메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

nDNA-prot: Identification of DNA-binding proteins based on unbalanced classification

Author keywords

Bioinformatics; DNA binding protein; Ensemble classifier; Unbalanced dataset

Indexed keywords

DNA-BINDING PROTEIN; ENSEMBLE CLASSIFIERS; UNBALANCED DATASET;

EID: 84907013321     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-298     Document Type: Article
Times cited : (184)

References (36)
  • 2
    • 80052855771 scopus 로고    scopus 로고
    • IDNA-Prot: identification of DNA binding proteins using random forest with grey model
    • Lin W-Z, Fang JA, Xiao X, Chou KC. iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLoS One 2011, 6(9):e24756.
    • (2011) PLoS One , vol.6 , Issue.9 , pp. e24756
    • Lin, W.-Z.1    Fang, J.A.2    Xiao, X.3    Chou, K.C.4
  • 3
    • 84874240374 scopus 로고    scopus 로고
    • Hierarchical classification of protein folds using a novel ensemble classifier
    • Lin C, Zou Y, Qin J, Liu X, Jiang Y, Ke C, Zou Q. Hierarchical classification of protein folds using a novel ensemble classifier. PLoS One 2013, 8(2):e56499.
    • (2013) PLoS One , vol.8 , Issue.2 , pp. e56499
    • Lin, C.1    Zou, Y.2    Qin, J.3    Liu, X.4    Jiang, Y.5    Ke, C.6    Zou, Q.7
  • 4
    • 84862605679 scopus 로고    scopus 로고
    • Improved method for predicting the protein fold pattern with ensemble classifiers
    • Chen W, Liu X, Huang Y, Jiang Y, Zou Q, Lin C. Improved method for predicting the protein fold pattern with ensemble classifiers. Genet Mol Res 2012, 11(1):174-181.
    • (2012) Genet Mol Res , vol.11 , Issue.1 , pp. 174-181
    • Chen, W.1    Liu, X.2    Huang, Y.3    Jiang, Y.4    Zou, Q.5    Lin, C.6
  • 5
    • 84867004398 scopus 로고    scopus 로고
    • Using amino acid physicochemical distance transformation for fast protein remote homology detection
    • Liu B, Wang X, Chen Q, Dong Q, Lan X. Using amino acid physicochemical distance transformation for fast protein remote homology detection. PLoS One 2012, 7(9):e46633.
    • (2012) PLoS One , vol.7 , Issue.9 , pp. e46633
    • Liu, B.1    Wang, X.2    Chen, Q.3    Dong, Q.4    Lan, X.5
  • 6
    • 78649340206 scopus 로고    scopus 로고
    • Binary classification of uncharacterized proteins into DNA binding/non-DNA binding proteins from sequence derived features using Ann
    • Patel AK, Patel S, Naik PK. Binary classification of uncharacterized proteins into DNA binding/non-DNA binding proteins from sequence derived features using Ann. Dig J Nanomaterials & Biostructures (DJNB) 2009, 4(4):775-782.
    • (2009) Dig J Nanomaterials & Biostructures (DJNB) , vol.4 , Issue.4 , pp. 775-782
    • Patel, A.K.1    Patel, S.2    Naik, P.K.3
  • 7
    • 79955864876 scopus 로고    scopus 로고
    • Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks
    • Cheng L, Hou Z, Lin Y, Tan M, Zhang W, Wu F. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans Neural Netw 2011, 22(5):714-726.
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.5 , pp. 714-726
    • Cheng, L.1    Hou, Z.2    Lin, Y.3    Tan, M.4    Zhang, W.5    Wu, F.6
  • 8
    • 33847122913 scopus 로고    scopus 로고
    • Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions
    • Bhardwaj N, Lu H. Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions. FEBS Lett 2007, 581(5):1058-1066.
    • (2007) FEBS Lett , vol.581 , Issue.5 , pp. 1058-1066
    • Bhardwaj, N.1    Lu, H.2
  • 9
    • 84881519843 scopus 로고    scopus 로고
    • BinMemPredict: a web server and software for predicting membrane protein types
    • Zou Q, Li X, Jiang Y, Zhao Y, Wang G. BinMemPredict: a web server and software for predicting membrane protein types. Curr Proteomics 2013, 10(1):2-9.
    • (2013) Curr Proteomics , vol.10 , Issue.1 , pp. 2-9
    • Zou, Q.1    Li, X.2    Jiang, Y.3    Zhao, Y.4    Wang, G.5
  • 12
    • 59449107736 scopus 로고    scopus 로고
    • An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins
    • Nanni L, Lumini A. An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins. Amino Acids 2009, 36(2):167-175.
