메뉴 건너뛰기




Volumn 250, Issue , 2013, Pages 113-141

An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics

Author keywords

Cost sensitive learning; Dataset shift; Imbalanced dataset; Noisy data; Sampling; Small disjuncts

Indexed keywords

COST-SENSITIVE LEARNING; DATASET SHIFTS; IMBALANCED DATASET; NOISY DATA; SMALL DISJUNCTS;

EID: 84883447718     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.07.007     Document Type: Article
Times cited : (1339)

References (152)
  • 5
    • 78449268828 scopus 로고    scopus 로고
    • An approach for classification of highly imbalanced data using weighting and undersampling
    • A. Anand, G. Pugalenthi, G.B. Fogel, and P.N. Suganthan An approach for classification of highly imbalanced data using weighting and undersampling Amino Acids 39 5 2010 1385 1391
    • (2010) Amino Acids , vol.39 , Issue.5 , pp. 1385-1391
    • Anand, A.1    Pugalenthi, G.2    Fogel, G.B.3    Suganthan, P.N.4
  • 9
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behaviour of several methods for balancing machine learning training data SIGKDD Explorations 6 1 2004 20 29
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 11
    • 64549116289 scopus 로고    scopus 로고
    • MicroPred: Effective classification of pre-miRNAs for human miRNA gene prediction
    • R. Batuwita, and V. Palade microPred: effective classification of pre-miRNAs for human miRNA gene prediction Bioinformatics 25 8 2009 989 995
    • (2009) Bioinformatics , vol.25 , Issue.8 , pp. 989-995
    • Batuwita, R.1    Palade, V.2
  • 13
    • 77953089698 scopus 로고    scopus 로고
    • FSVM-CIL: Fuzzy support vector machines for class imbalance learning
    • R. Batuwita, and V. Palade FSVM-CIL: fuzzy support vector machines for class imbalance learning IEEE Transactions on Fuzzy Systems 18 3 2010 558 571
    • (2010) IEEE Transactions on Fuzzy Systems , vol.18 , Issue.3 , pp. 558-571
    • Batuwita, R.1    Palade, V.2
  • 14
    • 84857022489 scopus 로고    scopus 로고
    • Adjusted geometric-mean: A novel performance measure for imbalanced bioinformatics datasets learning
    • R. Batuwita, and V. Palade Adjusted geometric-mean: a novel performance measure for imbalanced bioinformatics datasets learning Journal of Bioinformatics and Computational Biology 10 4 2012
    • (2012) Journal of Bioinformatics and Computational Biology , vol.10 , Issue.4
    • Batuwita, R.1    Palade, V.2
  • 17
    • 79956285606 scopus 로고    scopus 로고
    • Integrating selective pre-processing of imbalanced data with ivotes ensemble
    • M. Szczuka, M. Kryszkiewicz, S. Ramanna, R. Jensen, Q. Hu, LNSC Springer Berlin/Heidelberg
    • J. Błaszczyński, M. Deckert, J. Stefanowski, and S. Wilk Integrating selective pre-processing of imbalanced data with ivotes ensemble M. Szczuka, M. Kryszkiewicz, S. Ramanna, R. Jensen, Q. Hu, Rough Sets and Current Trends in Computing LNSC vol. 6086 2010 Springer Berlin/Heidelberg 148 157
    • (2010) Rough Sets and Current Trends in Computing , vol.6086 VOL. , pp. 148-157
    • Błaszczyński, J.1    Deckert, M.2    Stefanowski, J.3    Wilk, S.4
  • 19
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • A.P. Bradley The use of the area under the roc curve in the evaluation of machine learning algorithms Pattern Recognition 30 7 1997 1145 1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 22
    • 84862140885 scopus 로고    scopus 로고
    • DBSMOTE: Density-based synthetic minority over-sampling technique
    • C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap DBSMOTE: density-based synthetic minority over-sampling technique Applied Intelligence 36 3 2012 664 684
    • (2012) Applied Intelligence , vol.36 , Issue.3 , pp. 664-684
    • Bunkhumpornpat, C.1    Sinapiromsaran, K.2    Lursinsap, C.3
  • 24
    • 2442682055 scopus 로고    scopus 로고
    • A hybrid decision tree/genetic algorithm method for data mining
    • D.R. Carvalho, and A.A. Freitas A hybrid decision tree/genetic algorithm method for data mining Information Sciences 163 1-3 2004 13 35
    • (2004) Information Sciences , vol.163 , Issue.13 , pp. 13-35
    • Carvalho, D.R.1    Freitas, A.A.2
  • 29
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explorations 6 1 2004 1 6
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 31
    • 78650905163 scopus 로고    scopus 로고
    • Graph-based feature selection for object-oriented classification in VHR airborne imagery
    • X. Chen, T. Fang, H. Huo, and D. Li Graph-based feature selection for object-oriented classification in VHR airborne imagery IEEE Transactions on Geoscience and Remote Sensing 49 1 2011 353 365
    • (2011) IEEE Transactions on Geoscience and Remote Sensing , vol.49 , Issue.1 , pp. 353-365
    • Chen, X.1    Fang, T.2    Huo, H.3    Li, D.4
  • 33
    • 58549104329 scopus 로고    scopus 로고
    • A framework for monitoring classifiers' performance: When and why failure occurs?
