메뉴 건너뛰기




Volumn 39, Issue , 2013, Pages 214-223

Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction

Author keywords

Corporate life cycle; Ensemble learning; Extreme learning machine; Imbalanced dataset; Knowledge generation

Indexed keywords

COMPETITIVE ENVIRONMENT; CRITICAL DEFECTS; DECISION MAKERS; ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; EXTREME LEARNING MACHINE; FINANCIAL CRISIS; FINANCIAL MANAGEMENTS; FINANCIAL MARKET; FINANCIAL RESOURCES; IMBALANCED DATASET; KNOWLEDGE GENERATION; LIFE CYCLE PREDICTION; SAMPLING TECHNIQUE; SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUES;

EID: 84871925649     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2012.11.003     Document Type: Article
Times cited : (52)

References (47)
  • 1
    • 38249011497 scopus 로고
    • Association between accounting performance measures and stock prices: A test of the life cycle hypothesis
    • J. Anthony, and K. Ramesh Association between accounting performance measures and stock prices: a test of the life cycle hypothesis J. Account. Econ. 15 1992 203 227
    • (1992) J. Account. Econ. , vol.15 , pp. 203-227
    • Anthony, J.1    Ramesh, K.2
  • 2
    • 33750818670 scopus 로고    scopus 로고
    • Measuring overall efficiency and effectiveness using DEA
    • M. Asmild, J.C. Paradi, D.N. Reese, and F. Tam Measuring overall efficiency and effectiveness using DEA Eur. J. Oper. Res. 178 2007 305 321
    • (2007) Eur. J. Oper. Res. , vol.178 , pp. 305-321
    • Asmild, M.1    Paradi, J.C.2    Reese, D.N.3    Tam, F.4
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behaviour of several methods for balancing machine learning training data SIGKDD Explor. 6 2004 20 29
    • (2004) SIGKDD Explor. , vol.6 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 4
    • 3142676996 scopus 로고    scopus 로고
    • Life cycle affects the incremental value-relevance of earnings and cash flow measures
    • E.L. Black Life cycle affects the incremental value-relevance of earnings and cash flow measures J. Finan. Statement Anal. 4 1998 40 56
    • (1998) J. Finan. Statement Anal. , vol.4 , pp. 40-56
    • Black, E.L.1
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 79951581007 scopus 로고    scopus 로고
    • Early warning of enterprise decline in a life cycle using neural networks and rough set theory
    • Y. Cao, X. Chen, D.D. Wu, and M. Mo Early warning of enterprise decline in a life cycle using neural networks and rough set theory Expert. Syst. Appl. 38 2011 6424 6429
    • (2011) Expert. Syst. Appl. , vol.38 , pp. 6424-6429
    • Cao, Y.1    Chen, X.2    Wu, D.D.3    Mo, M.4
  • 8
    • 0018032112 scopus 로고
    • Measuring the efficiency of decision making units
    • A. Charnes, W.W. Cooper, and E. Rhodes Measuring the efficiency of decision making units Eur. J. Oper. Res. 2 1978 429 444
    • (1978) Eur. J. Oper. Res. , vol.2 , pp. 429-444
    • Charnes, A.1    Cooper, W.W.2    Rhodes, E.3
  • 9
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • S. Chen, W. Wang, and H. Zuylen Construct support vector machine ensemble to detect traffic incident Expert. Syst. Appl. 36 2009 10976 10986
    • (2009) Expert. Syst. Appl. , vol.36 , pp. 10976-10986
    • Chen, S.1    Wang, W.2    Zuylen, H.3
  • 10
    • 80051475044 scopus 로고    scopus 로고
    • A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method
    • H.L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.J. Wang, and D.Y. Liu A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method Knowl.-Based Syst. 24 2011 1348 1359
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 1348-1359
    • Chen, H.L.1    Yang, B.2    Wang, G.3    Liu, J.4    Xu, X.5    Wang, S.J.6    Liu, D.Y.7
  • 11
    • 84155195224 scopus 로고    scopus 로고
    • Classifying credit ratings for Asian banks using integrating feature selection and the CPDA-based rough sets approach
    • Y.S. Chen Classifying credit ratings for Asian banks using integrating feature selection and the CPDA-based rough sets approach Knowl.-Based Syst. 26 2012 259 270
    • (2012) Knowl.-Based Syst. , vol.26 , pp. 259-270
    • Chen, Y.S.1
  • 13
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced datasets
    • A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced datasets J. Chem. Inf. Model. 20 2004 18 36
    • (2004) J. Chem. Inf. Model. , vol.20 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 14
    • 84859213527 scopus 로고    scopus 로고
    • Preprocessing unbalanced data using support vector machine
    • M.A.H. Farquad, and I. Bose Preprocessing unbalanced data using support vector machine Decis. Support Syst. 53 2012 226 233
    • (2012) Decis. Support Syst. , vol.53 , pp. 226-233
    • Farquad, M.A.H.1    Bose, I.2
  • 15
