메뉴 건너뛰기




Volumn 41, Issue , 2013, Pages 16-25

Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods

Author keywords

Bankruptcy prediction; Classification; Imbalanced dataset; Oversampling; Undersampling

Indexed keywords

BANKRUPTCY PREDICTION; COMPARISON OF MODELS; IMBALANCED DATA-SETS; IMBALANCED DATASET; OVER SAMPLING; PAIRED SAMPLE; PREDICTION MODEL; QUANTITATIVE METHOD; QUANTITATIVE MODELS; SAMPLE SETS; SAMPLING METHOD; TRAINING SAMPLE; UNDER-SAMPLING;

EID: 84873725663     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2012.12.007     Document Type: Article
Times cited : (167)

References (42)
  • 1
    • 84866729677 scopus 로고    scopus 로고
    • Empirical models based on features ranking techniques for corporate financial distress prediction
    • L. Zhou, K.K. Lai, and J. Yen Empirical models based on features ranking techniques for corporate financial distress prediction Computers & Mathematics with Applications 64 2012 2484 2496
    • (2012) Computers & Mathematics with Applications , vol.64 , pp. 2484-2496
    • Zhou, L.1    Lai, K.K.2    Yen, J.3
  • 2
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • W.H. Beaver Financial ratios as predictors of failure Journal of Accounting Research 4 1966 71 111
    • (1966) Journal of Accounting Research , vol.4 , pp. 71-111
    • Beaver, W.H.1
  • 3
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy Journal of Finance 23 1968 589 609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 4
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review
    • P. Ravi Kumar, and V. Ravi Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review European Journal of Operational Research 180 2007 1 28
    • (2007) European Journal of Operational Research , vol.180 , pp. 1-28
    • Ravi Kumar, P.1    Ravi, V.2
  • 6
    • 0010625624 scopus 로고
    • An empirical comparison of bankruptcy prediction models
    • R. Collins An empirical comparison of bankruptcy prediction models Financial Management 9 1980 52 57
    • (1980) Financial Management , vol.9 , pp. 52-57
    • Collins, R.1
  • 8
    • 0001273663 scopus 로고
    • Neural network models and the prediction of bank bankruptcy
    • K.Y. Tam Neural network models and the prediction of bank bankruptcy Omega 19 1991 429 445
    • (1991) Omega , vol.19 , pp. 429-445
    • Tam, K.Y.1
  • 9
    • 0012580072 scopus 로고
    • Recognizing financial distress patterns using a neural network tool
    • P. Coats, and L. Fant Recognizing financial distress patterns using a neural network tool Financial Management 22 1993 142 155
    • (1993) Financial Management , vol.22 , pp. 142-155
    • Coats, P.1    Fant, L.2
  • 10
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • ] R. Wilson, and R. Sharda Bankruptcy prediction using neural networks Decision Support Systems 11 1994 545 557
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.1    Sharda, R.2
  • 11
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: The bankruptcy case
    • M. Leshno, and Y. Spector Neural network prediction analysis: the bankruptcy case Neurocomputing 10 1996 125 147
    • (1996) Neurocomputing , vol.10 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 13
    • 58549117670 scopus 로고    scopus 로고
    • Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
    • H. Ahn, and K.-J. Kim Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach Applied Soft Computing 9 2009 599 607
    • (2009) Applied Soft Computing , vol.9 , pp. 599-607
    • Ahn, H.1    Kim, K.-J.2
  • 14
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • E. Alfaro, N. García, M. Gámez, and D. Elizondo Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decision Support Systems 45 2008 110 122
    • (2008) Decision Support Systems , vol.45 , pp. 110-122
    • Alfaro, E.1    García, N.2    Gámez, M.3    Elizondo, D.4
  • 15
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • S.H. Min, J. Lee, and I. Han Hybrid genetic algorithms and support vector machines for bankruptcy prediction Expert Systems with Applications 31 2006 652 660
    • (2006) Expert Systems with Applications , vol.31 , pp. 652-660
    • Min, S.H.1    Lee, J.2    Han, I.3
  • 16
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
    • H. Jo, and I. Han Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction Expert Systems with Applications 11 1996 415 422
    • (1996) Expert Systems with Applications , vol.11 , pp. 415-422
    • Jo, H.1    Han, I.2
  • 17
    • 80051475044 scopus 로고    scopus 로고