    • D.A. Cieslak, and N.V. Chawla A framework for monitoring classifiers' performance: when and why failure occurs? Knowledge and Information Systems 18 1 2009 83 108
    • (2009) Knowledge and Information Systems , vol.18 , Issue.1 , pp. 83-108
    • Cieslak, D.A.1    Chawla, N.V.2
  • 35
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 40
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • C. Drummond, and R.C. Holte Cost curves: an improved method for visualizing classifier performance Machine Learning 65 1 2006 95 130
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 41
    • 77952875468 scopus 로고    scopus 로고
    • Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
    • P. Ducange, B. Lazzerini, and F. Marcelloni Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets Soft Computing 14 7 2010 713 728
    • (2010) Soft Computing , vol.14 , Issue.7 , pp. 713-728
    • Ducange, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 43
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Computational Intelligence 20 1 2004 18 36
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 45
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • A. Fernández, M.J. del Jesus, and F. Herrera On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets Information Sciences 180 8 2010 1268 1291
    • (2010) Information Sciences , vol.180 , Issue.8 , pp. 1268-1291
    • Fernández, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 46
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • A. Fernández, S. García, M.J. del Jesus, and F. Herrera A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets Fuzzy Sets and Systems 159 18 2008 2378 2398
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.18 , pp. 2378-2398
    • Fernández, A.1    García, S.2    Del Jesus, M.J.3    Herrera, F.4
  • 48
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • A. Fernández, V. López, M. Galar, M.J. del Jesus, and F. Herrera Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches Knowledge-Based Systems 42 2013 97 110
    • (2013) Knowledge-Based Systems , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 51
    • 80052414830 scopus 로고    scopus 로고
    • Evolutionary-based selection of generalized instances for imbalanced classification
    • S. García, J. Derrac, I. Triguero, C.J. Carmona, and F. Herrera Evolutionary-based selection of generalized instances for imbalanced classification Knowledge Based Systems 25 1 2012 3 12
    • (2012) Knowledge Based Systems , vol.25 , Issue.1 , pp. 3-12
    • García, S.1    Derrac, J.2    Triguero, I.3    Carmona, C.J.4    Herrera, F.5
  • 52
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • S. García, A. Fernández, and F. Herrera Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems Applied Soft Computing 9 2009 1304 1314
    • (2009) Applied Soft Computing , vol.9 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 53
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
    • S. García, and F. Herrera Evolutionary under-sampling for classification with imbalanced data sets: proposals and taxonomy Evolutionary Computation 17 3 2009 275 306
    • (2009) Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 55
    • 50549093573 scopus 로고    scopus 로고
    • On the k-NN performance in a challenging scenario of imbalance and overlapping
    • V. García, R.A. Mollineda, and J.S. Sánchez On the k-NN performance in a challenging scenario of imbalance and overlapping Pattern Analysis Applications 11 3-4 2008 269 280
    • (2008) Pattern Analysis Applications , vol.11 , Issue.34 , pp. 269-280
    • García, V.1    Mollineda, R.A.2    Sánchez, J.S.3
  • 56
  • 58
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • V. García, J.S. Sánchez, and R.A. Mollineda On the effectiveness of preprocessing methods when dealing with different levels of class imbalance Knowledge Based Systems 25 1 2012 13 21
    • (2012) Knowledge Based Systems , vol.25 , Issue.1 , pp. 13-21
    • García, V.1    Sánchez, J.S.2    Mollineda, R.A.3
  • 60
    • 80052660213 scopus 로고    scopus 로고
    • An adversarial view of covariate shift and a minimax approach
    • J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, N.D. Lawrence, The MIT Press
