메뉴 건너뛰기




Volumn 1389, Issue 1, 2017, Pages 164-185

Evolution of bird genomes—a transposon's-eye view

Author keywords

bird; chromosome; endogenous virus; genome evolution; long read sequencing; transposable element

Indexed keywords

ARTICLE; BIRD; CHROMOSOME NUMBER; CYTOGENETICS; GENETIC STABILITY; GENETIC VARIABILITY; GENOME ANALYSIS; GENOME SIZE; MOLECULAR EVOLUTION; NONHUMAN; PHYLOGENOMICS; RETROPOSON; TRANSPOSON; ANIMAL; EVOLUTION; GENETIC VARIATION; GENETICS; GENOME; GENOMICS; PHYLOGENY;

EID: 85007360555     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.13295     Document Type: Article
Times cited : (104)

References (206)
  • 1
    • 84917691034 scopus 로고    scopus 로고
    • An integrative approach to understanding bird origins
    • Xu, X., Z. Zhou, R. Dudley, et al. 2014. An integrative approach to understanding bird origins. Science 346: 1253293.
    • (2014) Science , vol.346 , pp. 1253293
    • Xu, X.1    Zhou, Z.2    Dudley, R.3
  • 3
    • 84871922008 scopus 로고    scopus 로고
    • An update of Wallace's zoogeographic regions of the world
    • Holt, B.G., J.-P. Lessard, M.K. Borregaard, et al. 2013. An update of Wallace's zoogeographic regions of the world. Science 339: 74–78.
    • (2013) Science , vol.339 , pp. 74-78
    • Holt, B.G.1    Lessard, J.-P.2    Borregaard, M.K.3
  • 4
    • 84869088692 scopus 로고    scopus 로고
    • The global diversity of birds in space and time
    • Jetz, W., G. Thomas, J. Joy, et al. 2012. The global diversity of birds in space and time. Nature 491: 444–448.
    • (2012) Nature , vol.491 , pp. 444-448
    • Jetz, W.1    Thomas, G.2    Joy, J.3
  • 5
    • 84874376138 scopus 로고    scopus 로고
    • Genomic diversity and evolution of the head crest in the rock pigeon
    • Shapiro, M.D., Z. Kronenberg, C. Li, et al. 2013. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339: 1063–1067.
    • (2013) Science , vol.339 , pp. 1063-1067
    • Shapiro, M.D.1    Kronenberg, Z.2    Li, C.3
  • 6
    • 80052413579 scopus 로고    scopus 로고
    • Insights into bird wing evolution and digit specification from polarizing region fate maps
    • Towers, M., J. Signolet, A. Sherman, et al. 2011. Insights into bird wing evolution and digit specification from polarizing region fate maps. Nat. Commun. 2: 426.
    • (2011) Nat. Commun , vol.2 , pp. 426
    • Towers, M.1    Signolet, J.2    Sherman, A.3
  • 7
    • 77950080740 scopus 로고    scopus 로고
    • Whole-genome resequencing reveals loci under selection during chicken domestication
    • Rubin, C.-J., M.C. Zody, J. Eriksson, et al. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464: 587–591.
    • (2010) Nature , vol.464 , pp. 587-591
    • Rubin, C.-J.1    Zody, M.C.2    Eriksson, J.3
  • 8
    • 0034632857 scopus 로고    scopus 로고
    • Behaviourally driven gene expression reveals song nuclei in hummingbird brain
    • Jarvis, E.D., S. Ribeiro, M.L. da Silva, et al. 2000. Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406: 628–632.
    • (2000) Nature , vol.406 , pp. 628-632
    • Jarvis, E.D.1    Ribeiro, S.2    da Silva, M.L.3
  • 9
    • 63449102727 scopus 로고    scopus 로고
    • FOXP2 as a molecular window into speech and language
    • Fisher, S.E. & C. Scharff. 2009. FOXP2 as a molecular window into speech and language. Trends Genet. 25: 166–177.
    • (2009) Trends Genet , vol.25 , pp. 166-177
    • Fisher, S.E.1    Scharff, C.2
  • 10
    • 84917708482 scopus 로고    scopus 로고
    • Whole genome analyses resolve the early branches in the tree of life of modern birds
    • Jarvis, E.D., S. Mirarab, A.J. Aberer, et al. 2014. Whole genome analyses resolve the early branches in the tree of life of modern birds. Science 346: 1320–1331.
    • (2014) Science , vol.346 , pp. 1320-1331
    • Jarvis, E.D.1    Mirarab, S.2    Aberer, A.J.3
  • 11
    • 84944911288 scopus 로고    scopus 로고
    • A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing
    • Prum, R.O., J.S. Berv, A. Dornburg, et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526: 569–573.
    • (2015) Nature , vol.526 , pp. 569-573
    • Prum, R.O.1    Berv, J.S.2    Dornburg, A.3
  • 12
    • 84940641284 scopus 로고    scopus 로고
    • The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds
    • Suh, A., L. Smeds & H. Ellegren. 2015. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 13: e1002224.