    • A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method
    • H.L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.J. Wang, and D.Y. Liu A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method Knowledge-Based Systems 24 2011 1348 1359
    • (2011) Knowledge-Based Systems , vol.24 , pp. 1348-1359
    • Chen, H.L.1    Yang, B.2    Wang, G.3    Liu, J.4    Xu, X.5    Wang, S.J.6    Liu, D.Y.7
  • 18
    • 33644649446 scopus 로고    scopus 로고
    • Determining membership functions and minimum fuzzy support in finding fuzzy association rules for classification problems
    • Y.-C. Hu Determining membership functions and minimum fuzzy support in finding fuzzy association rules for classification problems Knowledge-Based Systems 19 2006 57 66
    • (2006) Knowledge-Based Systems , vol.19 , pp. 57-66
    • Hu, Y.-C.1
  • 19
    • 84870059898 scopus 로고    scopus 로고
    • An extended fuzzy measure on competitiveness correlation based on WCY 2011
    • Y.-C. Ko, H. Fujita, and G.-H. Tzeng An extended fuzzy measure on competitiveness correlation based on WCY 2011 Knowledge-Based Systems 37 2013 86 93
    • (2013) Knowledge-Based Systems , vol.37 , pp. 86-93
    • Ko, Y.-C.1    Fujita, H.2    Tzeng, G.-H.3
  • 22
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378
    • (2007) Pattern Recognition , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 24
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • V. García, J.S. Sánchez, and R.A. Mollineda On the effectiveness of preprocessing methods when dealing with different levels of class imbalance Knowledge-Based Systems 25 2012 13 21
    • (2012) Knowledge-Based Systems , vol.25 , pp. 13-21
    • García, V.1    Sánchez, J.S.2    Mollineda, R.A.3
  • 25
    • 70349137738 scopus 로고    scopus 로고
    • Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization
    • J. Neves, and A. Vieira Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization European Accounting Review 15 2006 253 271
    • (2006) European Accounting Review , vol.15 , pp. 253-271
    • Neves, J.1    Vieira, A.2
  • 28
    • 58349090428 scopus 로고    scopus 로고
    • Cluster-based under-sampling approaches for imbalanced data distributions
    • S.J. Yen, and Y.S. Lee Cluster-based under-sampling approaches for imbalanced data distributions Expert Systems with Applications 36 2009 5718 5727
    • (2009) Expert Systems with Applications , vol.36 , pp. 5718-5727
    • Yen, S.J.1    Lee, Y.S.2
  • 31
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Computational Intelligence 20 2004 18 36
    • (2004) Computational Intelligence , vol.20 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 37
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • C.-F. Tsai Feature selection in bankruptcy prediction Knowledge-Based Systems 22 2009 120 127
    • (2009) Knowledge-Based Systems , vol.22 , pp. 120-127
    • Tsai, C.-F.1
  • 38
    • 34147186185 scopus 로고    scopus 로고
    • Use of VNS and TS in classification: Variable selection and determination of the linear discrimination function coefficients
    • J. Pacheco, S. Casado, and L. Núñez Use of VNS and TS in classification: variable selection and determination of the linear discrimination function coefficients IMA Journal of Management Mathematics 18 2007 191 206
    • (2007) IMA Journal of Management Mathematics , vol.18 , pp. 191-206
    • Pacheco, J.1    Casado, S.2    Núñez, L.3
  • 39
    • 67349161370 scopus 로고    scopus 로고
    • A variable selection method based in tabu search for logistic regression models
    • J. Pacheco, S. Casado, and L. Núñez A variable selection method based in tabu search for logistic regression models European Journal of Operational Research 199 2009 506 511
    • (2009) European Journal of Operational Research , vol.199 , pp. 506-511
    • Pacheco, J.1    Casado, S.2    Núñez, L.3
  • 40
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • A. Unler, and A. Murat A discrete particle swarm optimization method for feature selection in binary classification problems European Journal of Operational Research 206 2010 528 539
    • (2010) European Journal of Operational Research , vol.206 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 42
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data set
    • J. Demšar Statistical comparisons of classifiers over multiple data set Journal of Machine Learning Research 2006 1 30
    • (2006) Journal of Machine Learning Research , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.