-
1
-
-
84866729677
-
Empirical models based on features ranking techniques for corporate financial distress prediction
-
L. Zhou, K.K. Lai, and J. Yen Empirical models based on features ranking techniques for corporate financial distress prediction Computers & Mathematics with Applications 64 2012 2484 2496
-
(2012)
Computers & Mathematics with Applications
, vol.64
, pp. 2484-2496
-
-
Zhou, L.1
Lai, K.K.2
Yen, J.3
-
2
-
-
0002554419
-
Financial ratios as predictors of failure
-
W.H. Beaver Financial ratios as predictors of failure Journal of Accounting Research 4 1966 71 111
-
(1966)
Journal of Accounting Research
, vol.4
, pp. 71-111
-
-
Beaver, W.H.1
-
3
-
-
84980104458
-
Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
-
E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy Journal of Finance 23 1968 589 609
-
(1968)
Journal of Finance
, vol.23
, pp. 589-609
-
-
Altman, E.I.1
-
4
-
-
33846314346
-
Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review
-
P. Ravi Kumar, and V. Ravi Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review European Journal of Operational Research 180 2007 1 28
-
(2007)
European Journal of Operational Research
, vol.180
, pp. 1-28
-
-
Ravi Kumar, P.1
Ravi, V.2
-
6
-
-
0010625624
-
An empirical comparison of bankruptcy prediction models
-
R. Collins An empirical comparison of bankruptcy prediction models Financial Management 9 1980 52 57
-
(1980)
Financial Management
, vol.9
, pp. 52-57
-
-
Collins, R.1
-
8
-
-
0001273663
-
Neural network models and the prediction of bank bankruptcy
-
K.Y. Tam Neural network models and the prediction of bank bankruptcy Omega 19 1991 429 445
-
(1991)
Omega
, vol.19
, pp. 429-445
-
-
Tam, K.Y.1
-
9
-
-
0012580072
-
Recognizing financial distress patterns using a neural network tool
-
P. Coats, and L. Fant Recognizing financial distress patterns using a neural network tool Financial Management 22 1993 142 155
-
(1993)
Financial Management
, vol.22
, pp. 142-155
-
-
Coats, P.1
Fant, L.2
-
10
-
-
0028444978
-
Bankruptcy prediction using neural networks
-
] R. Wilson, and R. Sharda Bankruptcy prediction using neural networks Decision Support Systems 11 1994 545 557
-
(1994)
Decision Support Systems
, vol.11
, pp. 545-557
-
-
Wilson, R.1
Sharda, R.2
-
11
-
-
0030110988
-
Neural network prediction analysis: The bankruptcy case
-
M. Leshno, and Y. Spector Neural network prediction analysis: the bankruptcy case Neurocomputing 10 1996 125 147
-
(1996)
Neurocomputing
, vol.10
, pp. 125-147
-
-
Leshno, M.1
Spector, Y.2
-
13
-
-
58549117670
-
Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
-
H. Ahn, and K.-J. Kim Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach Applied Soft Computing 9 2009 599 607
-
(2009)
Applied Soft Computing
, vol.9
, pp. 599-607
-
-
Ahn, H.1
Kim, K.-J.2
-
14
-
-
41149115573
-
Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
-
E. Alfaro, N. García, M. Gámez, and D. Elizondo Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decision Support Systems 45 2008 110 122
-
(2008)
Decision Support Systems
, vol.45
, pp. 110-122
-
-
Alfaro, E.1
García, N.2
Gámez, M.3
Elizondo, D.4
-
15
-
-
33744925661
-
Hybrid genetic algorithms and support vector machines for bankruptcy prediction
-
S.H. Min, J. Lee, and I. Han Hybrid genetic algorithms and support vector machines for bankruptcy prediction Expert Systems with Applications 31 2006 652 660
-
(2006)
Expert Systems with Applications
, vol.31
, pp. 652-660
-
-
Min, S.H.1
Lee, J.2
Han, I.3
-
16
-
-
0030414816
-
Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
-
H. Jo, and I. Han Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction Expert Systems with Applications 11 1996 415 422
-
(1996)
Expert Systems with Applications
, vol.11
, pp. 415-422
-
-
Jo, H.1
Han, I.2
-
17
-
-
80051475044
-
A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method
-
H.L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.J. Wang, and D.Y. Liu A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method Knowledge-Based Systems 24 2011 1348 1359
-
(2011)
Knowledge-Based Systems
, vol.24
, pp. 1348-1359
-
-
Chen, H.L.1
Yang, B.2
Wang, G.3
Liu, J.4
Xu, X.5
Wang, S.J.6
Liu, D.Y.7
-
18
-
-
33644649446
-
Determining membership functions and minimum fuzzy support in finding fuzzy association rules for classification problems
-
Y.-C. Hu Determining membership functions and minimum fuzzy support in finding fuzzy association rules for classification problems Knowledge-Based Systems 19 2006 57 66
-
(2006)
Knowledge-Based Systems
, vol.19
, pp. 57-66
-
-
Hu, Y.-C.1
-
19
-
-
84870059898
-
An extended fuzzy measure on competitiveness correlation based on WCY 2011
-