    • (2015) PLoS Biol , vol.13
    • Suh, A.1    Smeds, L.2    Ellegren, H.3
  • 13
    • 84988935122 scopus 로고    scopus 로고
    • The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves
    • Suh, A. 2016. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool. Scripta 45: 50–62.
    • (2016) Zool. Scripta , vol.45 , pp. 50-62
    • Suh, A.1
  • 14
    • 84923353165 scopus 로고    scopus 로고
    • Evolution of Darwin's finches and their beaks revealed by genome sequencing
    • Lamichhaney, S., J. Berglund, M.S. Almen, et al. 2015. Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518: 371–375.
    • (2015) Nature , vol.518 , pp. 371-375
    • Lamichhaney, S.1    Berglund, J.2    Almen, M.S.3
  • 15
    • 84946553571 scopus 로고    scopus 로고
    • Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum in Ficedula flycatchers
    • Burri, R., A. Nater, T. Kawakami, et al. 2015. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum in Ficedula flycatchers. Genome Res. 25: 1656–1665.
    • (2015) Genome Res , vol.25 , pp. 1656-1665
    • Burri, R.1    Nater, A.2    Kawakami, T.3
  • 16
    • 84902665599 scopus 로고    scopus 로고
    • The genomic landscape underlying phenotypic integrity in the face of gene flow in crows
    • Poelstra, J.W., N. Vijay, C.M. Bossu, et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344: 1410–1414.
    • (2014) Science , vol.344 , pp. 1410-1414
    • Poelstra, J.W.1    Vijay, N.2    Bossu, C.M.3
  • 17
    • 84870297139 scopus 로고    scopus 로고
    • The genomic landscape of species divergence in Ficedula flycatchers
    • Ellegren, H., L. Smeds, R. Burri, et al. 2012. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491: 756–760.
    • (2012) Nature , vol.491 , pp. 756-760
    • Ellegren, H.1    Smeds, L.2    Burri, R.3
  • 18
    • 84955710521 scopus 로고    scopus 로고
    • The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean
    • Burri, R., S. Antoniazza, A. Gaigher, et al. 2016. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 70: 140–153.
    • (2016) Evolution , vol.70 , pp. 140-153
    • Burri, R.1    Antoniazza, S.2    Gaigher, A.3
  • 20
    • 10644283823 scopus 로고    scopus 로고
    • Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
    • Hillier, L.W., W. Miller, E. Birney, et al. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695–716.
    • (2004) Nature , vol.432 , pp. 695-716
    • Hillier, L.W.1    Miller, W.2    Birney, E.3
  • 21
    • 77957903598 scopus 로고    scopus 로고
    • Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis
    • Dalloul, R.A., J.A. Long, A.V. Zimin, et al. 2010. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 8: 1–21.
    • (2010) PLoS Biol , vol.8 , pp. 1-21
    • Dalloul, R.A.1    Long, J.A.2    Zimin, A.V.3
  • 22
  • 23
    • 84935840605 scopus 로고    scopus 로고
    • Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds
    • Frankl-Vilches, C., H. Kuhl, M. Werber, et al. 2015. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol. 16: 19.
    • (2015) Genome Biol , vol.16 , pp. 19
    • Frankl-Vilches, C.1    Kuhl, H.2    Werber, M.3
  • 24
    • 84905465421 scopus 로고    scopus 로고
    • A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution
    • Kawakami, T., L. Smeds, N. Backström, et al. 2014. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol. Ecol. 23: 4035–4058.
    • (2014) Mol. Ecol , vol.23 , pp. 4035-4058
    • Kawakami, T.1    Smeds, L.2    Backström, N.3
  • 25
    • 84955477815 scopus 로고    scopus 로고
    • Evolutionary signals of selection on cognition from the great tit genome and methylome
    • Laine, V.N., T.I. Gossmann, K.M. Schachtschneider, et al. 2016. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat. Commun. 7: 10474.
    • (2016) Nat. Commun , vol.7 , pp. 10474
    • Laine, V.N.1    Gossmann, T.I.2    Schachtschneider, K.M.3
  • 26
    • 84917678595 scopus 로고    scopus 로고
    • Comparative genomics reveals insights into avian genome evolution and adaptation
    • Zhang, G., C. Li, Q. Li, et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346: 1311–1320.
    • (2014) Science , vol.346 , pp. 1311-1320
    • Zhang, G.1    Li, C.2    Li, Q.3
  • 27
    • 84979582275 scopus 로고    scopus 로고
    • Improving the ostrich genome assembly using optical mapping data
    • Zhang, J., C. Li, Q. Zhou, et al. 2015. Improving the ostrich genome assembly using optical mapping data. Gigascience 4: 24.
    • (2015) Gigascience , vol.4 , pp. 24
    • Zhang, J.1    Li, C.2    Zhou, Q.3
  • 28
    • 84959058509 scopus 로고    scopus 로고
    • Perspectives from the Avian Phylogenomics Project: questions that can be answered with sequencing all genomes of a vertebrate class
    • Jarvis, E.D. 2016. Perspectives from the Avian Phylogenomics Project: questions that can be answered with sequencing all genomes of a vertebrate class. Annu. Rev. Anim. Biosci. 4: 45–59.
