-
1
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
Machine Learning: ECML 2004 - 15th European Conference on Machine Learning
-
Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to unbalanced datasets. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D, eds. Lecture Notes in Computer Science, Proceedings of 15th European conference on machine learning, ECML, Springer, Pisa, 3201:39-50 (Pubitemid 41050079)
-
(2004)
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
, vol.3201
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
2
-
-
36948999941
-
-
University of California, School of Inf. and Comput. Sci., Irvine
-
Asuncion A, Newman DJ (2007) UCI machine learning repository http://www.ics.uci.edu/~mlearn/MLRepository.html. University of California, School of Inf. and Comput. Sci., Irvine
-
(2007)
UCI Machine Learning Repository
-
-
Asuncion, A.1
Newman, D.J.2
-
3
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
Barandela R, SÃnchez JS, GarcÃá1a V, Rangel E (2003) Strategies for learning in class imbalance problems. Patt Recognit 36: 849-851
-
(2003)
Patt Recognit
, vol.36
, pp. 849-851
-
-
Barandela R, S.1
-
4
-
-
27144531570
-
A study of the behaviour of several methods for balancing machine learning training data
-
10.1145/1007730.1007735
-
Batista G, Prati R, Monard M (2004) A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explor 6(1): 20-29
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.1
Prati, R.2
Monard, M.3
-
5
-
-
77953089698
-
FSVM-CIL: Fuzzy support vector machines for class imbalance learning
-
10.1109/TFUZZ.2010.2042721
-
Batuwita R, Palade V (2010) FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans Fuzzy Syst 18(3): 558-571
-
(2010)
IEEE Trans Fuzzy Syst
, vol.18
, Issue.3
, pp. 558-571
-
-
Batuwita, R.1
Palade, V.2
-
7
-
-
0030211964
-
Bagging predictors
-
Breiman L (1996) Bagging predictors. Mach Learn 24: 123-140 (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0003802343
-
-
Wadsworth International Group Belmont, CA 0541.62042
-
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont, CA
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
9
-
-
58349098976
-
Handling class imbalance in customer churn prediction
-
10.1016/j.eswa.2008.05.027
-
Burez J, Vanden Poel D (2009) Handling class imbalance in customer churn prediction. Expert Syst Appl 36: 4626-4636
-
(2009)
Expert Syst Appl
, vol.36
, pp. 4626-4636
-
-
Burez, J.1
Vanden Poel, D.2
-
10
-
-
33748943134
-
C4.5 and imbalanced data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure
-
Chawla NV (2003) C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. Proceedings of the ICML'03 Workshop on Class Imbalances
-
(2003)
Proceedings of the ICML'03 Workshop on Class Imbalances
-
-
Chawla, N.V.1
-
12
-
-
0022251130
-
Application of bootstrap and other resampling methods: Evaluation of classifier performance
-
10.1016/0167-8655(85)90049-2
-
Chernick M, Murthy V, Nealy C (1985) Application of bootstrap and other resampling methods: evaluation of classifier performance. Pattern Recogn Lett 3: 167-178
-
(1985)
Pattern Recogn Lett
, vol.3
, pp. 167-178
-
-
Chernick, M.1
Murthy, V.2
Nealy, C.3
-
13
-
-
56049126929
-
Learning decision trees for unbalanced data
-
10.1007/978-3-540-87479-9-34
-
Cieslak D, Chawla N (2008) Learning decision trees for unbalanced data. Lect. Notes in Comput. Sci. 5211: 241-256
-
(2008)
Lect. Notes in Comput. Sci.
