메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages

SMOTE for high-dimensional class-imbalanced data

Author keywords

[No Author keywords available]

Indexed keywords

DATA VARIABILITY; EUCLIDEAN DISTANCE; HIGH DIMENSIONAL DATA; K-NN CLASSIFICATIONS; NUMBER OF SAMPLES; RANDOM UNDER SAMPLINGS; SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUES; VARIABLE SELECTION;

EID: 84875125127     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-14-106     Document Type: Article
Times cited : (726)

References (42)
  • 3
    • 33646421421 scopus 로고    scopus 로고
    • Evaluation of classifiers for an uneven class distribution problem
    • Daskalaki S, Kopanas I, Avouris N. Evaluation of classifiers for an uneven class distribution problem. Appl Artif Intell 2006, 20(5):381-417.
    • (2006) Appl Artif Intell , vol.20 , Issue.5 , pp. 381-417
    • Daskalaki, S.1    Kopanas, I.2    Avouris, N.3
  • 4
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • 10.1038/ng1060, 12469122
    • Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33:49-54. 10.1038/ng1060, 12469122.
    • (2003) Nat Genet , vol.33 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3    Golub, T.R.4
  • 7
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • 10.1186/1471-2105-11-523, 3098087, 20961420
    • Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 11:523+. 10.1186/1471-2105-11-523, 3098087, 20961420.
    • (2010) BMC Bioinformatics , vol.11
    • Blagus, R.1    Lusa, L.2
  • 11
    • 33746529930 scopus 로고    scopus 로고
    • A study in machine learning from imbalanced data for sentence boundary detection in speech
    • Liu Y, Chawla NV, Harper MP, Shriberg E, Stolcke A. A study in machine learning from imbalanced data for sentence boundary detection in speech. Comput Speech Lang 2006, 20(4):468-494.
    • (2006) Comput Speech Lang , vol.20 , Issue.4 , pp. 468-494
    • Liu, Y.1    Chawla, N.V.2    Harper, M.P.3    Shriberg, E.4    Stolcke, A.5
  • 13
    • 84877663058 scopus 로고    scopus 로고
    • An Expert System for Detection of Breast Cancer Using Data Preprocessing and Bayesian Network
    • Fallahi A, Jafari S. An Expert System for Detection of Breast Cancer Using Data Preprocessing and Bayesian Network. Int J Adv Sci Technol 2011, 34:65-70.
    • (2011) Int J Adv Sci Technol , vol.34 , pp. 65-70
    • Fallahi, A.1    Jafari, S.2
  • 14
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: effective classification of pre-miRNAs for human miRNA gene prediction
    • 10.1093/bioinformatics/btp107, 19233894
    • Batuwita R, Palade V. microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 2009, 25(8):989-995. 10.1093/bioinformatics/btp107, 19233894.
    • (2009) Bioinformatics , vol.25 , Issue.8 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 15
    • 79955948344 scopus 로고    scopus 로고
    • Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure
    • 10.1186/1471-2105-12-165, 3118167, 21575268
    • Xiao J, Tang X, Li Y, Fang Z, Ma D, He Y, Li M. Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure. BMC Bioinformatics 2011, 12:165+. 10.1186/1471-2105-12-165, 3118167, 21575268.
    • (2011) BMC Bioinformatics , vol.12
    • Xiao, J.1    Tang, X.2    Li, Y.3    Fang, Z.4    Ma, D.5    He, Y.6    Li, M.7
  • 16
    • 32544434809 scopus 로고    scopus 로고
    • A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data
    • 10.1093/bioinformatics/bti815, 16332710
    • MacIsaac KD, Gordon DB, Nekludova L, Odom DT, Schreiber J, Gifford DK, Young RA, Fraenkel E. A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data. Bioinformatics 2006, 22(4):423-429. 10.1093/bioinformatics/bti815, 16332710.
    • (2006) Bioinformatics , vol.22 , Issue.4 , pp. 423-429
    • MacIsaac, K.D.1    Gordon, D.B.2    Nekludova, L.3    Odom, D.T.4    Schreiber, J.5    Gifford, D.K.6    Young, R.A.7    Fraenkel, E.8
  • 17
    • 64549137426 scopus 로고    scopus 로고
    • Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding.
    • Guilin, China
    • Wang J, Xu M, Wang H, Zhang J. Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding. International Conference on Signal Processing 2006, Guilin, China.
    • (2006) International Conference on Signal Processing
    • Wang, J.1    Xu, M.2    Wang, H.3    Zhang, J.4
  • 18
    • 80055018052 scopus 로고    scopus 로고
    • An active learning based classification strategy for the minority class problem application to histopathology annotation
    • 10.1186/1471-2105-12-424, 3284114, 22034914