    • A. Globerson, C.H. Teo, A. Smola, and S. Roweis An adversarial view of covariate shift and a minimax approach J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, N.D. Lawrence, Dataset Shift in Machine Learning 2009 The MIT Press 179 198
    • (2009) Dataset Shift in Machine Learning , pp. 179-198
    • Globerson, A.1    Teo, C.H.2    Smola, A.3    Roweis, S.4
  • 61
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • H. Guo, and H.L. Viktor Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach SIGKDD Explorations Newsletter 6 2004 30 39
    • (2004) SIGKDD Explorations Newsletter , vol.6 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 71
    • 84949479983 scopus 로고    scopus 로고
    • Concept-learning in the presence of between-class and within-class imbalances
    • E. Stroulia, S. Matwin, Lecture Notes in Computer Science Springer
    • N. Japkowicz Concept-learning in the presence of between-class and within-class imbalances E. Stroulia, S. Matwin, Proceedings of the 14th Canadian Conference on Advances in Artificial Intelligence (CCAI'08) Lecture Notes in Computer Science vol. 2056 2001 Springer 67 77
    • (2001) Proceedings of the 14th Canadian Conference on Advances in Artificial Intelligence (CCAI'08) , vol.2056 VOL. , pp. 67-77
    • Japkowicz, N.1
  • 77
    • 84892854554 scopus 로고    scopus 로고
    • A weighted voting framework for classifiers ensembles
    • 10.1007/s10115-012-0586-6 in press
    • L.I. Kuncheva, and J.J. Rodrguez A weighted voting framework for classifiers ensembles Knowledge and Information Systems 2013 10.1007/s10115-012-0586-6 in press
    • (2013) Knowledge and Information Systems
    • Kuncheva, L.I.1    Rodrguez, J.J.2
  • 78
    • 38349102533 scopus 로고    scopus 로고
    • Feature extraction for classification problems and its application to face recognition
    • N. Kwak Feature extraction for classification problems and its application to face recognition Pattern Recognition 41 5 2008 1718 1734
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1718-1734
    • Kwak, N.1
  • 80
    • 34248390180 scopus 로고    scopus 로고
    • Classifying imbalanced data using a bagging ensemble variation (BEV)
    • ACM-SE ACM New York, NY, USA
    • C. Li Classifying imbalanced data using a bagging ensemble variation (BEV) Proceedings of the 45th Annual Southeast Regional Conference vol. 45 2007 ACM-SE ACM New York, NY, USA 203 208
    • (2007) Proceedings of the 45th Annual Southeast Regional Conference , vol.45 VOL. , pp. 203-208
    • Li, C.1
  • 81
    • 84875898112 scopus 로고    scopus 로고
    • Dynamic sampling approach to training neural networks for multiclass imbalance classification
    • M. Lin, K. Tang, and X. Yao Dynamic sampling approach to training neural networks for multiclass imbalance classification IEEE Transactions on Neural Networks and Learning Systems 24 4 2013 647 660
    • (2013) IEEE Transactions on Neural Networks and Learning Systems , vol.24 , Issue.4 , pp. 647-660
    • Lin, M.1    Tang, K.2    Yao, X.3
  • 82
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • W. Lin, and J.J. Chen Class-imbalanced classifiers for high-dimensional data Briefings in Bioinformatics 14 1 2013 13 26
    • (2013) Briefings in Bioinformatics , vol.14 , Issue.1 , pp. 13-26
    • Lin, W.1    Chen, J.J.2
  • 87
    • 84871621085 scopus 로고    scopus 로고
    • A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
    • V. López, A. Fernández, M.J. del Jesus, and F. Herrera A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets Knowledge-Based Systems 38 2013 85 104
    • (2013) Knowledge-Based Systems , vol.38 , pp. 85-104
    • López, V.1    Fernández, A.2    Del Jesus, M.J.3    Herrera, F.4
  • 88
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. open problems on intrinsic data characteristics
    • V. López, A. Fernández, J.G. Moreno-Torres, and F. Herrera Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. open problems on intrinsic data characteristics Expert Systems with Applications 39 7 2012 6585 6608
    • (2012) Expert Systems with Applications , vol.39 , Issue.7 , pp. 6585-6608
    • López, V.1    Fernández, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 89