    • (2009) Amino Acids , vol.36 , Issue.2 , pp. 167-175
    • Nanni, L.1    Lumini, A.2
  • 13
  • 14
    • 77953693713 scopus 로고    scopus 로고
    • Boosting the prediction and understanding of DNA-binding domains from sequence
    • Langlois RE, Lu H. Boosting the prediction and understanding of DNA-binding domains from sequence. Nucleic Acids Res 2010, 38(10):3149-3158.
    • (2010) Nucleic Acids Res , vol.38 , Issue.10 , pp. 3149-3158
    • Langlois, R.E.1    Lu, H.2
  • 15
    • 84880480444 scopus 로고    scopus 로고
    • Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information
    • Ma X, Guo J, Liu HD, Xie JM, Sun X. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information. IEEE/ACM Trans Comput Biol Bioinform 2012, 9(6):1766-1775.
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.6 , pp. 1766-1775
    • Ma, X.1    Guo, J.2    Liu, H.D.3    Xie, J.M.4    Sun, X.5
  • 16
    • 63349102837 scopus 로고    scopus 로고
    • Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology
    • Brown J, Akutsu T. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology. BMC Bioinformatics 2009, 10(1):25.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 25
    • Brown, J.1    Akutsu, T.2
  • 17
    • 38149007012 scopus 로고    scopus 로고
    • Predicting DNA-binding proteins: approached from Chou's pseudo amino acid composition and other specific sequence features
    • Fang Y, Guo Y, Feng Y, Li M. Predicting DNA-binding proteins: approached from Chou's pseudo amino acid composition and other specific sequence features. Amino Acids 2008, 34(1):103-109.
    • (2008) Amino Acids , vol.34 , Issue.1 , pp. 103-109
    • Fang, Y.1    Guo, Y.2    Feng, Y.3    Li, M.4
  • 18
    • 0038644483 scopus 로고    scopus 로고
    • Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence
    • Cai YD, Lin SL. Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence. Biochim et Biophys Acta (BBA)-Proteins and Proteomics 2003, 1648(1):127-133.
    • (2003) Biochim et Biophys Acta (BBA)-Proteins and Proteomics , vol.1648 , Issue.1 , pp. 127-133
    • Cai, Y.D.1    Lin, S.L.2
  • 19
    • 0042622243 scopus 로고    scopus 로고
    • SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence
    • Cai C, Han L, Ji Z, Chen X, Chen Y. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 2003, 31(13):3692-3697.
    • (2003) Nucleic Acids Res , vol.31 , Issue.13 , pp. 3692-3697
    • Cai, C.1    Han, L.2    Ji, Z.3    Chen, X.4    Chen, Y.5
  • 20
    • 38649127567 scopus 로고    scopus 로고
    • Identification of DNA-binding proteins using support vector machines and evolutionary profiles
    • Kumar M, Gromiha MM, Raghava GP. Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC Bioinformatics 2007, 8(1):463.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 463
    • Kumar, M.1    Gromiha, M.M.2    Raghava, G.P.3
  • 21
    • 37249058502 scopus 로고    scopus 로고
    • Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs
    • Rashid M, Saha S, Raghava GP. Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics 2007, 8(1):337.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 337
    • Rashid, M.1    Saha, S.2    Raghava, G.P.3
  • 22
    • 84901288109 scopus 로고    scopus 로고
    • Using distances between Top-n-gram and residue pairs for protein remote homology detection
    • Liu B, Xu J, Zou Q, Xu R, Wang X, Chen Q. Using distances between Top-n-gram and residue pairs for protein remote homology detection. BMC Bioinformatics 2014, 15(Suppl 2):S3.
    • (2014) BMC Bioinformatics , vol.15 , pp. S3
    • Liu, B.1    Xu, J.2    Zou, Q.3    Xu, R.4    Wang, X.5    Chen, Q.6
  • 23
    • 84884255470 scopus 로고    scopus 로고
    • An approach for identifying cytokines based on a novel ensemble classifier
    • Zou Q, Wang Z, Wu Y, Liu B, Lin Z, Guan X. An approach for identifying cytokines based on a novel ensemble classifier. BioMed Res Int 2013, 2013:686090.
    • (2013) BioMed Res Int , vol.2013 , pp. 686090