    • (2016) Annu. Rev. Anim. Biosci , vol.4 , pp. 45-59
    • Jarvis, E.D.1
  • 29
    • 1542513556 scopus 로고    scopus 로고
    • Mobile elements: drivers of genome evolution
    • Kazazian, H.H, Jr. 2004. Mobile elements: drivers of genome evolution. Science 303: 1626–1632.
    • (2004) Science , vol.303 , pp. 1626-1632
    • Kazazian, H.H.1
  • 30
    • 33646566617 scopus 로고    scopus 로고
    • Transposable elements
    • In, T.R. Gregory, Ed., Elsevier Academic Press
    • Kidwell, M. 2005. Transposable elements. In The Evolution of the Genome. T.R. Gregory, Ed.: 165–221. Elsevier Academic Press.
    • (2005) The Evolution of the Genome , pp. 165-221
    • Kidwell, M.1
  • 31
    • 78649718268 scopus 로고    scopus 로고
    • Endogenous viral elements in animal genomes
    • Katzourakis, A. & R.J. Gifford. 2010. Endogenous viral elements in animal genomes. PLoS Genet. 6: e1001191.
    • (2010) PLoS Genet , vol.6
    • Katzourakis, A.1    Gifford, R.J.2
  • 32
    • 84919663851 scopus 로고    scopus 로고
    • Early Mesozoic coexistence of amniotes and Hepadnaviridae
    • Suh, A., C.C. Weber, C. Kehlmaier, et al. 2014. Early Mesozoic coexistence of amniotes and Hepadnaviridae. PLoS Genet. 10: e1004559.
    • (2014) PLoS Genet , vol.10
    • Suh, A.1    Weber, C.C.2    Kehlmaier, C.3
  • 33
    • 84933578221 scopus 로고    scopus 로고
    • Endogenous viruses: connecting recent and ancient viral evolution
    • Aiewsakun, P. & A. Katzourakis. 2015. Endogenous viruses: connecting recent and ancient viral evolution. Virology 479–480: 26–37.
    • (2015) Virology , vol.479-480 , pp. 26-37
    • Aiewsakun, P.1    Katzourakis, A.2
  • 34
    • 80054890343 scopus 로고    scopus 로고
    • The evolution of endogenous viral elements
    • Holmes, E.C. 2011. The evolution of endogenous viral elements. Cell Host Microbe 10: 368–377.
    • (2011) Cell Host Microbe , vol.10 , pp. 368-377
    • Holmes, E.C.1
  • 35
    • 84858429240 scopus 로고    scopus 로고
    • Endogenous viruses: insights into viral evolution and impact on host biology
    • Feschotte, C. & C. Gilbert. 2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13: 283–296.
    • (2012) Nat. Rev. Genet , vol.13 , pp. 283-296
    • Feschotte, C.1    Gilbert, C.2
  • 36
    • 84877750431 scopus 로고    scopus 로고
    • Our viral inheritance
    • Weiss, R.A. & J.P. Stoye. 2013. Our viral inheritance. Science 340: 820–821.
    • (2013) Science , vol.340 , pp. 820-821
    • Weiss, R.A.1    Stoye, J.P.2
  • 37
    • 36249023071 scopus 로고    scopus 로고
    • A unified classification system for eukaryotic transposable elements
    • Wicker, T., F. Sabot, A. Hua-Van, et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973–982.
    • (2007) Nat. Rev. Genet , vol.8 , pp. 973-982
    • Wicker, T.1    Sabot, F.2    Hua-Van, A.3
  • 38
    • 42349111552 scopus 로고    scopus 로고
    • A universal classification of eukaryotic transposable elements implemented in Repbase
    • Kapitonov, V.V. & J. Jurka. 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9: 411–412.
    • (2008) Nat. Rev. Genet , vol.9 , pp. 411-412
    • Kapitonov, V.V.1    Jurka, J.2
  • 39
    • 84923103071 scopus 로고    scopus 로고
    • Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution
    • Krupovic, M. & E.V. Koonin. 2015. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13: 105–115.
    • (2015) Nat. Rev. Microbiol , vol.13 , pp. 105-115
    • Krupovic, M.1    Koonin, E.V.2
  • 40
    • 77951562146 scopus 로고    scopus 로고
    • Transposable elements in natural populations of Drosophila melanogaster
    • Lee, Y.C.G. & C.H. Langley. 2010. Transposable elements in natural populations of Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 1219–1228.
    • (2010) Philos. Trans. R. Soc. Lond. B Biol. Sci , vol.365 , pp. 1219-1228
    • Lee, Y.C.G.1    Langley, C.H.2
  • 41
    • 84940697836 scopus 로고    scopus 로고
    • What's in a genome? The C-value enigma and the evolution of eukaryotic genome content
    • &, 20140331
    • Elliott, T.A. & T.R. Gregory. 2015. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370: 20140331. doi: 10.1098/rstb.2014.0331.
