메뉴 건너뛰기




Volumn 14, Issue PART A, 2014, Pages 99-108

Boosted SVM for extracting rules from imbalanced data in application to prediction of the post-operative life expectancy in the lung cancer patients

Author keywords

Boosted SVM; Decision rules; Imbalanced data; Post operative life expectancy prediction

Indexed keywords

BOOSTED SVM; DECISION RULES; ENSEMBLE CLASSIFIERS; EXTRACTING RULES; IMBALANCED DATA; IMBALANCED DATA PROBLEMS; LIFE EXPECTANCIES; SUPPORT VECTORS MACHINE;

EID: 84888298686     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.07.016     Document Type: Article
Times cited : (131)

References (58)
  • 2
    • 14344253689 scopus 로고    scopus 로고
    • Machine learning for sequential data: A review
    • T. Caelli, A. Amin, R.P.W. Duin, M. Kamel, D. de Ridder, Springer Berlin Heidelberg
    • T. Dietterich Machine learning for sequential data: a review T. Caelli, A. Amin, R.P.W. Duin, M. Kamel, D. de Ridder, Structural, Syntactic, and Statistical Pattern Recognition 2002 Springer Berlin Heidelberg 227 246
    • (2002) Structural, Syntactic, and Statistical Pattern Recognition , pp. 227-246
    • Dietterich, T.1
  • 6
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005. Proceedings
    • H. Han, W.-Y. Wang, and B.-H. Mao Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning D.-S. Huang, X.-P. Zhang, G.-B. Huang, Advances in Intelligent Computing 2005 878 887 (Pubitemid 41491129)
    • (2005) Lecture Notes in Computer Science , vol.3644 , Issue.PART I , pp. 878-887
    • Han, H.1    Wang, W.-Y.2    Mao, B.-H.3
  • 8
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • S. García, A. Fernández, and F. Herrera Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems Applied Soft Computing 9 2009 1304 1314
    • (2009) Applied Soft Computing , vol.9 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 9
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost:Improving prediction of the minority class in boosting
    • Knowledge Discovery in Databases: PKDD 2003
    • N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer Smoteboost: improving prediction of the minority class in boosting N. Lavrac, D. Gamberger, H. Blockeel, L. Todorovski, Knowledge Discovery in Databases: PKDD 2003 2003 Springer Berlin Heidelberg 107 119 (Pubitemid 37231089)
    • (2003) Lecture Notes in Computer Science , Issue.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 12
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval IEEE Transactions on Pattern Analysis and Machine Intelligence 28 2006 1088 1099
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 13
    • 24144442868 scopus 로고    scopus 로고
    • Granular support vector machines with association rules mining for protein homology prediction
    • DOI 10.1016/j.artmed.2005.02.003, PII S0933365705000540, Computational Intelligence Techniques in Bioinformatics
    • Y. Tang, B. Jin, and Y. Zhang Granular support vector machines with association rules mining for protein homology prediction Artificial Intelligence in Medicine 35 2005 121 134 (Pubitemid 41242716)
    • (2005) Artificial Intelligence in Medicine , vol.35 , Issue.1-2 , pp. 121-134
    • Tang, Y.1    Jin, B.2    Zhang, Y.-Q.3
  • 14
    • 23944502099 scopus 로고    scopus 로고
    • Granular support vector machines using linear decision hyperplanes for fast medical binary classification
    • Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005
    • Y. Tang, B. Jin, Y. Zhang, H. Fang, and B. Wang Granular support vector machines using linear decision hyperplanes for fast medical binary classification IEEE Proceedings of the 14th IEEE International Conference on Fuzzy Systems 2005 138 142 (Pubitemid 41189496)
    • (2005) IEEE International Conference on Fuzzy Systems , pp. 138-142
    • Tang, Y.1    Jin, B.2    Zhang, Y.-Q.3    Fang, H.4    Wang, B.5
  • 15
    • 33751098785 scopus 로고    scopus 로고
    • Granular SVM with repetitive undersampling for highly imbalanced protein homology prediction
    • 1635839, 2006 IEEE International Conference on Granular Computing
    • Y. Tang, and Y. Zhang Granular svm with repetitive undersampling for highly imbalanced protein homology prediction Y.-Q. Zhang, T.Y. Lin, 2006 IEEE International Conference on Granular Computing 2006 457 460 (Pubitemid 44761948)
    • (2006) 2006 IEEE International Conference on Granular Computing , pp. 457-460
    • Tang, Y.1    Zhang, Y.-Q.2
  • 16
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
    • DOI 10.1109/TCBB.2007.1028
