-
1
-
-
84867580242
-
DBFS: An effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets
-
M. Alibeigi, S. Hashemi, and A. Hamzeh DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets Data Knowl. Eng. 2012 67 103
-
(2012)
Data Knowl. Eng.
, pp. 67-103
-
-
Alibeigi, M.1
Hashemi, S.2
Hamzeh, A.3
-
3
-
-
18544365698
-
Gene-expression profiles predict survival of patients with lung adenocarcinoma
-
D.G. Beer, S.L. Kardia, C.C. Huang, T.J. Giordano, A.M. Levin, D.E. Misek, L. Lin, G. Chen, T.G. Gharib, D.G. Thomas, M.L. Lizyness, R. Kuick, S. Hayasaka, J.M.G. Taylor, M.D. Iannettoni, M.B. Orringer, and S. Hanash Gene-expression profiles predict survival of patients with lung adenocarcinoma Nat. Med. 8 2002 816 824
-
(2002)
Nat. Med.
, vol.8
, pp. 816-824
-
-
Beer, D.G.1
Kardia, S.L.2
Huang, C.C.3
Giordano, T.J.4
Levin, A.M.5
Misek, D.E.6
Lin, L.7
Chen, G.8
Gharib, T.G.9
Thomas, D.G.10
Lizyness, M.L.11
Kuick, R.12
Hayasaka, S.13
Taylor, J.M.G.14
Iannettoni, M.D.15
Orringer, M.B.16
Hanash, S.17
-
4
-
-
0035923521
-
Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
-
A. Bhattacharjee, W.G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E.J. Mark, E.S. Lander, W. Wong, B.E. Johnson, T.R. Golub, D.J. Sugarbaker, and M. Meyerson Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses Proc. Nat. Acad. Sci. USA 98 2001 13790 13795
-
(2001)
Proc. Nat. Acad. Sci. USA
, vol.98
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
Li, C.4
Monti, S.5
Vasa, P.6
Ladd, C.7
Beheshti, J.8
Bueno, R.9
Gillette, M.10
Loda, M.11
Weber, G.12
Mark, E.J.13
Lander, E.S.14
Wong, W.15
Johnson, B.E.16
Golub, T.R.17
Sugarbaker, D.J.18
Meyerson, M.19
-
5
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
(11:523)
-
R. Blagus, and L. Lusa Class prediction for high-dimensional class-imbalanced data BMC Bioinform. 2010 2010 (11:523)
-
(2010)
BMC Bioinform.
, vol.2010
-
-
Blagus, R.1
Lusa, L.2
-
7
-
-
16544369516
-
Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia
-
L. Bullinger, K. Dohner, S. Frohling, E. Bair, R.F. Schlenk, R. Tibshirani, H. Dohner, and J.R. Pollack Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia New England J. Med. 350 16 2004 1605 1616
-
(2004)
New England J. Med.
, vol.350
, Issue.16
, pp. 1605-1616
-
-
Bullinger, L.1
Dohner, K.2
Frohling, S.3
Bair, E.4
Schlenk, R.F.5
Tibshirani, R.6
Dohner, H.7
Pollack, J.R.8
-
8
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explor. 6 1 2004 1 6
-
(2004)
SIGKDD Explor.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
11
-
-
79960565927
-
Face recognition by generalized two-dimensional FLD method and multi-class support vector machines
-
S. Chowdhury, J.K. Sing, D.K. Basu, and M. Nasipuri Face recognition by generalized two-dimensional FLD method and multi-class support vector machines Appl. Soft Comput. 11 7 2011 4282 4292
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.7
, pp. 4282-4292
-
-
Chowdhury, S.1
Sing, J.K.2
Basu, D.K.3
Nasipuri, M.4
-
12
-
-
70449440300
-
Ultrahigh dimensional feature selection: Beyond the linear model
-
J. Fan, R. Samworth, and Y. Wu Ultrahigh dimensional feature selection: beyond the linear model J. Mach. Learn. Res. 10 2009 2013 2038
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 2013-2038
-
-
Fan, J.1
Samworth, R.2
Wu, Y.3
-
13
-
-
75149159107
-
On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
-
A. Fernández, M.J. del Jesus, and F. Herrera On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets Inf. Sci. 180 8 2010 1268 1291
-
(2010)
Inf. Sci.
, vol.180
, Issue.8
, pp. 1268-1291
-
-
Fernández, A.1
Del Jesus, M.J.2
Herrera, F.3
-
15
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 1-3 2002 389 422
-
(2002)
Mach. Learn.