    • 79957915328 scopus 로고    scopus 로고
    • Addressing data complexity for imbalanced data sets: Analysis of SMOTE-based oversampling and evolutionary undersampling
    • J. Luengo, A. Fernández, S. García, and F. Herrera Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling Soft Computing 15 10 2011 1909 1936
    • (2011) Soft Computing , vol.15 , Issue.10 , pp. 1909-1936
    • Luengo, J.1    Fernández, A.2    García, S.3    Herrera, F.4
  • 91
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker, and G.D. Tourassi Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance Neural Networks 21 2-3 2008
    • (2008) Neural Networks , vol.21 , Issue.23
    • Mazurowski, M.A.1    Habas, P.A.2    Zurada, J.M.3    Lo, J.Y.4    Baker, J.A.5    Tourassi, G.D.6
  • 93
    • 65849151044 scopus 로고    scopus 로고
    • Symbolic one-class learning from imbalanced datasets: Application in medical diagnosis
    • L. Mena, and J.A. González Symbolic one-class learning from imbalanced datasets: application in medical diagnosis International Journal on Artificial Intelligence Tools 18 2 2009 273 309
    • (2009) International Journal on Artificial Intelligence Tools , vol.18 , Issue.2 , pp. 273-309
    • Mena, L.1    González, J.A.2
  • 95
    • 84870054779 scopus 로고    scopus 로고
    • Repairing fractures between data using genetic programming-based feature extraction: A case study in cancer diagnosis
    • J.G. Moreno-Torres, X. Llorà, D.E. Goldberg, and R. Bhargava Repairing fractures between data using genetic programming-based feature extraction: a case study in cancer diagnosis Information Sciences 222 2013 805 823
    • (2013) Information Sciences , vol.222 , pp. 805-823
    • Moreno-Torres, J.G.1    Llorà, X.2    Goldberg, D.E.3    Bhargava, R.4
  • 98
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced datasets
    • A. Orriols-Puig, and E. Bernadó-Mansilla Evolutionary rule-based systems for imbalanced datasets Soft Computing 13 3 2009 213 225
    • (2009) Soft Computing , vol.13 , Issue.3 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 100
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press Cambridge, MA
    • J. Platt Fast training of support vector machines using sequential minimal optimization Advances in Kernel Methods - Support Vector Learning 1998 MIT Press Cambridge, MA 42 65
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 42-65
    • Platt, J.1
  • 101
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circuits and Systems Magazine 6 3 2006 21 45
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 105
    • 84885636932 scopus 로고    scopus 로고
    • Learning from imbalanced data: Evaluation matters
    • D.E. Holmes, L.C. Jain, Springer-Verlag
    • T. Raeder, G. Forman, and N.V. Chawla Learning from imbalanced data: evaluation matters D.E. Holmes, L.C. Jain, Data Mining: Found. and Intell. Paradigms vol. ISRL 23 2012 Springer-Verlag 315 331
    • (2012) Data Mining: Found. and Intell. Paradigms , vol.23 VOL. ISRL , pp. 315-331
    • Raeder, T.1    Forman, G.2    Chawla, N.V.3
  • 106
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • S.J. Raudys, and A.K. Jain Small sample size effects in statistical pattern recognition: recommendations for practitioners IEEE Transactions on Pattern Analysis and Machine Intelligence 13 3 1991 252 264
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 107
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a boeing manufacturing domain
    • P. Riddle, R. Segal, and O. Etzioni Representation design and brute-force induction in a boeing manufacturing domain Applied Artificial Intelligence 8 1994 125 147
    • (1994) Applied Artificial Intelligence , vol.8 , pp. 125-147
    • Riddle, P.1    Segal, R.2    Etzioni, O.3
  • 111
    • 84883450766 scopus 로고    scopus 로고
    • An empirical study of the classification performance of learners on imbalanced and noisy software quality data
    • 10.1016/j.ins.2010.12.016 in press
    • C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, and A. Folleco An empirical study of the classification performance of learners on imbalanced and noisy software quality data Information Sciences 2013 10.1016/j.ins.2010.12.016 in press
