메뉴 건너뛰기




Volumn 48, Issue 5, 2015, Pages 1653-1672

Classifying imbalanced data sets using similarity based hierarchical decomposition

Author keywords

Class imbalance problem; Clustering; Hierarchical decomposition; Minority majority classes; Outlier detection

Indexed keywords

ANOMALY DETECTION; HIERARCHICAL CLUSTERING; STATISTICS;

EID: 84921689324     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.10.032     Document Type: Article
Times cited : (134)

References (72)
  • 2
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernandez, E. Barrenechea, and F. Herrera EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recognit. 46 2013 3460 3471
    • (2013) Pattern Recognit. , vol.46 , pp. 3460-3471
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Herrera, F.4
  • 4
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • S. García, and F. Herrera Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy Evol. Comput. 17 2009 275 306
    • (2009) Evol. Comput. , vol.17 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 7
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz, and S. Stephen The class imbalance problem: a systematic study Intell. Data Anal. 6 5 2002 429 449
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 9
    • 84857022489 scopus 로고    scopus 로고
    • Adjusted geometric-mean: A novel performance measure for imbalanced bioinformatics dataset learning
    • R. Batuwita, and V. Palade Adjusted geometric-mean: a novel performance measure for imbalanced bioinformatics dataset learning J. Bioinform. Comput. Biol. 10 4 2012 1 23
    • (2012) J. Bioinform. Comput. Biol. , vol.10 , Issue.4 , pp. 1-23
    • Batuwita, R.1    Palade, V.2
  • 10
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • J. Huang, and C.X. Ling Using AUC and accuracy in evaluating learning algorithms IEEE Trans. Knowl. Data Eng. 17 3 2005 299 310
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 18
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 19
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 23
    • 20444392475 scopus 로고    scopus 로고
    • Using random forest to learn imbalanced data
    • (Available at:) Statistics Department, University of California Berkeley
    • C. Chen, A. Liaw, and L. Breiman Using random forest to learn imbalanced data (Available at:) Technical Report 666 2004 Statistics Department, University of California Berkeley
    • (2004) Technical Report 666
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 25
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • H. Han, W.Y. Wang, and B.H. Mao Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning Adv. Intell. Comput. 2005 878 887
    • (2005) Adv. Intell. Comput. , pp. 878-887
    • Han, H.1    Wang, W.Y.2    Mao, B.H.3
  • 27
    • 84891807032 scopus 로고    scopus 로고
    • MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning
    • S. Barua, M. Islam, X. Yao, and K. Murase MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning IEEE Trans. Knowl. Data Eng. 26 2 2014 405 425
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.2 , pp. 405-425
    • Barua, S.1    Islam, M.2    Yao, X.3    Murase, K.4
  • 28
    • 4744344959 scopus 로고    scopus 로고
    • Classification and knowledge discovery in protein databases
    • P. Radivojac, N.V. Chawla, K. Dunker, and Z. Obradovic Classification and knowledge discovery in protein databases J. Biomed. Inform. 37 4 2004 224 239
    • (2004) J. Biomed. Inform. , vol.37 , Issue.4 , pp. 224-239
    • Radivojac, P.1    Chawla, N.V.2    Dunker, K.3    Obradovic, Z.4
  • 29
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for class imbalance learning
    • X.Y. Liu, J. Wu, and Z.H. Zhou Exploratory undersampling for class imbalance learning IEEE Trans. Syst. Man Cybern. Part B 39 2 2009 539 550
    • (2009) IEEE Trans. Syst. Man Cybern. Part B , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.Y.1    Wu, J.2    Zhou, Z.H.3
  • 31
    • 44649170363 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • B.X. Wang, and N. Japkowicz Boosting support vector machines for imbalanced data sets Lect. Notes Artif. Intell. 4994 2008 38 47
    • (2008) Lect. Notes Artif. Intell. , vol.4994 , pp. 38-47
    • Wang, B.X.1    Japkowicz, N.2
  • 32
    • 17844387127 scopus 로고    scopus 로고
    • Neighbor-weighted k-nearest neighbor for unbalanced text corpus
    • S. Tan Neighbor-weighted k-nearest neighbor for unbalanced text corpus Expert Syst. Appl. 28 4 2005 667 671
    • (2005) Expert Syst. Appl. , vol.28 , Issue.4 , pp. 667-671
    • Tan, S.1
  • 38
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using intrinsic characteristics
    • V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using intrinsic characteristics Inf. Sci. 150 2013 113 141