Y.-C. Ko, H. Fujita, and G.-H. Tzeng An extended fuzzy measure on competitiveness correlation based on WCY 2011 Knowledge-Based Systems 37 2013 86 93
-
(2013)
Knowledge-Based Systems
, vol.37
, pp. 86-93
-
-
Ko, Y.-C.1
Fujita, H.2
Tzeng, G.-H.3
-
20
-
-
77956395103
-
Analysis of an evolutionary RBFN design algorithm* CO2RBFN, for imbalanced data sets
-
M.D. Pérez-Godoy, A. Fernández, A.J. Rivera, and M.J. del Jesus Analysis of an evolutionary RBFN design algorithm* CO2RBFN, for imbalanced data sets Pattern Recognition Letters 31 2010 2375 2388
-
(2010)
Pattern Recognition Letters
, vol.31
, pp. 2375-2388
-
-
Pérez-Godoy, M.D.1
Fernández, A.2
Rivera, A.J.3
Del Jesus, M.J.4
-
22
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378
-
(2007)
Pattern Recognition
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
23
-
-
80052414830
-
Evolutionary-based selection of generalized instances for imbalanced classification
-
S. García, J. Derrac, I. Triguero, C.J. Carmona, and F. Herrera Evolutionary-based selection of generalized instances for imbalanced classification Knowledge-Based Systems 25 2012 3 12
-
(2012)
Knowledge-Based Systems
, vol.25
, pp. 3-12
-
-
García, S.1
Derrac, J.2
Triguero, I.3
Carmona, C.J.4
Herrera, F.5
-
24
-
-
80052394779
-
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
-
V. García, J.S. Sánchez, and R.A. Mollineda On the effectiveness of preprocessing methods when dealing with different levels of class imbalance Knowledge-Based Systems 25 2012 13 21
-
(2012)
Knowledge-Based Systems
, vol.25
, pp. 13-21
-
-
García, V.1
Sánchez, J.S.2
Mollineda, R.A.3
-
25
-
-
70349137738
-
Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization
-
J. Neves, and A. Vieira Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization European Accounting Review 15 2006 253 271
-
(2006)
European Accounting Review
, vol.15
, pp. 253-271
-
-
Neves, J.1
Vieira, A.2
-
28
-
-
58349090428
-
Cluster-based under-sampling approaches for imbalanced data distributions
-
S.J. Yen, and Y.S. Lee Cluster-based under-sampling approaches for imbalanced data distributions Expert Systems with Applications 36 2009 5718 5727
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 5718-5727
-
-
Yen, S.J.1
Lee, Y.S.2
-
31
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Computational Intelligence 20 2004 18 36
-
(2004)
Computational Intelligence
, vol.20
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
35
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten The WEKA data mining software: an update SIGKDD Explorations 11 2009
-
(2009)
SIGKDD Explorations
, vol.11
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
36
-
-
0345438685
-
-
HP Laboratories, Palo Alto, CA, USA, January
-
T. Fawcett, Roc Graphs: Notes and Practical Considerations for Data Mining Researchers, HP Laboratories, Palo Alto, CA, USA, January 2003.
-
(2003)
Roc Graphs: Notes and Practical Considerations for Data Mining Researchers
-
-
Fawcett, T.1
-
37
-
-
59349101361
-
Feature selection in bankruptcy prediction
-
C.-F. Tsai Feature selection in bankruptcy prediction Knowledge-Based Systems 22 2009 120 127
-
(2009)
Knowledge-Based Systems
, vol.22
, pp. 120-127
-
-
Tsai, C.-F.1
-
38
-
-
34147186185
-
Use of VNS and TS in classification: Variable selection and determination of the linear discrimination function coefficients
-
J. Pacheco, S. Casado, and L. Núñez Use of VNS and TS in classification: variable selection and determination of the linear discrimination function coefficients IMA Journal of Management Mathematics 18 2007 191 206
-
(2007)
IMA Journal of Management Mathematics
, vol.18
, pp. 191-206
-
-
Pacheco, J.1
Casado, S.2
Núñez, L.3
-
39
-
-
67349161370
-
A variable selection method based in tabu search for logistic regression models
-
J. Pacheco, S. Casado, and L. Núñez A variable selection method based in tabu search for logistic regression models European Journal of Operational Research 199 2009 506 511
-
(2009)
European Journal of Operational Research
, vol.199
, pp. 506-511
-
-
Pacheco, J.1
Casado, S.2
Núñez, L.3
-
40
-
-
77951139898
-
A discrete particle swarm optimization method for feature selection in binary classification problems
-
A. Unler, and A. Murat A discrete particle swarm optimization method for feature selection in binary classification problems European Journal of Operational Research 206 2010 528 539
-
(2010)
European Journal of Operational Research
, vol.206
, pp. 528-539
-
-
Unler, A.1
Murat, A.2
-
42
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data set
-
J. Demšar Statistical comparisons of classifiers over multiple data set Journal of Machine Learning Research 2006 1 30
-
(2006)
Journal of Machine Learning Research
, pp. 1-30
-
-
Demšar, J.1
|