chin. J. Antibiot. , vol.36 , Issue.5 , pp. 346-349
    • Zhengchao, F.1    Xiaojun, L.2    Pei, Z.3
  • 27
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R., Induction of decision trees. Mach. Learn. 1(1):81–106, 1986.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 28
    • 0026154509 scopus 로고
    • A survey of decision tree classifier methodology
    • Safavian, S. R., and Landgrebe, D., A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3):660–674, 1991.
    • (1991) IEEE Trans. Syst. Man Cybern. , vol.21 , Issue.3 , pp. 660-674
    • Safavian, S.R.1    Landgrebe, D.2
  • 29
    • 8344282137 scopus 로고
    • Review of c4.5: Programs for machine learning by j. ross quinlan
    • Salzberg, S. L., and Segre, A., Review of c4.5: Programs for machine learning by j. ross quinlan. Mach. Learn. 16(3):235–240, 1994.
    • (1994) Mach. Learn. , vol.16 , Issue.3 , pp. 235-240
    • Salzberg, S.L.1    Segre, A.2
  • 32
    • 27844467756 scopus 로고    scopus 로고
    • Top-down induction of decision trees classifiers-a survey
    • Rokach, L., and Maimon, O., Top-down induction of decision trees classifiers-a survey. IEEE Trans. Syst. Man Cybern. 35(4):476–487, 2005.
    • (2005) IEEE Trans. Syst. Man Cybern. , vol.35 , Issue.4 , pp. 476-487
    • Rokach, L.1    Maimon, O.2
  • 34
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R., Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3):21–45, 2006.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 35
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L., Ensemble-based classifiers. Artif. Intell. Rev. 33(1-2):1–39, 2010.
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 36
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L. I., and Whitaker, C. J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2):181–207, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 37
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorisation
    • Brown, G., Wyatt, J., Harris, R., and Yao, X., Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1):5–20, 2005.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 40
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24(2):123–140, 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 42
    • 84866850766 scopus 로고    scopus 로고
    • Ensemble methods: Foundations and algorithms
    • Schwenker, F., Ensemble methods: Foundations and algorithms. Comput. Intell. Mag. 8(1):77–79, 2013.
    • (2013) Comput. Intell. Mag. , vol.8 , Issue.1 , pp. 77-79
    • Schwenker, F.1
  • 43
    • 4243617025 scopus 로고
    • Thoughts on hypothesis boosting
    • Kearns, M., Thoughts on hypothesis boosting. Unpublished Manuscr. 45:105, 1988.
    • (1988) Unpublished Manuscr. , vol.45 , pp. 105
    • Kearns, M.1
  • 44
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E., The strength of weak learnability. Mach. Learn. 5(2):197–227, 1990.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 46
    • 37949004300 scopus 로고    scopus 로고
    • V., Data mining for imbalanced datasets: An overview
    • chawla, N. V., Data mining for imbalanced datasets: An overview. In: Data Mining and Knowledge Discovery Handbook, pp. 875–886 (2010)
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 875-886
    • chawla, N.1
  • 47
    • 84893746649 scopus 로고    scopus 로고
    • Addressing the class imbalance problem in medical datasets
    • Rahman, M. M., and Davis, D., Addressing the class imbalance problem in medical datasets. Int. J. Mach. Learn. Comput. 3(2):224–228, 2013.
    • (2013) Int. J. Mach. Learn. Comput. , vol.3 , Issue.2 , pp. 224-228
    • Rahman, M.M.1    Davis, D.2
  • 48
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for class-imbalance learning
    • Liu, X., Wu, J., Zhou, Z., Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. 39(2):539–550, 2009.
    • (2009) IEEE Trans. Syst. Man Cybern. , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.1    Wu, J.2    Zhou, Z.3
  • 49
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He Haibo, G. E., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9):1263–1284, 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He Haibo, G.E.1
  • 50
    • 84971602193 scopus 로고    scopus 로고
    • Informed under-sampling for enhancing patient specific epileptic seizure detection
    • El Saadi, H., Al Sadek, A. F., and Fakhr, M. W., Informed under-sampling for enhancing patient specific epileptic seizure detection. Int. J. Comput. Appl. 16:57, 2012.
    • (2012) Int. J. Comput. Appl. , vol.16 , pp. 57
    • El Saadi, H.1    Al Sadek, A.F.2    Fakhr, M.W.3
  • 51
    • 84963595704 scopus 로고    scopus 로고
    • KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning
    • Tang, B., and He, H., KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning. In: IEEE Congress on Evolutionary Computation (CEC), pp. 664–671 (2015)
    • (2015) IEEE Congress on Evolutionary Computation (CEC) , pp. 664-671
    • Tang, B.1    He, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.