    • (2013) Inf. Sci. , vol.150 , pp. 113-141
    • Lopez, V.1    Fernandez, A.2    Garcia, S.3    Palade, V.4    Herrera, F.5
  • 39
  • 40
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • C.N. Silla, and A.A. Freitas A survey of hierarchical classification across different application domains Data Min. Knowl. Discov. 22 1-2 2010 31 72
    • (2010) Data Min. Knowl. Discov. , vol.22 , Issue.12 , pp. 31-72
    • Silla, C.N.1    Freitas, A.A.2
  • 45
    • 84856461298 scopus 로고    scopus 로고
    • Selecting different protein representations and classification algorithms in hierarchical protein function prediction
    • C.N. Silla Jr., and A.A. Freitas Selecting different protein representations and classification algorithms in hierarchical protein function prediction Intell. Data Anal. J. 15 6 2011 979 999
    • (2011) Intell. Data Anal. J. , vol.15 , Issue.6 , pp. 979-999
    • Silla, Jr.C.N.1    Freitas, A.A.2
  • 46
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • S. Kumar, J. Ghosh, and M.M. Crawford Hierarchical fusion of multiple classifiers for hyperspectral data analysis Pattern Anal. Appl. 5 2002 210 220
    • (2002) Pattern Anal. Appl. , vol.5 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 47
    • 33847644550 scopus 로고    scopus 로고
    • Hierarchically SVM classification based on support vector clustering method and its application to document categorization
    • P.Y. Hao, J.H. Chiang, and Y.K. Tu Hierarchically SVM classification based on support vector clustering method and its application to document categorization Expert Syst. Appl. 33 2007 627 635
    • (2007) Expert Syst. Appl. , vol.33 , pp. 627-635
    • Hao, P.Y.1    Chiang, J.H.2    Tu, Y.K.3
  • 49
    • 51749106543 scopus 로고    scopus 로고
    • Audio classification using binary hierarchical classifiers with feature selection for healthcare applications
    • Y. Peng, C. Lin, M. Sun, Audio classification using binary hierarchical classifiers with feature selection for healthcare applications, in: Proceedings of IEEE International Symposium on Circuits and Systems, 2008, pp. 3238-3241.
    • (2008) Proceedings of IEEE International Symposium on Circuits and Systems , pp. 3238-3241
    • Peng, Y.1    Lin, C.2    Sun, M.3
  • 52
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B.J. Frey, and D. Dueck Clustering by passing messages between data points Science 2007 972 997
    • (2007) Science , pp. 972-997
    • Frey, B.J.1    Dueck, D.2
  • 53
    • 55149107386 scopus 로고    scopus 로고
    • Multifeature object trajectory clustering for video analysis
    • N. Anjum, and A. Cavallaro Multifeature object trajectory clustering for video analysis IEEE Trans. Circuits Syst. Video Technol. 18 11 2008 1555 1564
    • (2008) IEEE Trans. Circuits Syst. Video Technol. , vol.18 , Issue.11 , pp. 1555-1564
    • Anjum, N.1    Cavallaro, A.2
  • 54
  • 57
    • 84879153481 scopus 로고    scopus 로고
    • An improved random forest algorithm for class-imbalanced data classification and its application in pad risk factors analysis
    • D. Yao, J. Yang, and Xiaojuan Zhan An improved random forest algorithm for class-imbalanced data classification and its application in pad risk factors analysis Open Electric. Electron. Eng. J. 7 2013 62 70
    • (2013) Open Electric. Electron. Eng. J. , vol.7 , pp. 62-70
    • Yao, D.1    Yang, J.2    Zhan, X.3
  • 61
    • 0028026443 scopus 로고
    • Neural expert system using fuzzy teaching input and its application to medical diagnosis
    • Y. Hayashi Neural expert system using fuzzy teaching input and its application to medical diagnosis Inf. Sci. Appl. 1 1994 47 58
    • (1994) Inf. Sci. Appl. , vol.1 , pp. 47-58
    • Hayashi, Y.1
  • 64
  • 65
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Mach. Learn. 30 1998 195 215
    • (1998) Mach. Learn. , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 68
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. García, and F. Herrera An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2677 2694
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 69
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. Garcia, A. Fernandez, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 70
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple datasets
    • J. Demsar Statistical comparisons of classifiers over multiple datasets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 71
    • 0002294347 scopus 로고
    • A simples equentially rejective multiple test procedure
    • S. Holm A simples equentially rejective multiple test procedure Scand. J. Stat. 6 1979 65 70
    • (1979) Scand. J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.