    • (2013) Information Sciences
    • Seiffert, C.1    Khoshgoftaar, T.M.2    Van Hulse, J.3    Folleco, A.4
  • 113
    • 84890829458 scopus 로고
    • Modified sequentially rejective multiple test procedures
    • J.P. Shaffer Modified sequentially rejective multiple test procedures Journal of the American Statistical Association 81 395 1986 826 831
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.395 , pp. 826-831
    • Shaffer, J.P.1
  • 114
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira Improving predictive inference under covariate shift by weighting the log-likelihood function Journal of Statistical Planning and Inference 90 2 2000 227 244
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 115
    • 52949096003 scopus 로고    scopus 로고
    • Improving rule based classifiers induced by MODLEM by selective pre-processing of imbalanced data
    • J. Stefanowski, S. Wilk, Improving rule based classifiers induced by MODLEM by selective pre-processing of imbalanced data, in: Proceedings of the RSKD Workshop at ECML/PKDD'07, 2007, pp. 54-65.
    • (2007) Proceedings of the RSKD Workshop at ECML/PKDD'07 , pp. 54-65
    • Stefanowski, J.1    Wilk, S.2
  • 117
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 12 2007 3358 3378
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 120
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval IEEE Transactions on Pattern Analysis and Machine Intelligence 28 7 2006 1088 1099
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 123
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • K.M. Ting An instance-weighting method to induce cost-sensitive trees IEEE Transactions on Knowledge and Data Engineering 14 3 2002 659 665
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 125
    • 60249092433 scopus 로고    scopus 로고
    • Forecasting of ozone episode days by cost-sensitive neural network methods
    • C.-H. Tsai, L.-C. Chang, and H.-C. Chiang Forecasting of ozone episode days by cost-sensitive neural network methods Science of the Total Environment 407 6 2009 2124 2135
    • (2009) Science of the Total Environment , vol.407 , Issue.6 , pp. 2124-2135
    • Tsai, C.-H.1    Chang, L.-C.2    Chiang, H.-C.3
  • 126
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • P.D. Turney Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm Journal of Artificial Intelligence Research 2 1995 369 409
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 129
    • 80055010583 scopus 로고    scopus 로고
    • Extract minimum positive and maximum negative features for imbalanced binary classification
    • J. Wang, J. You, Q. Li, and Y. Xu Extract minimum positive and maximum negative features for imbalanced binary classification Pattern Recognition 45 3 2012 1136 1145
    • (2012) Pattern Recognition , vol.45 , Issue.3 , pp. 1136-1145
    • Wang, J.1    You, J.2    Li, Q.3    Xu, Y.4
  • 131
    • 84864119523 scopus 로고    scopus 로고
    • Relationships between diversity of classification ensembles and single-class performance measures
    • S. Wang, and X. Yao Relationships between diversity of classification ensembles and single-class performance measures IEEE Transactions on Knowledge and Data Engineering 25 1 2013 206 219
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.1 , pp. 206-219
    • Wang, S.1    Yao, X.2
  • 132
    • 79960857685 scopus 로고    scopus 로고
    • Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis
    • Z. Wang, and V. Palade Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis BMC Genomics 12 (S2):S5 2011
    • (2011) BMC Genomics , vol.12
    • Wang, Z.1    Palade, V.2
  • 133
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • M. Wasikowski, and X.-W. Chen Combating the small sample class imbalance problem using feature selection IEEE Transactions on Knowledge and Data Engineering 22 10 2010 1388 1400
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.-W.2
  • 134
    • 33847141517 scopus 로고    scopus 로고
    • Timeweaver: A genetic algorithm for identifying pre-dictive patterns in sequences of events
    • W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, Morgan Kaufmann Orlando, Florida, USA