    • (2015) Philos. Trans. R. Soc. Lond. B Biol. Sci , vol.370
    • Elliott, T.A.1    Gregory, T.R.2
  • 42
    • 33947303168 scopus 로고    scopus 로고
    • Transposable elements and the epigenetic regulation of the genome
    • Slotkin, R.K. & R. Martienssen. 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8: 272–285.
    • (2007) Nat. Rev. Genet , vol.8 , pp. 272-285
    • Slotkin, R.K.1    Martienssen, R.2
  • 43
    • 34249937354 scopus 로고    scopus 로고
    • Thousands of human mobile element fragments undergo strong purifying selection near developmental genes
    • Lowe, C.B., G. Bejerano & D. Haussler. 2007. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl. Acad. Sci. U.S.A. 104: 8005–8010.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 8005-8010
    • Lowe, C.B.1    Bejerano, G.2    Haussler, D.3
  • 44
    • 84863393570 scopus 로고    scopus 로고
    • Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages
    • Schmidt, D., P.C. Schwalie, M.D. Wilson, et al. 2012. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148: 335–348.
    • (2012) Cell , vol.148 , pp. 335-348
    • Schmidt, D.1    Schwalie, P.C.2    Wilson, M.D.3
  • 45
    • 84938930718 scopus 로고    scopus 로고
    • MIR retrotransposon sequences provide insulators to the human genome
    • Wang, J., C. Vicente-García, D. Seruggia, et al. 2015. MIR retrotransposon sequences provide insulators to the human genome. Proc. Natl. Acad. Sci. U.S.A. 112: E4428–E4437.
    • (2015) Proc. Natl. Acad. Sci. U.S.A , vol.112 , pp. E4428-E4437
    • Wang, J.1    Vicente-García, C.2    Seruggia, D.3
  • 46
    • 85016273278 scopus 로고    scopus 로고
    • Evolution and diversity of transposable elements in vertebrates
    • 2016
    • Sotero-Caio, C., R.N. Platt II, A. Suh, et al. 2016. Evolution and diversity of transposable elements in vertebrates. Genome Biol. Evol. doi: 10.1093/gbe/evw264.
    • Genome Biol. Evol
    • Sotero-Caio, C.1    Platt, R.N.2    Suh, A.3
  • 48
  • 49
    • 70449729943 scopus 로고    scopus 로고
    • The smallest avian genomes are found in hummingbirds
    • Gregory, T.R., C.B. Andrews, J.A. McGuire, et al. 2009. The smallest avian genomes are found in hummingbirds. Proc. Biol. Sci. 276: 3753–3757.
    • (2009) Proc. Biol. Sci , vol.276 , pp. 3753-3757
    • Gregory, T.R.1    Andrews, C.B.2    McGuire, J.A.3
  • 50
    • 33947127751 scopus 로고    scopus 로고
    • Origin of avian genome size and structure in non-avian dinosaurs
    • Organ, C.L., A.M. Shedlock, A. Meade, et al. 2007. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446: 180–184.
    • (2007) Nature , vol.446 , pp. 180-184
    • Organ, C.L.1    Shedlock, A.M.2    Meade, A.3
  • 51
    • 84893050882 scopus 로고    scopus 로고
    • Metabolic ‘engines’ of flight drive genome size reduction in birds
    • Wright, N.A., T.R. Gregory & C.C. Witt. 2014. Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc. Biol. Sci. 281: 20132780.
    • (2014) Proc. Biol. Sci , vol.281 , pp. 20132780
    • Wright, N.A.1    Gregory, T.R.2    Witt, C.C.3
  • 52
    • 84875077993 scopus 로고    scopus 로고
    • The evolution of intron size in amniotes: a role for powered flight
    • Zhang, Q. & S.V. Edwards. 2012. The evolution of intron size in amniotes: a role for powered flight? Genome Biol. Evol. 4: 1033–1043.
    • (2012) Genome Biol. Evol , vol.4 , pp. 1033-1043
    • Zhang, Q.1    Edwards, S.V.2
  • 53
    • 0029100668 scopus 로고
    • Small genomes for better flyers
    • Hughes, A.L. & M.K. Hughes. 1995. Small genomes for better flyers. Nature 377: 391.
    • (1995) Nature , vol.377 , pp. 391
    • Hughes, A.L.1    Hughes, M.K.2
  • 54
    • 0031000757 scopus 로고    scopus 로고
    • Nucleotypic effect in homeotherms: body-mass independent resting metabolic rate of passerine birds is related to genome size
    • Vinogradov, A.E. 1997. Nucleotypic effect in homeotherms: body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution 51: 220–225.
    • (1997) Evolution , vol.51 , pp. 220-225
    • Vinogradov, A.E.1
  • 55
    • 84978877973 scopus 로고    scopus 로고
    • Genome stability and evolution: attempting a holistic view
    • Schubert, I. & G.T.H. Vu. 2016. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 21: 749–757.
    • (2016) Trends Plant Sci , vol.21 , pp. 749-757
    • Schubert, I.1    Vu, G.T.H.2
  • 56
    • 34248144955 scopus 로고    scopus 로고
    • The mode and tempo of genome size evolution in eukaryotes
    • Oliver, M.J., D. Petrov, D. Ackerly, et al. 2007. The mode and tempo of genome size evolution in eukaryotes. Genome Res. 17: 594–601.