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • A. Fernández, S. García, M.J. Jesus, and F. Herrera A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets Fuzzy Set. Syst. 159 2008 2378 2398
    • (2008) Fuzzy Set. Syst. , vol.159 , pp. 2378-2398
    • Fernández, A.1    García, S.2    Jesus, M.J.3    Herrera, F.4
  • 16
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • V. García, J.S. Sánchez, and R.A. Mollineda On the effectiveness of preprocessing methods when dealing with different levels of class imbalance Knowl.-Based Syst. 25 2012 13 21
    • (2012) Knowl.-Based Syst. , vol.25 , pp. 13-21
    • García, V.1    Sánchez, J.S.2    Mollineda, R.A.3
  • 17
    • 80052414830 scopus 로고    scopus 로고
    • Evolutionary-based selection of generalized instances for imbalanced classification
    • S. García, J. Derrac, I. Triguero, C.J. Carmona, and F. Herrera Evolutionary-based selection of generalized instances for imbalanced classification Knowl.-Based Syst. 25 2012 3 12
    • (2012) Knowl.-Based Syst. , vol.25 , pp. 3-12
    • García, S.1    Derrac, J.2    Triguero, I.3    Carmona, C.J.4    Herrera, F.5
  • 18
    • 80052951934 scopus 로고    scopus 로고
    • A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems
    • M. Gao, X. Hong, S. Chen, and C.J. Harris A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems Neurocomputing 74 2011 3456 3466
    • (2011) Neurocomputing , vol.74 , pp. 3456-3466
    • Gao, M.1    Hong, X.2    Chen, S.3    Harris, C.J.4
  • 19
    • 14544280660 scopus 로고    scopus 로고
    • Management control and controllership in new economy firms - A life cycle perspective
    • M. Granlund, and J. Taipaleenmäki Management control and controllership in new economy firms - a life cycle perspective Manage. Account. Res. 16 2005 21 57
    • (2005) Manage. Account. Res. , vol.16 , pp. 21-57
    • Granlund, M.1    Taipaleenmäki, J.2
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, Q.Y. Zhu, and C.K. Siew Extreme learning machine: theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 22
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • G.B. Huang, and L. Chen Enhanced random search based incremental extreme learning machine Neurocomputing 71 2008 3460 3468
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 23
    • 80051469409 scopus 로고    scopus 로고
    • A multi-instance ensemble learning model based on concept lattice
    • X. Kang, D. Li, and S. Wang A multi-instance ensemble learning model based on concept lattice Knowl.-Based Syst. 24 2011 1203 1213
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 1203-1213
    • Kang, X.1    Li, D.2    Wang, S.3
  • 24
    • 84867875616 scopus 로고    scopus 로고
    • A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring
    • doi:10.1016/j.knosys.2012 in press
    • L.J. Kao, C.C. Chiu, F.Y. Chiu, A Bayesian latent variable model with classification and regression tree approach for behavior and credit scoring. Knowl.-Based Syst., in press. http://dx.doi.org/10.1016/j.knosys.2012.
    • Knowl.-Based Syst.
    • Kao, L.J.1    Chiu, C.C.2    Chiu, F.Y.3
  • 26
    • 77954923145 scopus 로고    scopus 로고
    • A combinational incremental ensemble of classifiers as a technique for predicting students' performance in distance education
    • S. Kotsiantis, K. Patriarcheas, and M. Xenos A combinational incremental ensemble of classifiers as a technique for predicting students' performance in distance education Knowl.-Based Syst. 23 2010 529 535
    • (2010) Knowl.-Based Syst. , vol.23 , pp. 529-535
    • Kotsiantis, S.1    Patriarcheas, K.2    Xenos, M.3
  • 27
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • N. Kwak, and C.H. Choi Input feature selection for classification problems IEEE Trans. Neural Networ. 13 2002 143 159
    • (2002) IEEE Trans. Neural Networ. , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 28
    • 77952554315 scopus 로고    scopus 로고
    • A learning method for the class imbalance problem with medical data sets
    • D.C. Li, C.W. Liu, and S.C. Hu A learning method for the class imbalance problem with medical data sets Comput. Biol. Med. 40 2010 509 518
    • (2010) Comput. Biol. Med. , vol.40 , pp. 509-518
    • Li, D.C.1    Liu, C.W.2    Hu, S.C.3
  • 29
    • 79957591079 scopus 로고    scopus 로고
    • Combining integrated sampling with SVM ensembles for learning from imbalanced datasets
    • Y. Liu, X. Yu, J.X. Huang, and A. An Combining integrated sampling with SVM ensembles for learning from imbalanced datasets Inform. Process. Manag. 47 2011 617 631
    • (2011) Inform. Process. Manag. , vol.47 , pp. 617-631
    • Liu, Y.1    Yu, X.2    Huang, J.X.3    An, A.4
  • 31
    • 84155181068 scopus 로고    scopus 로고
    • A new fruit fly optimization algorithm: Taking the financial distress model as an example
    • W.T. Pan A new fruit fly optimization algorithm: taking the financial distress model as an example Knowl.-Based Syst. 26 2012 69 74