    • Zou, Q.1    Wang, Z.2    Wu, Y.3    Liu, B.4    Lin, Z.5    Guan, X.6
  • 24
    • 84885838906 scopus 로고    scopus 로고
    • LibD3C: ensemble classifiers with a clustering and dynamic selection strategy
    • Lin C, Chen W, Qiu C, Wu Y, Krishnan S, Zou Q. LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 2014, 123:424-435.
    • (2014) Neurocomputing , vol.123 , pp. 424-435
    • Lin, C.1    Chen, W.2    Qiu, C.3    Wu, Y.4    Krishnan, S.5    Zou, Q.6
  • 25
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • Schneider G, Wrede P. Artificial neural networks for computer-based molecular design. Prog Biophys Mol Biol 1998, 70(3):175-222.
    • (1998) Prog Biophys Mol Biol , vol.70 , Issue.3 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 26
    • 77955338162 scopus 로고    scopus 로고
    • ZiF-Predict: a web tool for predicting DNA-binding specificity in C2H2 zinc finger proteins
    • Molparia B, Goyal K, Sarkar A, Kumar S, Sundar D. ZiF-Predict: a web tool for predicting DNA-binding specificity in C2H2 zinc finger proteins. Genomics Proteomics Bioinformatics 2010, 8(2):122-126.
    • (2010) Genomics Proteomics Bioinformatics , vol.8 , Issue.2 , pp. 122-126
    • Molparia, B.1    Goyal, K.2    Sarkar, A.3    Kumar, S.4    Sundar, D.5
  • 27
    • 4143064791 scopus 로고    scopus 로고
    • Moment-based prediction of DNA-binding proteins
    • Ahmad S, Sarai A. Moment-based prediction of DNA-binding proteins. J Mol Biol 2004, 341(1):65-71.
    • (2004) J Mol Biol , vol.341 , Issue.1 , pp. 65-71
    • Ahmad, S.1    Sarai, A.2
  • 29
    • 84902214411 scopus 로고    scopus 로고
    • EnDNA-Prot: identification of DNA-Binding Proteins by applying ensemble learning
    • Xu R, Zhou J, Liu B, Yao L, He Y, Zou Q, Wang X. enDNA-Prot: identification of DNA-Binding Proteins by applying ensemble learning. BioMed Res Int 2014, 2014:10.
    • (2014) BioMed Res Int , vol.2014 , pp. 10
    • Xu, R.1    Zhou, J.2    Liu, B.3    Yao, L.4    He, Y.5    Zou, Q.6    Wang, X.7
  • 30
    • 61849153473 scopus 로고    scopus 로고
    • A novel computational approach to predict transcription factor DNA binding preference
    • Cai Y, He J, Li X, Lu L, Yang X, Feng K, Lu W, Kong X. A novel computational approach to predict transcription factor DNA binding preference. J Proteome Res 2008, 8(2):999-1003.
    • (2008) J Proteome Res , vol.8 , Issue.2 , pp. 999-1003
    • Cai, Y.1    He, J.2    Li, X.3    Lu, L.4    Yang, X.5    Feng, K.6    Lu, W.7    Kong, X.8
  • 31
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learn 1996, 24(2):123-140.
    • (1996) Machine Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 32
    • 33747195620 scopus 로고    scopus 로고
    • A novel computational method to predict transcription factor DNA binding preference
    • Qian Z, Cai Y-D, Li Y. A novel computational method to predict transcription factor DNA binding preference. Biochem Biophys Res Commun 2006, 348(3):1034-1037.
    • (2006) Biochem Biophys Res Commun , vol.348 , Issue.3 , pp. 1034-1037
    • Qian, Z.1    Cai, Y.-D.2    Li, Y.3
  • 33
    • 0036699189 scopus 로고    scopus 로고
    • Sequence clustering strategies improve remote homology recognitions while reducing search times
    • Li W, Jaroszewski L, Godzik A. Sequence clustering strategies improve remote homology recognitions while reducing search times. Protein Eng 2002, 15(8):643-649.
    • (2002) Protein Eng , vol.15 , Issue.8 , pp. 643-649
    • Li, W.1    Jaroszewski, L.2    Godzik, A.3
  • 35
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning. Adv Neural Inf Process Syst 1995, 7:231-238.
    • (1995) Adv Neural Inf Process Syst , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 36
    • 52249109156 scopus 로고    scopus 로고
    • Gene selection algorithm by combining reliefF and mRMR
    • Zhang Y, Ding C, Li T. Gene selection algorithm by combining reliefF and mRMR. BMC Genomics 2008, 9(Suppl 2):S27.
    • (2008) BMC Genomics , vol.9 , pp. S27
    • Zhang, Y.1    Ding, C.2    Li, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.