    • (2007) Genome Res , vol.17 , pp. 594-601
    • Oliver, M.J.1    Petrov, D.2    Ackerly, D.3
  • 57
    • 77950630372 scopus 로고    scopus 로고
    • Evolutionary stasis: the stable chromosomes of birds
    • Ellegren, H. 2010. Evolutionary stasis: the stable chromosomes of birds. Trends Ecol. Evol. 25: 283–291.
    • (2010) Trends Ecol. Evol , vol.25 , pp. 283-291
    • Ellegren, H.1
  • 58
    • 84904212145 scopus 로고    scopus 로고
    • Tracing the evolution of amniote chromosomes
    • Deakin, J.E. & T. Ezaz. 2014. Tracing the evolution of amniote chromosomes. Chromosoma 123: 201–216.
    • (2014) Chromosoma , vol.123 , pp. 201-216
    • Deakin, J.E.1    Ezaz, T.2
  • 59
    • 0036045092 scopus 로고    scopus 로고
    • Origin and evolution of avian microchromosomes
    • Burt, D.W. 2002. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 96: 97–112.
    • (2002) Cytogenet. Genome Res , vol.96 , pp. 97-112
    • Burt, D.W.1
  • 61
    • 84973319914 scopus 로고    scopus 로고
    • Determinants of genetic diversity
    • Ellegren, H. & N. Galtier. 2016. Determinants of genetic diversity. Nat. Rev. Genet. 17: 422–433.
    • (2016) Nat. Rev. Genet , vol.17 , pp. 422-433
    • Ellegren, H.1    Galtier, N.2
  • 62
    • 77951880040 scopus 로고    scopus 로고
    • Transposable elements in reptilian and avian (Sauropsida) genomes
    • Kordiš, D. 2009. Transposable elements in reptilian and avian (Sauropsida) genomes. Cytogenet. Genome Res. 127: 94–111.
    • (2009) Cytogenet. Genome Res , vol.127 , pp. 94-111
    • Kordiš, D.1
  • 63
    • 84928236059 scopus 로고    scopus 로고
    • Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates
    • Chalopin, D., M. Naville, F. Plard, et al. 2015. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 7: 567–580.
    • (2015) Genome Biol. Evol , vol.7 , pp. 567-580
    • Chalopin, D.1    Naville, M.2    Plard, F.3
  • 64
    • 77957944090 scopus 로고    scopus 로고
    • Genome evolution in Reptilia, the sister group of mammals
    • Janes, D.E., C.L. Organ, M.K. Fujita, et al. 2010. Genome evolution in Reptilia, the sister group of mammals. Annu. Rev. Genomics Hum. Genet. 11: 239–264.
    • (2010) Annu. Rev. Genomics Hum. Genet , vol.11 , pp. 239-264
    • Janes, D.E.1    Organ, C.L.2    Fujita, M.K.3
  • 65
    • 84996528945 scopus 로고    scopus 로고
    • Low frequency of paleoviral infiltration across the avian phylogeny
    • Cui, J., W. Zhao, Z. Huang, et al. 2014. Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol. 15: 539.
    • (2014) Genome Biol , vol.15 , pp. 539
    • Cui, J.1    Zhao, W.2    Huang, Z.3
  • 66
    • 84919656263 scopus 로고    scopus 로고
    • Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes
    • Suh, A., G. Churakov, M.P. Ramakodi, et al. 2015. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol. Evol. 7: 205–217.
    • (2015) Genome Biol. Evol , vol.7 , pp. 205-217
    • Suh, A.1    Churakov, G.2    Ramakodi, M.P.3
  • 67
    • 33847281471 scopus 로고    scopus 로고
    • Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome
    • Shedlock, A.M., C.W. Botka, S. Zhao, et al. 2007. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc. Natl. Acad. Sci. U.S.A. 104: 2767–2772.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 2767-2772
    • Shedlock, A.M.1    Botka, C.W.2    Zhao, S.3
  • 68
    • 84939468193 scopus 로고    scopus 로고
    • The specific requirements for CR1 retrotransposition explain the scarcity of retrogenes in birds
    • Suh, A. 2015. The specific requirements for CR1 retrotransposition explain the scarcity of retrogenes in birds. J. Mol. Evol. 81: 18–20.
    • (2015) J. Mol. Evol , vol.81 , pp. 18-20
    • Suh, A.1
  • 69
    • 85013345866 scopus 로고    scopus 로고
    • LINEs between species: evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life
    • Ivancevic, A.M., R.D. Kortschak, T. Bertozzi, et al. 2016. LINEs between species: evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life. Genome Biol. Evol. doi: 10.1093/gbe/evw243.