, vol.5211
, pp. 241-256
-
-
Cieslak, D.1
Chawla, N.2
-
14
-
-
0002430993
-
Predictive performance of binary logit models in unbalanced samples
-
Cramer JS (1999) Predictive performance of binary logit models in unbalanced samples. The Statistician 48: 85-94
-
(1999)
The Statistician
, vol.48
, pp. 85-94
-
-
Cramer, J.S.1
-
15
-
-
33749249600
-
The relationship between Precision-Recall and ROC curves
-
Cohen W, Moore A, eds ACM Press, Pittsburgh, PA
-
Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC curves. In: Cohen W, Moore A, eds. Proceedings of the 23rd International Conference on Machine Learning, ACM Press, Pittsburgh, PA, pp 233-240
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
16
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J (2006) Statistical comparison of classifiers over multiple data sets. J Mach Learn Res 7(7): 1-30 (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
17
-
-
33748991193
-
Cost curves: An improved method for visualizing classifier performance
-
DOI 10.1007/s10994-006-8199-5
-
Drummond C, Holte RC (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65(1): 95-130 (Pubitemid 44451195)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 95-130
-
-
Drummond, C.1
Holte, R.C.2
-
19
-
-
33846864233
-
Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques
-
DOI 10.1021/ci6002619
-
Eitrich T, Kless A, Druska C, Meyer W, Grotendorst J (2007) Classification of highly unbalanced CYP450 data of drugs using cost sensitive mach learning techniques. J Chem Inform Model 47(1): 92-103 (Pubitemid 46225564)
-
(2007)
Journal of Chemical Information and Modeling
, vol.47
, Issue.1
, pp. 92-103
-
-
Eitrich, T.1
Kless, A.2
Druska, C.3
Meyer, W.4
Grotendorst, J.5
-
20
-
-
1442356040
-
A multiple resampling method for learning form imbalanced data sets
-
10.1111/j.0824-7935.2004.t01-1-00228.x
-
Estabrooks A, Taeho J, Japkovicz N (2004) A multiple resampling method for learning form imbalanced data sets. Comput Intell 20: 18-36
-
(2004)
Comput Intell
, vol.20
, pp. 18-36
-
-
Estabrooks, A.1
Taeho, J.2
Japkovicz, N.3
-
21
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches
-
10.1109/TSMCC.2011.2179028
-
Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans Syst, Man, Cybern, C 42: 463-484
-
(2012)
IEEE Trans Syst, Man, Cybern, C
, vol.42
, pp. 463-484
-
-
Fernandez, A.1
Barrenechea, E.2
Bustince, H.3
Herrera, F.4
-
22
-
-
80052414830
-
Evolutionary-based selection of generalized instances for imbalanced classification
-
10.1016/j.knosys.2011.01.012
-
García S, Derrac J, Triguero I, Carmona CJ, Herrera F (2012) Evolutionary-based selection of generalized instances for imbalanced classification. Knowl Based Syst 25: 3-12
-
(2012)
Knowl Based Syst
, vol.25
, pp. 3-12
-
-
García, S.1
Derrac, J.2
Triguero, I.3
Carmona, C.J.4
Herrera, F.5
-
23
-
-
27144479454
-
Boosting with data generation: Improving the classification of hard to learn examples
-
10.1145/1007730.1007736
-
Guo H, Viktor HL (2004) Boosting with data generation: improving the classification of hard to learn examples. SIGKDD Explor 6(1): 30-39
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
24
-
-
33745886270
-
Classifier technology and the illusion of progress
-
DOI 10.1214/088342306000000060
-
Hand D (2006) Classifier technology and the illusion of progress. Stat Sci 21(1): 1-14 (Pubitemid 44046906)
-
(2006)
Statistical Science
, vol.21
, Issue.1
, pp. 1-14
-
-
Hand, D.J.1
-
25
-
-
0037410687
-
Choosing k for two-class nearest neighbour classifiers with unbalanced classes
-
DOI 10.1016/S0167-8655(02)00394-X
-
Hand D, Vinciotti V (2003) Choosing K for two-class nearest neighbour classifiers with unbalanced classes. Patt Recognit Lett 24: 1555-1562 (Pubitemid 36225860)
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.9-10
, pp. 1555-1562
-
-
Hand, D.J.1
Vinciotti, V.2
-
27
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data An J 6
-
(2002)
Intell Data An J
, pp. 6
-
-
Japkowicz, N.1
Stephen, S.2
-
28
-
-
27144540575
-
Class imbalances versus small disjuncts
-
10.1145/1007730.1007737 2056198
-
Jo T, Japkowicz N (2004) Class imbalances versus small disjuncts. SIGKDD Explor 6(1): 40-49
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
29
-
-
48649089002
-
An empirical study of learning from imbalanced data using random forest
-
Washington, DC
-