, vol.46
, Issue.13
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
16
-
-
68549133155
-
Learning from imbalanced data
-
H. He, and E. García Learning from imbalanced data IEEE Trans. Knowl. Data Eng. 21 9 2009 1263 1284
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
García, E.2
-
17
-
-
84872833087
-
Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing
-
A.R. Hidalgo-Munoz, M.M. López, I.M. Santos, A.T. Pereira, M. Vázquez-Marrufo, A. Galvao-Carmona, and A.M. Tomé Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing Expert Syst. Appl. 40 6 2013 2102 2108
-
(2013)
Expert Syst. Appl.
, vol.40
, Issue.6
, pp. 2102-2108
-
-
Hidalgo-Munoz, A.R.1
López, M.M.2
Santos, I.M.3
Pereira, A.T.4
Vázquez-Marrufo, M.5
Galvao-Carmona, A.6
Tomé, A.M.7
-
18
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, and P.S. Meltzer Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nat. Med. 7 2001 673 679
-
(2001)
Nat. Med.
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
19
-
-
70449111090
-
Predicting credit card customer churn in banks using data mining
-
D.A. Kumar, and V. Ravi Predicting credit card customer churn in banks using data mining Int. J. Data Anal. Techn. Strategies 1 1 2008 4 28
-
(2008)
Int. J. Data Anal. Techn. Strategies
, vol.1
, Issue.1
, pp. 4-28
-
-
Kumar, D.A.1
Ravi, V.2
-
20
-
-
64749086339
-
A wrapper method for feature selection using Support Vector Machines
-
S. Maldonado, and R. Weber A wrapper method for feature selection using Support Vector Machines Inf. Sci. 179 13 2009 2208 2217
-
(2009)
Inf. Sci.
, vol.179
, Issue.13
, pp. 2208-2217
-
-
Maldonado, S.1
Weber, R.2
-
21
-
-
77958106713
-
Kernel-penalized SVM for feature selection
-
S. Maldonado, R. Weber, and J. Basak Kernel-penalized SVM for feature selection Inf. Sci. 181 1 2011 115 128
-
(2011)
Inf. Sci.
, vol.181
, Issue.1
, pp. 115-128
-
-
Maldonado, S.1
Weber, R.2
Basak, J.3
-
22
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
C.L. Nutt, D.R. Mani, R.A. Betensky, P. Tamayo, J.G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M.E. McLaughlin, T.T. Batchelor, P.M. Black, A. von Deimling, S.L. Pomeroy, T.R. Golub, and D.N. Louis Gene expression-based classification of malignant gliomas correlates better with survival than histological classification Cancer Res. 63 2003 1602 1607
-
(2003)
Cancer Res.
, vol.63
, pp. 1602-1607
-
-
Nutt, C.L.1
Mani, D.R.2
Betensky, R.A.3
Tamayo, P.4
Cairncross, J.G.5
Ladd, C.6
Pohl, U.7
Hartmann, C.8
McLaughlin, M.E.9
Batchelor, T.T.10
Black, P.M.11
Von Deimling, A.12
Pomeroy, S.L.13
Golub, T.R.14
Louis, D.N.15
-
24
-
-
84873292703
-
The design of polynomial function-based neural network predictors for detection of software defects
-
B.-J. Park, S.-K. Ohb, and W. Pedrycz The design of polynomial function-based neural network predictors for detection of software defects Inf. Sci. 229 2013 40 57
-
(2013)
Inf. Sci.
, vol.229
, pp. 40-57
-
-
Park, B.-J.1
Ohb, S.-K.2
Pedrycz, W.3
-
26
-
-
79957852245
-
A novel SVM modeling approach for highly imbalanced and overlapping classification
-
Y. Qu, H. Su, L. Guo, and J. Chu A novel SVM modeling approach for highly imbalanced and overlapping classification Intell. Data Anal. 15 2011 319 341
-
(2011)
Intell. Data Anal.
, vol.15
, pp. 319-341
-
-
Qu, Y.1
Su, H.2
Guo, L.3
Chu, J.4
-
27
-
-
84890447445
-
Variable selection using SVM-based criteria
-
A. Rakotomamonjy Variable selection using SVM-based criteria J. Mach. Learn. Res. 3 2003 1357 1370
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
29
-
-
80053143065
-
Comparison of approaches to alleviate problems with high-dimensional and class-imbalanced data
-
A.A. Shanab, T.M. Khoshgoftaar, R. Wald, J.V. Hulse, Comparison of approaches to alleviate problems with high-dimensional and class-imbalanced data, in: 2011 IEEE International Conference on Information Reuse and Integration (IRI), 2011, pp. 234-239.