    • (2016) Genome Biol. Evol
    • Ivancevic, A.M.1    Kortschak, R.D.2    Bertozzi, T.3
  • 70
    • 44649197847 scopus 로고    scopus 로고
    • Mobility pathways for vertebrate L1, L2, CR1, and RTE clade retrotransposons
    • Ichiyanagi, K. & N. Okada. 2008. Mobility pathways for vertebrate L1, L2, CR1, and RTE clade retrotransposons. Mol. Biol. Evol. 25: 1148–1157.
    • (2008) Mol. Biol. Evol , vol.25 , pp. 1148-1157
    • Ichiyanagi, K.1    Okada, N.2
  • 71
    • 0027450385 scopus 로고
    • Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition
    • Luan, D.D., M.H. Korman, J.L. Jakubczak, et al. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.
    • (1993) Cell , vol.72 , pp. 595-605
    • Luan, D.D.1    Korman, M.H.2    Jakubczak, J.L.3
  • 72
    • 33645217818 scopus 로고    scopus 로고
    • The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition
    • Martin, S.L. 2006. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J. Biomed. Biotechnol. 2006: 6.
    • (2006) J. Biomed. Biotechnol , vol.2006 , pp. 6
    • Martin, S.L.1
  • 73
    • 80051997952 scopus 로고    scopus 로고
    • Dynamic interactions between transposable elements and their hosts
    • Levin, H.L. & J.V. Moran. 2011. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12: 615–627.
    • (2011) Nat. Rev. Genet , vol.12 , pp. 615-627
    • Levin, H.L.1    Moran, J.V.2
  • 74
    • 0019838202 scopus 로고
    • A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats
    • Stumph, W.E., P. Kristo, M.-J. Tsai, et al. 1981. A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats. Nucleic Acids Res. 9: 5383–5398.
    • (1981) Nucleic Acids Res , vol.9 , pp. 5383-5398
    • Stumph, W.E.1    Kristo, P.2    Tsai, M.-J.3
  • 75
    • 0021703473 scopus 로고
    • Genomic structure and possible retroviral origin of the chicken CR1 repetitive DNA sequence family
    • Stumph, W.E., C.P. Hodgson, M.J. Tsai, et al. 1984. Genomic structure and possible retroviral origin of the chicken CR1 repetitive DNA sequence family. Proc. Natl. Acad. Sci. U.S.A. 81: 6667–6671.
    • (1984) Proc. Natl. Acad. Sci. U.S.A , vol.81 , pp. 6667-6671
    • Stumph, W.E.1    Hodgson, C.P.2    Tsai, M.J.3
  • 76
    • 0035207756 scopus 로고    scopus 로고
    • Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia
    • Lovšin, N., F. Gubenšek & D. Kordiš. 2001. Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Mol. Biol. Evol. 18: 2213–2224.
    • (2001) Mol. Biol. Evol , vol.18 , pp. 2213-2224
    • Lovšin, N.1    Gubenšek, F.2    Kordiš, D.3
  • 77
    • 0027987503 scopus 로고
    • Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors
    • Vandergon, T.L. & M. Reitman. 1994. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. Mol. Biol. Evol. 11: 886–898.
    • (1994) Mol. Biol. Evol , vol.11 , pp. 886-898
    • Vandergon, T.L.1    Reitman, M.2
  • 78
    • 37549035420 scopus 로고    scopus 로고
    • Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes)
    • Kriegs, J.O., A. Matzke, G. Churakov, et al. 2007. Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol. Biol. 7: 190.
    • (2007) BMC Evol. Biol , vol.7 , pp. 190
    • Kriegs, J.O.1    Matzke, A.2    Churakov, G.3
  • 79
    • 80052392767 scopus 로고    scopus 로고
    • Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds
    • Suh, A., M. Paus, M. Kiefmann, et al. 2011. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat. Commun. 2: 443.
    • (2011) Nat. Commun , vol.2 , pp. 443
    • Suh, A.1    Paus, M.2    Kiefmann, M.3
  • 80
    • 84863634273 scopus 로고    scopus 로고
    • A universal method for the study of CR1 retroposons in nonmodel bird genomes
    • Suh, A., J.O. Kriegs, S. Donnellan, et al. 2012. A universal method for the study of CR1 retroposons in nonmodel bird genomes. Mol. Biol. Evol. 29: 2899–2903.
    • (2012) Mol. Biol. Evol , vol.29 , pp. 2899-2903
    • Suh, A.1    Kriegs, J.O.2    Donnellan, S.3
  • 81
    • 84861358284 scopus 로고    scopus 로고
    • Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era
    • Matzke, A., G. Churakov, P. Berkes, et al. 2012. Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era. Mol. Biol. Evol. 29: 1497–1501.
    • (2012) Mol. Biol. Evol , vol.29 , pp. 1497-1501
    • Matzke, A.1    Churakov, G.2    Berkes, P.3
  • 82
    • 33845901252 scopus 로고    scopus 로고
    • Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds
    • Kaiser, V.B., M. van Tuinen & H. Ellegren. 2007. Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds. Mol. Biol. Evol. 24: 338–347.