    • G.M. Weiss Timeweaver: a genetic algorithm for identifying pre-dictive patterns in sequences of events W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, Proceedings of the Genetic and Evolutionary Computation Conference GECCO'99 vol. 1 1999 Morgan Kaufmann Orlando, Florida, USA 718 725
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference GECCO'99 , vol.1 VOL. , pp. 718-725
    • Weiss, G.M.1
  • 135
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • G.M. Weiss Mining with rarity: a unifying framework SIGKDD Explorations 6 1 2004 7 19
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 137
    • 77956198600 scopus 로고    scopus 로고
    • The impact of small disjuncts on classifier learning
    • R. Stahlbock, S.F. Crone, S. Lessmann, Springer
    • G.M. Weiss The impact of small disjuncts on classifier learning R. Stahlbock, S.F. Crone, S. Lessmann, Data Mining: Annals of Information Systems vol. 8 2010 Springer 193 226
    • (2010) Data Mining: Annals of Information Systems , vol.8 VOL. , pp. 193-226
    • Weiss, G.M.1
  • 138
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G.M. Weiss, and F.J. Provost Learning when training data are costly: the effect of class distribution on tree induction Journal of Artificial Intelligence Research 19 2003 315 354
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.J.2
  • 139
    • 50549089793 scopus 로고    scopus 로고
    • Maximizing classifier utility when there are data acquisition and modeling costs
    • G.M. Weiss, and Y. Tian Maximizing classifier utility when there are data acquisition and modeling costs Data Mining and Knowledge Discovery 17 2 2008 253 282
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 253-282
    • Weiss, G.M.1    Tian, Y.2
  • 140
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • D.L. Wilson Asymptotic properties of nearest neighbor rules using edited data IEEE Transactions on Systems, Man and Cybernetics 2 3 1972 408 421
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 142
    • 71549117908 scopus 로고    scopus 로고
    • A particle swarm based hybrid system for imbalanced medical data sampling
    • art. no. S34.
    • P. Yang, L. Xu, B.B. Zhou, Z. Zhang, and A.Y. Zomaya A particle swarm based hybrid system for imbalanced medical data sampling BMC Genomics 10 Suppl. 3 2009 art. no. S34.
    • (2009) BMC Genomics , vol.10 , Issue.SUPPL. 3
    • Yang, P.1    Xu, L.2    Zhou, B.B.3    Zhang, Z.4    Zomaya, A.Y.5
  • 144
    • 54349101200 scopus 로고    scopus 로고
    • Conceptual equivalence for contrast mining in classification learning
    • Y. Yang, X. Wu, and X. Zhu Conceptual equivalence for contrast mining in classification learning Data & Knowledge Engineering 67 3 2008 413 429
    • (2008) Data & Knowledge Engineering , vol.67 , Issue.3 , pp. 413-429
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 146
    • 33846986488 scopus 로고    scopus 로고
    • An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics
    • K. Yoon, S. Kwek, An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics, in: Proceedings of the 5th International Conference on Hybrid Intelligent Systems (HIS'05), 2005, pp. 303-308.
    • (2005) Proceedings of the 5th International Conference on Hybrid Intelligent Systems (HIS'05) , pp. 303-308
    • Yoon, K.1    Kwek, S.2
  • 150
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Z.-H. Zhou, and X.-Y. Liu Training cost-sensitive neural networks with methods addressing the class imbalance problem IEEE Transactions on Knowledge and Data Engineering 18 1 2006 63 77
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 151
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study
    • X. Zhu, and X. Wu Class noise vs. attribute noise: a quantitative study Artificial Intelligence Review 22 3 2004 177 210
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 152
    • 84868626655 scopus 로고    scopus 로고
    • Weighted extreme learning machine for imbalance learning
    • W. Zong, G.-B. Huang, and Y. Chen Weighted extreme learning machine for imbalance learning Neurocomputing 101 2013 229 242
    • (2013) Neurocomputing , vol.101 , pp. 229-242
    • Zong, W.1    Huang, G.-B.2    Chen, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.