    • (2012) Knowl.-Based Syst. , vol.26 , pp. 69-74
    • Pan, W.T.1
  • 34
    • 0000839837 scopus 로고
    • Product life cycle research: A literature review
    • D.R. Rink, and J.F. Swan Product life cycle research: a literature review J. Bus. Res. 1979 219 242
    • (1979) J. Bus. Res. , pp. 219-242
    • Rink, D.R.1    Swan, J.F.2
  • 35
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned-extreme learning machine for classification problem
    • H.J. Rong, Y.S. Ong, A.H. Tan, and Z. Zhu A fast pruned-extreme learning machine for classification problem Neurocomputing 72 2008 359 366
    • (2008) Neurocomputing , vol.72 , pp. 359-366
    • Rong, H.J.1    Ong, Y.S.2    Tan, A.H.3    Zhu, Z.4
  • 36
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta, and B. Gabrys Classifier selection for majority voting Inform. Fusion. 6 2005 63 81
    • (2005) Inform. Fusion. , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 37
    • 0031224574 scopus 로고    scopus 로고
    • Combining diverse neural networks
    • A. Sharkey, and N. Sharkey Combining diverse neural networks Knowl. Eng. Rev. 12 1997 231 247
    • (1997) Knowl. Eng. Rev. , vol.12 , pp. 231-247
    • Sharkey, A.1    Sharkey, N.2
  • 38
    • 84861845698 scopus 로고    scopus 로고
    • Financial distress prediction using support vector machines: Ensemble vs. individual
    • J. Sun, and H. Li Financial distress prediction using support vector machines: ensemble vs. individual Appl. Soft Comput. 12 2012 2254 2265
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2254-2265
    • Sun, J.1    Li, H.2
  • 39
    • 70350565063 scopus 로고    scopus 로고
    • On strategies for imbalanced text classification using SVM: A comparative study
    • A. Sun, E.P. Lim, and Y. Liu On strategies for imbalanced text classification using SVM: a comparative study Decis. Support Syst. 48 2009 191 201
    • (2009) Decis. Support Syst. , vol.48 , pp. 191-201
    • Sun, A.1    Lim, E.P.2    Liu, Y.3
  • 40
    • 80955181170 scopus 로고    scopus 로고
    • A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
    • H. Uǧuz A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm Knowl.-Based Syst. 24 2011 1024 1032
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 1024-1032
    • Uǧuz, H.1
  • 41
    • 50049092345 scopus 로고    scopus 로고
    • Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition
    • D. Ververidis, and C. Kotropoulos Fast and accurate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition Signal Process. 88 2008 2956 2970
    • (2008) Signal Process. , vol.88 , pp. 2956-2970
    • Ververidis, D.1    Kotropoulos, C.2
  • 42
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • G. Wang, J. Ma, L. Huang, and K. Xu Two credit scoring models based on dual strategy ensemble trees Knowl.-Based Syst. 26 2012 61 68
    • (2012) Knowl.-Based Syst. , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 43
    • 84866478887 scopus 로고    scopus 로고
    • Credit risk assessment and decision making by a fusion approach
    • doi:10.1016/j.knosys.2012 in press
    • T.C. Wu, M.F. Hsu, Credit risk assessment and decision making by a fusion approach, Knowl.-Based Syst., in press. http://dx.doi.org/10.1016/j.knosys. 2012.
    • Knowl.-Based Syst.
    • Wu, T.C.1    Hsu, M.F.2
  • 44
    • 84867873323 scopus 로고    scopus 로고
    • Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs
    • doi:10.1016/j.knosys.2012 in press
    • M. Xia, Y. Zhang, L. Weng, X. Ye, Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs, Knowl.-Based Syst., in press. http://dx.doi.org/10.1016/j.knosys.2012.
    • Knowl.-Based Syst.
    • Xia, M.1    Zhang, Y.2    Weng, L.3    Ye, X.4
  • 45
    • 53849105442 scopus 로고    scopus 로고
    • Financial failure prediction using efficiency as a predictor
    • X. Xu, and Y. Wang Financial failure prediction using efficiency as a predictor Expert Syst. Appl. 36 2009 366 373
    • (2009) Expert Syst. Appl. , vol.36 , pp. 366-373
    • Xu, X.1    Wang, Y.2
  • 46
    • 71749091806 scopus 로고    scopus 로고
    • A hybrid approach of DEA, rough set and support vector machines for business failure prediction
    • C.C. Yeh, D.J. Chi, and M.F. Hsu A hybrid approach of DEA, rough set and support vector machines for business failure prediction Expert Syst. Appl. 37 2010 1535 1541
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1535-1541
    • Yeh, C.C.1    Chi, D.J.2    Hsu, M.F.3
  • 47
    • 71749114830 scopus 로고    scopus 로고
    • Support vector machine based multiagent ensemble learning for credit risk evaluation
    • L. Yu, W. Yue, S. Wang, and K.K. Lai Support vector machine based multiagent ensemble learning for credit risk evaluation Expert Syst. Appl. 37 2010 1351 1360
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1351-1360
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.