    • Y. Tang, Y. Zhang, and Z. Huang Development of two-stage svm-rfe gene selection strategy for microarray expression data analysis IEEE/ACM Transactions on Computational Biology and Bioinformatics 4 2007 365 381 (Pubitemid 47274713)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.-Q.2    Huang, Z.3
  • 21
    • 51649085353 scopus 로고    scopus 로고
    • Evaluating boosting algorithms to classify rare classes: Comparison and improvements
    • N. Cercone, T.Y. Lin, X. Wu, IEEE Los Alamitos
    • M. Joshi, V. Kumar, and R. Agarwal Evaluating boosting algorithms to classify rare classes: Comparison and improvements N. Cercone, T.Y. Lin, X. Wu, Proceedings. 2001 IEEE International Conference on Data Mining 2001 IEEE Los Alamitos 257 264
    • (2001) Proceedings. 2001 IEEE International Conference on Data Mining , pp. 257-264
    • Joshi, M.1    Kumar, V.2    Agarwal, R.3
  • 22
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
    • Y. Sun, M. Kamel, A. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378 (Pubitemid 47223287)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 25
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • B. Wang, and N. Japkowicz Boosting support vector machines for imbalanced data sets Knowledge and Information Systems 25 2010 1 20
    • (2010) Knowledge and Information Systems , vol.25 , pp. 1-20
    • Wang, B.1    Japkowicz, N.2
  • 26
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • PII S1045922798061839
    • A. Tickle, R. Andrews, M. Golea, and J. Diederich The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks IEEE Transactions on Neural Networks 9 1998 1057 1068 (Pubitemid 128742391)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 27
    • 83655193106 scopus 로고    scopus 로고
    • Extracting rules from neural networks as decision diagrams
    • J. Chorowski, and J.M. Zurada Extracting rules from neural networks as decision diagrams IEEE Transactions on Neural Networks 22 2011 2435 2446
    • (2011) IEEE Transactions on Neural Networks , vol.22 , pp. 2435-2446
    • Chorowski, J.1    Zurada, J.M.2
  • 35
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C.J.C. Burges, A.J. Smola, MIT Press Cambridge
    • J. Platt Fast training of support vector machines using sequential minimal optimization B. Schölkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods: Support Vector Learning 1999 MIT Press Cambridge
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Platt, J.1
  • 36
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • DOI 10.1162/089976601300014493
    • S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy Improvements to platt's smo algorithm for svm classifier design Neural Computation 13 2001 637 649 (Pubitemid 33595014)
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 43
    • 77956139113 scopus 로고    scopus 로고
    • Predictors of major morbidity and mortality after pneumonectomy utilizing the society for thoracic surgeons general thoracic surgery database
    • M. Shapiro, S.J. Swanson, C.D. Wright, C. Chin, S. Sheng, J. Wisnivesky, and T.S. Weiser Predictors of major morbidity and mortality after pneumonectomy utilizing the society for thoracic surgeons general thoracic surgery database Annals of Thoracic Surgery 90 2010 927 935
    • (2010) Annals of Thoracic Surgery , vol.90 , pp. 927-935
    • Shapiro, M.1    Swanson, S.J.2    Wright, C.D.3    Chin, C.4    Sheng, S.5    Wisnivesky, J.6    Weiser, T.S.7
  • 46
    • 59449095362 scopus 로고    scopus 로고
    • Statistical risk modeling and outcomes analysis
    • D. Shahian, and F. Edwards Statistical risk modeling and outcomes analysis Annals of Thoracic Surgery 86 2008 1717 1720
    • (2008) Annals of Thoracic Surgery , vol.86 , pp. 1717-1720
    • Shahian, D.1    Edwards, F.2
  • 47
    • 22544470021 scopus 로고    scopus 로고
    • The European Thoracic Surgery Database project: Modelling the risk of in-hospital death following lung resection
    • DOI 10.1016/j.ejcts.2005.03.047, PII S1010794005002769
    • R. Berrisford, A. Brunelli, G. Rocco, T. Treasure, and M. Utley The european thoracic surgery database project: modelling the risk of in-hospital death following lung resection European Journal of Cardio-Thoracic Surgery 28 2005 306 311 (Pubitemid 41020703)
    • (2005) European Journal of Cardio-thoracic Surgery , vol.28 , Issue.2 , pp. 306-311
    • Berrisford, R.1    Brunelli, A.2    Rocco, G.3    Treasure, T.4    Utley, M.5
  • 48
    • 33846375415 scopus 로고    scopus 로고
    • The Thoracic Surgery Scoring System (Thoracoscore): Risk model for in-hospital death in 15,183 patients requiring thoracic surgery
    • DOI 10.1016/j.jtcvs.2006.09.020, PII S0022522306017557
