메뉴 건너뛰기




Volumn 286, Issue , 2014, Pages 228-246

Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines

Author keywords

Data mining; Dimensionality reduction; Feature selection; Imbalanced data set; Support Vector Machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; FEATURE EXTRACTION; SUPPORT VECTOR MACHINES;

EID: 84906691312     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.07.015     Document Type: Article
Times cited : (275)

References (44)
  • 1
    • 84867580242 scopus 로고    scopus 로고
    • DBFS: An effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets
    • M. Alibeigi, S. Hashemi, and A. Hamzeh DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets Data Knowl. Eng. 2012 67 103
    • (2012) Data Knowl. Eng. , pp. 67-103
    • Alibeigi, M.1    Hashemi, S.2    Hamzeh, A.3
  • 5
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • (11:523)
    • R. Blagus, and L. Lusa Class prediction for high-dimensional class-imbalanced data BMC Bioinform. 2010 2010 (11:523)
    • (2010) BMC Bioinform. , vol.2010
    • Blagus, R.1    Lusa, L.2
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explor. 6 1 2004 1 6
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 11
    • 79960565927 scopus 로고    scopus 로고
    • Face recognition by generalized two-dimensional FLD method and multi-class support vector machines
    • S. Chowdhury, J.K. Sing, D.K. Basu, and M. Nasipuri Face recognition by generalized two-dimensional FLD method and multi-class support vector machines Appl. Soft Comput. 11 7 2011 4282 4292
    • (2011) Appl. Soft Comput. , vol.11 , Issue.7 , pp. 4282-4292
    • Chowdhury, S.1    Sing, J.K.2    Basu, D.K.3    Nasipuri, M.4
  • 12
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional feature selection: Beyond the linear model
    • J. Fan, R. Samworth, and Y. Wu Ultrahigh dimensional feature selection: beyond the linear model J. Mach. Learn. Res. 10 2009 2013 2038
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2013-2038
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 13
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • A. Fernández, M.J. del Jesus, and F. Herrera On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets Inf. Sci. 180 8 2010 1268 1291
    • (2010) Inf. Sci. , vol.180 , Issue.8 , pp. 1268-1291
    • Fernández, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 1-3 2002 389 422
    • (2002) Mach. Learn. , vol.46 , Issue.13 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 16
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • H. He, and E. García Learning from imbalanced data IEEE Trans. Knowl. Data Eng. 21 9 2009 1263 1284
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    García, E.2
  • 19
    • 70449111090 scopus 로고    scopus 로고
    • Predicting credit card customer churn in banks using data mining
    • D.A. Kumar, and V. Ravi Predicting credit card customer churn in banks using data mining Int. J. Data Anal. Techn. Strategies 1 1 2008 4 28
    • (2008) Int. J. Data Anal. Techn. Strategies , vol.1 , Issue.1 , pp. 4-28
    • Kumar, D.A.1    Ravi, V.2
  • 20
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using Support Vector Machines
    • S. Maldonado, and R. Weber A wrapper method for feature selection using Support Vector Machines Inf. Sci. 179 13 2009 2208 2217
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 21
    • 77958106713 scopus 로고    scopus 로고
    • Kernel-penalized SVM for feature selection
    • S. Maldonado, R. Weber, and J. Basak Kernel-penalized SVM for feature selection Inf. Sci. 181 1 2011 115 128
    • (2011) Inf. Sci. , vol.181 , Issue.1 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 24
    • 84873292703 scopus 로고    scopus 로고
    • The design of polynomial function-based neural network predictors for detection of software defects
    • B.-J. Park, S.-K. Ohb, and W. Pedrycz The design of polynomial function-based neural network predictors for detection of software defects Inf. Sci. 229 2013 40 57
    • (2013) Inf. Sci. , vol.229 , pp. 40-57
    • Park, B.-J.1    Ohb, S.-K.2    Pedrycz, W.3
  • 26
    • 79957852245 scopus 로고    scopus 로고
    • A novel SVM modeling approach for highly imbalanced and overlapping classification
    • Y. Qu, H. Su, L. Guo, and J. Chu A novel SVM modeling approach for highly imbalanced and overlapping classification Intell. Data Anal. 15 2011 319 341
    • (2011) Intell. Data Anal. , vol.15 , pp. 319-341
    • Qu, Y.1    Su, H.2    Guo, L.3    Chu, J.4
  • 27
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • A. Rakotomamonjy Variable selection using SVM-based criteria J. Mach. Learn. Res. 3 2003 1357 1370
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 30
    • 51849156137 scopus 로고    scopus 로고
    • Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
    • Springer Berlin Heidelberg
    • M. Sokolova, N. Japkowicz, and S. Szpakowicz Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation Advances in Artificial Intelligence vol. 4304 2006 Springer Berlin Heidelberg 1015 1021
    • (2006) Advances in Artificial Intelligence , vol.4304 , pp. 1015-1021
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 33
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recogn. 40 12 2007 3358 3378
    • (2007) Pattern Recogn. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 34
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax, and R. Duin Support vector data description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.2
  • 38
    • 84879475889 scopus 로고    scopus 로고
    • Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile
    • G. Victo Sudha George, and V. Cyril Raj Review on feature selection techniques and the impact of SVM for cancer classification using gene expression profile Int. J. Comput. Sci. Eng. Surv. 2 3 2011 16 27
    • (2011) Int. J. Comput. Sci. Eng. Surv. , vol.2 , Issue.3 , pp. 16-27
    • Victo Sudha George, G.1    Cyril Raj, V.2
  • 39
    • 79952444436 scopus 로고    scopus 로고
    • A feature selection method based on improved fisher's discriminant ratio for text sentiment classification
    • S. Wang, D. Li, X. Song, Y. Wei, and H. Li A feature selection method based on improved fisher's discriminant ratio for text sentiment classification Expert Syst. Appl. 38 7 2011 8696 8702
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8696-8702
    • Wang, S.1    Li, D.2    Song, X.3    Wei, Y.4    Li, H.5
  • 40
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • M. Wasikowski, and X. Chen Combating the small sample class imbalance problem using feature selection IEEE Trans. Knowl. Data Eng. 22 10 2010 1388 1400
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.2
  • 42
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • K. Yang, Z. Cai, J. Li, and G. Lin A stable gene selection in microarray data analysis BMC Bioinform. 7 2006 228
    • (2006) BMC Bioinform. , vol.7 , pp. 228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 43
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Z. Zheng, X. Wu, and R. Srihari Feature selection for text categorization on imbalanced data SIGKDD Explor. 6 1 2004 80 89
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 44
    • 84890017055 scopus 로고    scopus 로고
    • Simultaneous grouping pursuit and feature selection over an undirected graph
    • Y. Zhu, X. Shen, and W. Pan Simultaneous grouping pursuit and feature selection over an undirected graph J. Am. Stat. Assoc. 108 502 2013 713 725 Tecnológico
    • (2013) J. Am. Stat. Assoc. , vol.108 , Issue.502 , pp. 713-725
    • Zhu, Y.1    Shen, X.2    Pan, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.