Khoshgoftaar TM, Golawala M, Van Hulse J (2007) An empirical study of learning from imbalanced data using random forest. Proceedings of the 19th IEEE international conference on tools with artif intelligence, vol 2, Washington, DC
-
(2007)
Proceedings of the 19th IEEE International Conference on Tools with Artif Intelligence
, vol.2
-
-
Khoshgoftaar, T.M.1
Golawala, M.2
Van Hulse, J.3
-
30
-
-
79955468283
-
Comparing boosting and bagging techniques with noisy and imbalanced data
-
10.1109/TSMCA.2010.2084081
-
Khoshgoftaar TM, Van Hulse J, Napolitano A (2011) Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Trans on Syst, Man, Cybern.-Part A: Syst Humans 41(3): 552- 568
-
(2011)
IEEE Trans on Syst, Man, Cybern.-Part A: Syst Humans
, vol.41
, Issue.3
, pp. 552-568
-
-
Khoshgoftaar, T.M.1
Van Hulse, J.2
Napolitano, A.3
-
31
-
-
0036678729
-
A preliminary investigation of maximum likelihood logistic regression versus exact logistic regression
-
10.1198/00031300283 1963262
-
King EN, Ryan TP (2002) A preliminary investigation of maximum likelihood logistic regression versus exact logistic regression. Am Stat 56: 163-170
-
(2002)
Am Stat
, vol.56
, pp. 163-170
-
-
King, E.N.1
Ryan, T.P.2
-
32
-
-
4544259831
-
Logistic regression in rare events data
-
10.1093/oxfordjournals.pan.a004868
-
King G, Zeng L (2001) Logistic regression in rare events data. Political Anal 9: 137-163
-
(2001)
Political Anal
, vol.9
, pp. 137-163
-
-
King, G.1
Zeng, L.2
-
36
-
-
0034726260
-
Noisy replication in skewed binary classification
-
10.1016/S0167-9473(99)00095-X 1046.62063
-
Lee S (2000) Noisy replication in skewed binary classification. Comput Stat Data An 34: 165-191
-
(2000)
Comput Stat Data An
, vol.34
, pp. 165-191
-
-
Lee, S.1
-
37
-
-
0033424579
-
Regularization in skewed binary classification
-
10.1007/s001800050018 0933.62050
-
Lee S (1999) Regularization in skewed binary classification. Comput Stat 14: 277-292
-
(1999)
Comput Stat
, vol.14
, pp. 277-292
-
-
Lee, S.1
-
38
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
DOI 10.1023/A:1012406528296
-
Lin Y, Lee Y, Wahba G (2002) Support vector machines for classification in nonstandard situations. Mach Learn 46: 191-202 (Pubitemid 34129968)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
39
-
-
33746529930
-
A study in machine learning from imbalanced data for sentence boundary detection in speech
-
DOI 10.1016/j.csl.2005.06.002, PII S0885230805000306
-
Liu Y, Chawla NV, Harper MP, Shriberg E, Stolcke A (2006) A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput Speech & Lang 20: 468-494 (Pubitemid 44142004)
-
(2006)
Computer Speech and Language
, vol.20
, Issue.4
, pp. 468-494
-
-
Liu, Y.1
Chawla, N.V.2
Harper, M.P.3
Shriberg, E.4
Stolcke, A.5
-
40
-
-
40649126091
-
Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
-
10.1016/j.neunet.2007.12.031
-
Mazurowski MA (2008) Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Netw 21: 427-436
-
(2008)
Neural Netw
, vol.21
, pp. 427-436
-
-
Mazurowski, M.A.1
-
41
-
-
77953586736
-
Does cost-sensitive learning beat sampling for classifying rare classes?
-
ACM Press, New York
-
McCarthy K, Zabar B, Weiss G (2005) Does cost-sensitive learning beat sampling for classifying rare classes? Proceedings of the 1st international workshop on utility-based data mining, ACM Press, New York, pp 69-77
-
(2005)
Proceedings of the 1st International Workshop on Utility-based Data Mining
, pp. 69-77
-
-
McCarthy, K.1
Zabar, B.2
Weiss, G.3
-
42
-
-
33947284406
-
Boosted classification trees and class probability/quantile estimation
-
Mease D, Wyner A, Buja A (2007) Boosted classification trees and class probability-quantile estimation. J Mach Learn Res 8: 409-439 (Pubitemid 46434120)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 409-439
-
-
Mease, D.1
Wyner, A.J.2
Buja, A.3
-
43
-
-
78650748373
-
Sampling bias and class imbalance in maximum-likelihood logistic regression
-
10.1007/s11004-010-9311-8 1204.86025
-
Oommen T, BaiseL Vogel R (2011) Sampling bias and class imbalance in maximum-likelihood logistic regression. Math Geosci 43: 99-120
-
(2011)
Math Geosci
, vol.43
, pp. 99-120
-
-
Oommen, T.1
Baisel Vogel, R.2
-
44
-
-
80052951721
-
Assessing the impact of class-imbalanced data for classifying relevant/irrelevant medline documents
-
10.1007/978-3-642-19914-1-45
-
Pavón R, Laza R, Reboiro-Jato M, Fdez-Riverola F (2011) Assessing the impact of class-imbalanced data for classifying relevant/irrelevant medline documents. Adv Intell Soft Comput 93: 345-353