-
(2011)
2011 IEEE International Conference on Information Reuse and Integration (IRI)
, pp. 234-239
-
-
Shanab, A.A.1
Khoshgoftaar, T.M.2
Wald, R.3
Hulse, J.V.4
-
30
-
-
51849156137
-
Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
-
Springer Berlin Heidelberg
-
M. Sokolova, N. Japkowicz, and S. Szpakowicz Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation Advances in Artificial Intelligence vol. 4304 2006 Springer Berlin Heidelberg 1015 1021
-
(2006)
Advances in Artificial Intelligence
, vol.4304
, pp. 1015-1021
-
-
Sokolova, M.1
Japkowicz, N.2
Szpakowicz, S.3
-
31
-
-
84862024860
-
Feature selection via dependence maximization
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt Feature selection via dependence maximization J. Mach. Learn. Res. 13 2012 1393 1434
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
32
-
-
0035887459
-
Molecular classification of human carcinomas by use of gene expression signatures
-
A.I. Su, J.B. Welsh, L.M. Sapinoso, S.G. Kern, P. Dimitrov, H. Lapp, P.G. Schultz, S.M. Powell, C.A. Moskaluk, H.F. Jr. Frierson, and G.M. Hampton Molecular classification of human carcinomas by use of gene expression signatures Cancer Res. 61 2001 7388 7393
-
(2001)
Cancer Res.
, vol.61
, pp. 7388-7393
-
-
Su, A.I.1
Welsh, J.B.2
Sapinoso, L.M.3
Kern, S.G.4
Dimitrov, P.5
Lapp, H.6
Schultz, P.G.7
Powell, S.M.8
Moskaluk, C.A.9
Frierson Jr., H.F.10
Hampton, G.M.11
-
33
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recogn. 40 12 2007 3358 3378
-
(2007)
Pattern Recogn.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
34
-
-
0942266514
-
Support vector data description
-
D.M.J. Tax, and R. Duin Support vector data description Mach. Learn. 54 2004 45 66
-
(2004)
Mach. Learn.
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.2
-
35
-
-
77951173974
-
Feature selection with high-dimensional imbalanced data
-
J. Van Hulse, T.M. Khoshgoftaar, A. Napolitano, R. Wald, Feature selection with high-dimensional imbalanced data, in: Proceedings of the 2009 IEEE International Conference ICDMW '09, 2009, pp. 507-514.
-
(2009)
Proceedings of the 2009 IEEE International Conference ICDMW '09
, pp. 507-514
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Napolitano, A.3
Wald, R.4
-
37
-
-
84862112830
-
Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets
-
P. Villar, A. Fernández, R.A. Carrasco, and F. Herrera Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20 3 2012 369 397
-
(2012)
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
, vol.20
, Issue.3
, pp. 369-397
-
-
Villar, P.1
Fernández, A.2
Carrasco, R.A.3
Herrera, F.4
-
38
-
-
84879475889
-
Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile
-
G. Victo Sudha George, and V. Cyril Raj Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile Int. J. Comput. Sci. Eng. Surv. 2 3 2011 16 27
-
(2011)
Int. J. Comput. Sci. Eng. Surv.
, vol.2
, Issue.3
, pp. 16-27
-
-
Victo Sudha George, G.1
Cyril Raj, V.2
-
39
-
-
79952444436
-
A feature selection method based on improved fisher's discriminant ratio for text sentiment classification
-
S. Wang, D. Li, X. Song, Y. Wei, and H. Li A feature selection method based on improved fisher's discriminant ratio for text sentiment classification Expert Syst. Appl. 38 7 2011 8696 8702
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.7
, pp. 8696-8702
-
-
Wang, S.1
Li, D.2
Song, X.3
Wei, Y.4
Li, H.5
-
40
-
-
77956023732
-
Combating the small sample class imbalance problem using feature selection
-
M. Wasikowski, and X. Chen Combating the small sample class imbalance problem using feature selection IEEE Trans. Knowl. Data Eng. 22 10 2010 1388 1400
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1388-1400
-
-
Wasikowski, M.1
Chen, X.2
-
42
-
-
33746677949
-
A stable gene selection in microarray data analysis
-
K. Yang, Z. Cai, J. Li, and G. Lin A stable gene selection in microarray data analysis BMC Bioinform. 7 2006 228
-
(2006)
BMC Bioinform.
, vol.7
, pp. 228
-
-
Yang, K.1
Cai, Z.2
Li, J.3
Lin, G.4
-
43
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Z. Zheng, X. Wu, and R. Srihari Feature selection for text categorization on imbalanced data SIGKDD Explor. 6 1 2004 80 89
-
(2004)
SIGKDD Explor.
, vol.6
, Issue.1
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
44
-
-
84890017055
-
Simultaneous grouping pursuit and feature selection over an undirected graph
-
Y. Zhu, X. Shen, and W. Pan Simultaneous grouping pursuit and feature selection over an undirected graph J. Am. Stat. Assoc. 108 502 2013 713 725 Tecnológico
-
(2013)
J. Am. Stat. Assoc.
, vol.108
, Issue.502
, pp. 713-725
-
-
Zhu, Y.1
Shen, X.2
Pan, W.3
|