-
2
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N.V.Chawla, N.Japkowicz, A.Kotcz, Editorial: special issue on learning from imbalanced data sets, SIGKDD Explorations,2004, 6 (1) :pp.1-6.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
3
-
-
68549133155
-
Learning from imbalanced data
-
H.He, E.A.Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and Data Engineering,2009, 21 (9):pp.1263-1284.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
4
-
-
67650706774
-
Classification of imbalanced data: A review
-
Y.Sun, A.K.C.Wong, M.S.Kamel, Classification of imbalanced data: A review, International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23 (4) :pp. 687-719.
-
(2009)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.23
, Issue.4
, pp. 687-719
-
-
Sun, Y.1
Wong, A.K.C.2
Kamel, M.S.3
-
6
-
-
44849098949
-
Research on datamining method for imbalanced dataset based on improved SMOTE [J]
-
Z.M.Yang, L.Y.Qiao,X.Y.Peng. Research on datamining method for imbalanced dataset based on improved SMOTE [J].ACTA Electronica Sinica, 2007, 35(12): pp.22-26.
-
(2007)
ACTA Electronica Sinica
, vol.35
, Issue.12
, pp. 22-26
-
-
Yang, Z.M.1
Qiao, L.Y.2
Peng, X.Y.3
-
8
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
G.E.A.P.A.Batista, R.C.Prati, M.C.Monard, A study of the behavior of several methods for balancing machine learning training data, SIGKDD Explorations,2004,6 (1): pp.20-29.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
9
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N.V.Chawla, K.W.Bowyer, L.O.Hall, W.P.Kegelmeyer, SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligent Research, 2002, 16: pp. 321-357.
-
(2002)
Journal of Artificial Intelligent Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
10
-
-
0346586663
-
SMOTE: Synthetic minority oversampling technique
-
N.V.Chawla, L.O.Hall, K.W.Bowyer, W.P.Kegelmeyer. SMOTE: synthetic minority oversampling technique. Journal of Artificial Intelligence Research, 2002, 16: pp. 321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
11
-
-
84944216407
-
Under-sampling method research in class-imbalanced data[J]
-
S.Y.Lin, C.H.Li,Y.Jiang. Under-sampling method research in class-imbalanced data[J].Journal of Computer Research and Development,2011,48(S):pp.47-53.
-
(2011)
Journal of Computer Research and Development
, vol.48
, Issue.S
, pp. 47-53
-
-
Lin, S.Y.1
Li, C.H.2
Jiang, Y.3
-
13
-
-
0035283313
-
Robust classification for imprecise environments
-
F.Provost, T.Fawcett.Robust classification for imprecise environments. Machine Learning, 2001,42, pp.203-231.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
15
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
B.Zadrozny, J.Langford, N.Abe, Cost-sensitive learning by cost-proportionate example weighting, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM'03), 2003, pp.435-442.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM'03)
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
16
-
-
84949479983
-
Concept-learning in the presence of between-class and within-class imbalances
-
N.Japkowicz, Concept-learning in the presence of between-class and within-class imbalances, in: Artificial Intelligence 201, LNAI 2056, pp.67-77, 2001.
-
(2001)
Artificial Intelligence 201, LNAI 2056
, pp. 67-77
-
-
Japkowicz, N.1
|