-
(2011)
Adv Intell Soft Comput
, vol.93
, pp. 345-353
-
-
Pavón, R.1
Laza, R.2
Reboiro-Jato, M.3
Fdez-Riverola, F.4
-
46
-
-
0028202408
-
Representation design and brute-force induction in a Boeing manufacturing domain
-
10.1080/08839519408945435
-
Riddle P, Segal R, Etzioni O (1994) Representation design and brute-force induction in a Boeing manufacturing domain. Appl Artif Intell 8: 125-147
-
(1994)
Appl Artif Intell
, vol.8
, pp. 125-147
-
-
Riddle, P.1
Segal, R.2
Etzioni, O.3
-
49
-
-
79957987118
-
A parallel neural network approach to prediction of Parkinson's Disease
-
10.1016/j.eswa.2011.04.028
-
Ström F, Koker R (2011) A parallel neural network approach to prediction of Parkinson's Disease. Expert Syst Appl 38(10): 12470-12474
-
(2011)
Expert Syst Appl
, vol.38
, Issue.10
, pp. 12470-12474
-
-
Ström, F.1
Koker, R.2
-
50
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
-
Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Patt Recogn 40(12): 3358-3378 (Pubitemid 47223287)
-
(2007)
Pattern Recognition
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
52
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
DOI 10.1109/TKDE.2002.1000348
-
Ting KM (2002) An instance-weighting method to induce cost-sensitive trees. IEEE Trans Knowl Data Eng 14(3): 659-665 (Pubitemid 34669622)
-
(2002)
IEEE Transactions on Knowledge and Data Engineering
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
53
-
-
33750351882
-
Optimisation and evaluation of random forests for imbalanced datasets
-
Foundations of Intelligent Systems - 16th International Symposium, ISMIS 2006, Proceedings
-
Thomas J, Jouve P, Nicoloyannis N (2006) Optimisation and evaluation of random forests for imbalanced datasets. Lecture Notes in Computer Science, Springer 4203: 622-631 (Pubitemid 44618707)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4203
, pp. 622-631
-
-
Thomas, J.1
Jouve, P.-E.2
Nicoloyannis, N.3
-
55
-
-
77956023732
-
Combating the small sample class imbalance problem using feature selection
-
10.1109/TKDE.2009.187
-
Wasikowski M, Chen XW (2010) Combating the small sample class imbalance problem using feature selection. IEEE Trans Knowl Data Eng 22(10): 1388-1400
-
(2010)
IEEE Trans Knowl Data Eng
, vol.22
, Issue.10
, pp. 1388-1400
-
-
Wasikowski, M.1
Chen, X.W.2
-
56
-
-
26844497970
-
A comparison of nonparametric error rate estimation methods in classification problems
-
DOI 10.1002/bimj.200410011
-
Wehberg S, Schumacher M (2004) A comparison of nonparametric error rate estimation methods in classification problems. Biom J 46(1): 35-47 (Pubitemid 41448942)
-
(2004)
Biometrical Journal
, vol.46
, Issue.1
, pp. 35-47
-
-
Wehberg, S.1
Schumacher, M.2
-
57
-
-
20844458491
-
Mining with rarity: A unifying framework
-
Weiss GM (2004) Mining with rarity: a unifying framework. ACM SIGKDD Explor. Newsletter 6(1)
-
(2004)
ACM SIGKDD Explor. Newsletter
, vol.6
, Issue.1
-
-
Weiss, G.M.1
-
58
-
-
0003790115
-
The effect of class distribution on classifier learning: An empirical study
-
Department of Computer Science, Rutgers University, New Jersey
-
Weiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study. Technical report, ML-TR-44, Department of Computer Science, Rutgers University, New Jersey
-
(2001)
Technical Report, ML-TR-44
-
-
Weiss, G.M.1
Provost, F.2
-
59
-
-
64049108468
-
Exploratory undersampling for class-imbalance learning
-
Wu XLJ, Zhou Z (2009) Exploratory undersampling for class-imbalance learning. IEEE Trans: On Syst., Man, Cybern., B 39: 539-550
-
(2009)
IEEE Trans: On Syst., Man, Cybern., B
, vol.39
, pp. 539-550
-
-
Wu, X.L.J.1
Zhou, Z.2
-
60
-
-
33748947459
-
Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset
-
DOI 10.1007/11816492-89, Intelligent Control and Automation: International Conference on Intelligent Computing, ICIC 2006
-
Yen S, Lee Y (2006) Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. Intelligent Control and Automation. Series: Lecture Notes in Control and Information Sciences, pp 731-740 (Pubitemid 44431759)
-
(2006)
Lecture Notes in Control and Information Sciences
, vol.344
, pp. 731-740
-
-
Yen, S.-J.1
Lee, Y.-S.2
-
61
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
DOI 10.1109/TKDE.2006.17
-
Zhou Z, Liu X (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng 18(1): 63-77 (Pubitemid 43145089)
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
|