    • (2007) Mol. Biol. Evol , vol.24 , pp. 338-347
    • Kaiser, V.B.1    van Tuinen, M.2    Ellegren, H.3
  • 83
    • 19944432437 scopus 로고    scopus 로고
    • The repetitive landscape of the chicken genome
    • Wicker, T., J.S. Robertson, S.R. Schulze, et al. 2005. The repetitive landscape of the chicken genome. Genome Res. 15: 126–136.
    • (2005) Genome Res , vol.15 , pp. 126-136
    • Wicker, T.1    Robertson, J.S.2    Schulze, S.R.3
  • 84
    • 84964301332 scopus 로고    scopus 로고
    • Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes
    • Suh, A., C.C. Witt, J. Menger, et al. 2016. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nat. Commun. 7: 11396.
    • (2016) Nat. Commun , vol.7 , pp. 11396
    • Suh, A.1    Witt, C.C.2    Menger, J.3
  • 85
    • 0032168623 scopus 로고    scopus 로고
    • Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes
    • Kordiš, D. & F. Gubenšek. 1998. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc. Natl. Acad. Sci. U.S.A. 95: 10704–10709.
    • (1998) Proc. Natl. Acad. Sci. U.S.A , vol.95 , pp. 10704-10709
    • Kordiš, D.1    Gubenšek, F.2
  • 87
    • 26444555977 scopus 로고    scopus 로고
    • Long-term inheritance of the 28S rDNA-specific retrotransposon R2
    • Kojima, K.K. & H. Fujiwara. 2005. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol. Biol. Evol. 22: 2157–2165.
    • (2005) Mol. Biol. Evol , vol.22 , pp. 2157-2165
    • Kojima, K.K.1    Fujiwara, H.2
  • 88
    • 84992096739 scopus 로고    scopus 로고
    • The wide distribution and change of target specificity of R2 non-LTR retrotransposons in animals
    • Kojima, K.K., Y. Seto & H. Fujiwara. 2016. The wide distribution and change of target specificity of R2 non-LTR retrotransposons in animals. PLoS One 11: e0163496.
    • (2016) PLoS One , vol.11
    • Kojima, K.K.1    Seto, Y.2    Fujiwara, H.3
  • 89
    • 0029927086 scopus 로고    scopus 로고
    • The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements
    • Ohshima, K., M. Hamada, Y. Terai, et al. 1996. The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol. Cell. Biol. 16: 3756–3764.
    • (1996) Mol. Cell. Biol , vol.16 , pp. 3756-3764
    • Ohshima, K.1    Hamada, M.2    Terai, Y.3
  • 90
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Lander, E.S., L.M. Linton, B. Birren, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.S.1    Linton, L.M.2    Birren, B.3
  • 91
    • 67349167101 scopus 로고    scopus 로고
    • Characterization and evolutionary landscape of AmnSINE1 in Amniota genomes
    • Hirakawa, M., H. Nishihara, M. Kanehisa, et al. 2009. Characterization and evolutionary landscape of AmnSINE1 in Amniota genomes. Gene 441: 100–110.
    • (2009) Gene , vol.441 , pp. 100-110
    • Hirakawa, M.1    Nishihara, H.2    Kanehisa, M.3
  • 92
    • 33646928347 scopus 로고    scopus 로고
    • A distal enhancer and an ultraconserved exon are derived from a novel retroposon
    • Bejerano, G., C.B. Lowe, N. Ahituv, et al. 2006. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441: 87–90.
    • (2006) Nature , vol.441 , pp. 87-90
    • Bejerano, G.1    Lowe, C.B.2    Ahituv, N.3
  • 93
    • 33745620751 scopus 로고    scopus 로고
    • Functional noncoding sequences derived from SINEs in the mammalian genome
    • Nishihara, H., A.F.A. Smit & N. Okada. 2006. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16: 864–874.
    • (2006) Genome Res , vol.16 , pp. 864-874
    • Nishihara, H.1    Smit, A.F.A.2    Okada, N.3
  • 94
    • 84917697073 scopus 로고    scopus 로고
    • Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs
    • Green, R.E., E.L. Braun, J. Armstrong, et al. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346: 1335.
    • (2014) Science , vol.346 , pp. 1335
    • Green, R.E.1    Braun, E.L.2    Armstrong, J.3
  • 95
    • 85013338350 scopus 로고    scopus 로고
    • De-novo emergence and template switching of SINE retroposons during the early evolution of passerine birds
    • 2016
    • Suh, A., S. Bachg, S. Donnellan, et al. 2016. De-novo emergence and template switching of SINE retroposons during the early evolution of passerine birds. bioRxiv doi: 10.1101/081950.
    • bioRxiv
    • Suh, A.1    Bachg, S.2    Donnellan, S.3
  • 96
    • 37049036838 scopus 로고    scopus 로고
    • Bov-B-mobilized SINEs in vertebrate genomes
    • Gogolevsky, K.P., N.S. Vassetzky & D.A. Kramerov. 2008. Bov-B-mobilized SINEs in vertebrate genomes. Gene 407: 75–85.
    • (2008) Gene , vol.407 , pp. 75-85
    • Gogolevsky, K.P.1    Vassetzky, N.S.2    Kramerov, D.A.3
  • 97
    • 0036061848 scopus 로고    scopus 로고
    • Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis
    • Devos, K.M., J.K.M. Brown & J.L. Bennetzen. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075–1079.