    • P.E. Falcoz, M. Conti, L. Brouchet, S. Chocron, M. Puyraveau, M. Mercier, J.P. Etievent, and M. Dahan The thoracic surgery scoring system (thoracoscore): risk model for in-hospital death in 15,183 patients requiring thoracic surgery The Journal of Thoracic and Cardiovascular Surgery 133 2007 325 332 (Pubitemid 46136251)
    • (2007) Journal of Thoracic and Cardiovascular Surgery , vol.133 , Issue.2 , pp. 325-332
    • Falcoz, P.E.1    Conti, M.2    Brouchet, L.3    Chocron, S.4    Puyraveau, M.5    Mercier, M.6    Etievent, J.P.7    Dahan, M.8
  • 50
    • 84863477358 scopus 로고    scopus 로고
    • Ecomment.Re:Accuracy of two scoring systems for risk stratification in thoracic surgery
    • G. Rocco ecomment. re: Accuracy of two scoring systems for risk stratification in thoracic surgery Interactive Cardiovascular and Thoracic Surgery 14 2012 559
    • (2012) Interactive Cardiovascular and Thoracic Surgery , vol.14 , pp. 559
    • Rocco, G.1
  • 51
    • 84860704295 scopus 로고    scopus 로고
    • Cross-industry standard process for data mining is applicable to the lung cancer surgery domain, improving decision making as well as knowledge and quality management
    • E. Rivo, J. de la Fuente, Á. Rivo, E. García-Fontán, M.-Á. Ca nizares, and P. Gil Cross-industry standard process for data mining is applicable to the lung cancer surgery domain, improving decision making as well as knowledge and quality management Clinical and Translational Oncology 14 2012 73 79
    • (2012) Clinical and Translational Oncology , vol.14 , pp. 73-79
    • Rivo, E.1    De La Fuente, J.2    Rivo, Á.3    García-Fontán, E.4    Ca Nizares, M.-Á.5    Gil, P.6
  • 52
    • 10844278418 scopus 로고    scopus 로고
    • Report generation and data mining in the domain of thoracic surgery
    • DOI 10.1023/B:JOMS.0000041176.58311.29
    • N. Voznuka, H. Granfeldt, A. Babic, M. Storm, U. Lönn, and H.C. Ahn Report generation and data mining in the domain of thoracic surgery Journal of Medical Systems 28 2004 497 509 (Pubitemid 39663117)
    • (2004) Journal of Medical Systems , vol.28 , Issue.5 , pp. 497-509
    • Voznuka, N.1    Granfeldt, H.2    Babic, A.3    Storm, M.4    Lonn, U.5    Ahn, H.C.6
  • 53
    • 0036143342 scopus 로고    scopus 로고
    • Choosing the surgical mortality threshold for high risk patients with stage la non-small cell lung cancer: Insights from decision analysis
    • DOI 10.1136/thorax.57.1.7
    • J. Dowie, and M. Wildman Choosing the surgical mortality threshold for high risk patients with stage la non-small cell lung cancer: Insights from decision analysis Thorax 57 2002 7 10 (Pubitemid 34081536)
    • (2002) Thorax , vol.57 , Issue.1 , pp. 7-10
    • Dowie, J.1    Wildman, M.2
  • 54
    • 54949091871 scopus 로고    scopus 로고
    • Modeling major lung resection outcomes using classification trees and multiple imputation techniques
    • M.K. Ferguson, J. Siddique, and T. Karrison Modeling major lung resection outcomes using classification trees and multiple imputation techniques European Journal of Cardio-Thoracic Surgery 34 2008 1085 1089
    • (2008) European Journal of Cardio-Thoracic Surgery , vol.34 , pp. 1085-1089
    • Ferguson, M.K.1    Siddique, J.2    Karrison, T.3
  • 55
    • 35448997782 scopus 로고    scopus 로고
    • Neural Networks and Artificial Intelligence in Thoracic Surgery
    • DOI 10.1016/j.thorsurg.2007.07.012, PII S1547412707000783, Tisk Prediction and Outcome Analisys in Thoracic Surgery
    • H. Esteva, T.G. Nú nez, and R.O. Rodríguez Neural networks and artificial intelligence in thoracic surgery Thoracic Surgery Clinics 17 2007 359 367 (Pubitemid 47628754)
    • (2007) Thoracic Surgery Clinics , vol.17 , Issue.3 , pp. 359-367
    • Esteva, H.1    Nunez, T.G.2    Rodriguez, R.O.3
  • 56
    • 0346848887 scopus 로고    scopus 로고
    • Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble
    • DOI 10.1016/S0933-3657(03)00059-9
    • G. Santos-GarcIa, G. Varela, N. Novoa, and M.F. Jiménez Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble Artificial Intelligence in Medicine 30 2004 61 69 (Pubitemid 37543648)
    • (2004) Artificial Intelligence in Medicine , vol.30 , Issue.1 , pp. 61-69
    • Santos-Garcia, G.1    Varela, G.2    Novoa, N.3    Jimenez, M.F.4
  • 57
    • 84861898953 scopus 로고    scopus 로고
    • A novel algorithm applied to classify unbalanced data
    • C.-Y. Lee, and Z.-J. Lee A novel algorithm applied to classify unbalanced data Applied Soft Computing 12 2012 2481 2485
    • (2012) Applied Soft Computing , vol.12 , pp. 2481-2485
    • Lee, C.-Y.1    Lee, Z.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.