    • Doyle S, Monaco J, Feldman M, Tomaszewski J, Madabhushi A. An active learning based classification strategy for the minority class problem application to histopathology annotation. BMC Bioinformatics 2011, 12:424+. 10.1186/1471-2105-12-424, 3284114, 22034914.
    • (2011) BMC Bioinformatics , vol.12
    • Doyle, S.1    Monaco, J.2    Feldman, M.3    Tomaszewski, J.4    Madabhushi, A.5
  • 21
    • 4744344959 scopus 로고    scopus 로고
    • Classification and knowledge discovery in protein databases
    • 10.1016/j.jbi.2004.07.008, 15465476
    • Radivojac P, Chawla NV, Dunker AK, Obradovic Z. Classification and knowledge discovery in protein databases. J Biomed Inform 2004, 37(4):224-239. 10.1016/j.jbi.2004.07.008, 15465476.
    • (2004) J Biomed Inform , vol.37 , Issue.4 , pp. 224-239
    • Radivojac, P.1    Chawla, N.V.2    Dunker, A.K.3    Obradovic, Z.4
  • 23
    • 67650694660 scopus 로고    scopus 로고
    • Safe-Level-SMOTE:Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem
    • Berlin / Heidelberg: Springer
    • Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. Safe-Level-SMOTE:Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem. Advances in Knowledge Discovery and Data Mining, Volume 5476 2009, 475-482. Berlin / Heidelberg: Springer.
    • (2009) Advances in Knowledge Discovery and Data Mining, Volume 5476 , pp. 475-482
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 26
    • 22944478488 scopus 로고
    • Discriminatory analysis. Nonparametric discrimination: consistency properties
    • Fix E, Hodges JJL. Discriminatory analysis. Nonparametric discrimination: consistency properties. Int Stat Rev 1989, 57(3):238-247.
    • (1989) Int Stat Rev , vol.57 , Issue.3 , pp. 238-247
    • Fix, E.1    Hodges, J.J.L.2
  • 29
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 30
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995, 20(3):273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • 10.1073/pnas.082099299, 124443, 12011421
    • Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002, 99(10):6567-6572. 10.1073/pnas.082099299, 124443, 12011421.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.10 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 32
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • 10.1093/biostatistics/kxg046, 15208204
    • Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics 2004, 5(3):427-443. 10.1093/biostatistics/kxg046, 15208204.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 36
    • 0042838307 scopus 로고    scopus 로고
    • Breast cancer classification and prognosis based on gene expression profiles from a population-based study
    • 10.1073/pnas.1732912100, 193572, 12917485
    • Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003, 100(18):10393-10398. 10.1073/pnas.1732912100, 193572, 12917485.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.18 , pp. 10393-10398
    • Sotiriou, C.1    Neo, S.Y.2    McShane, L.M.3    Korn, E.L.4    Long, P.M.5    Jazaeri, A.6    Martiat, P.7    Fox, S.B.8    Harris, A.L.9    Liu, E.T.10
  • 37
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002, 97(457):77-87.
    • (2002) J Am Stat Assoc , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 38
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • 10.1093/biostatistics/kxj035, 16603682
    • Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2007, 8:86-100. 10.1093/biostatistics/kxj035, 16603682.
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 39
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006, 27(8):861-874.
    • (2006) Pattern Recognit Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 41
    • 26444546442 scopus 로고    scopus 로고
    • An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival
    • 10.1073/pnas.0506230102, 1197273, 16141321
    • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005, 102(38):13550-13555. 10.1073/pnas.0506230102, 1197273, 16141321.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.38 , pp. 13550-13555
    • Miller, L.D.1    Smeds, J.2    George, J.3    Vega, V.B.4    Vergara, L.5    Ploner, A.6    Pawitan, Y.7    Hall, P.8    Klaar, S.9
  • 42
    • 5344244656 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing, R Development Core Team
    • R Development Core Team R: A Language and Environment for Statistical Computing 2008, Vienna: R Foundation for Statistical Computing, R Development Core Team.
    • (2008) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.