    • (2002) Genome Res , vol.12 , pp. 1075-1079
    • Devos, K.M.1    Brown, J.K.M.2    Bennetzen, J.L.3
  • 98
    • 33644828413 scopus 로고    scopus 로고
    • Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions
    • Kovalskaya, E., A. Buzdin, E. Gogvadze, et al. 2006. Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. Virology 346: 373–378.
    • (2006) Virology , vol.346 , pp. 373-378
    • Kovalskaya, E.1    Buzdin, A.2    Gogvadze, E.3
  • 99
    • 84920982305 scopus 로고    scopus 로고
    • Pan-vertebrate comparative genomics unmasks retrovirus macroevolution
    • Hayward, A., C.K. Cornwallis & P. Jern. 2015. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc. Natl. Acad. Sci. U.S.A. 112: 464–469.
    • (2015) Proc. Natl. Acad. Sci. U.S.A , vol.112 , pp. 464-469
    • Hayward, A.1    Cornwallis, C.K.2    Jern, P.3
  • 100
    • 84896717926 scopus 로고    scopus 로고
    • A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses
    • Henzy, J.E., R.J. Gifford, W.E. Johnson, et al. 2014. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. J. Virol. 88: 2398–2405.
    • (2014) J. Virol , vol.88 , pp. 2398-2405
    • Henzy, J.E.1    Gifford, R.J.2    Johnson, W.E.3
  • 101
    • 80052407723 scopus 로고    scopus 로고
    • Retroposon insertions and the chronology of avian sex chromosome evolution
    • Suh, A., J.O. Kriegs, J. Brosius, et al. 2011. Retroposon insertions and the chronology of avian sex chromosome evolution. Mol. Biol. Evol. 28: 2993–2997.
    • (2011) Mol. Biol. Evol , vol.28 , pp. 2993-2997
    • Suh, A.1    Kriegs, J.O.2    Brosius, J.3
  • 102
    • 84930665248 scopus 로고    scopus 로고
    • Evolutionary analysis of the female-specific avian W chromosome
    • Smeds, L., V. Warmuth, P. Bolivar, et al. 2015. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6: 7330.
    • (2015) Nat. Commun , vol.6 , pp. 7330
    • Smeds, L.1    Warmuth, V.2    Bolivar, P.3
  • 103
    • 84994061010 scopus 로고    scopus 로고
    • Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex
    • Vijay, N., C.M. Bossu, J.W. Poelstra, et al. 2016. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat. Commun. 7: 13195.
    • (2016) Nat. Commun , vol.7 , pp. 13195
    • Vijay, N.1    Bossu, C.M.2    Poelstra, J.W.3
  • 104
    • 37549029474 scopus 로고    scopus 로고
    • DNA transposons and the evolution of eukaryotic genomes
    • Feschotte, C. & E.J. Pritham. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41: 331–368.
    • (2007) Annu. Rev. Genet , vol.41 , pp. 331-368
    • Feschotte, C.1    Pritham, E.J.2
  • 105
    • 84877765036 scopus 로고    scopus 로고
    • The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses
    • Suh, A., J. Brosius, J. Schmitz, et al. 2013. The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat. Commun. 4: 1791.
    • (2013) Nat. Commun , vol.4 , pp. 1791
    • Suh, A.1    Brosius, J.2    Schmitz, J.3
  • 106
    • 84863735144 scopus 로고    scopus 로고
    • Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses
    • Cui, J. & E.C. Holmes. 2012. Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses. J. Virol. 86: 7688–7691.
    • (2012) J. Virol , vol.86 , pp. 7688-7691
    • Cui, J.1    Holmes, E.C.2
  • 107
    • 84866167988 scopus 로고    scopus 로고
    • The first full-length endogenous hepadnaviruses: identification and analysis
    • Liu, W., S. Pan, H. Yang, et al. 2012. The first full-length endogenous hepadnaviruses: identification and analysis. J. Virol. 86: 9510–9513.
    • (2012) J. Virol , vol.86 , pp. 9510-9513
    • Liu, W.1    Pan, S.2    Yang, H.3
  • 108
    • 77957921403 scopus 로고    scopus 로고
    • Genomic fossils calibrate the long-term evolution of hepadnaviruses
    • Gilbert, C. & C. Feschotte. 2010. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol. 8: e1000495.
    • (2010) PLoS Biol , vol.8
    • Gilbert, C.1    Feschotte, C.2
  • 109
    • 0345653993 scopus 로고
    • Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences
    • Orito, E., M. Mizokami, Y. Ina, et al. 1989. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc. Natl. Acad. Sci. U.S.A. 86: 7059–7062.
    • (1989) Proc. Natl. Acad. Sci. U.S.A , vol.86 , pp. 7059-7062
    • Orito, E.1    Mizokami, M.2    Ina, Y.3
  • 110
    • 79961147580 scopus 로고    scopus 로고
    • Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA glycosylase
    • van Hemert, F.J., M.A.A. van de Klundert, V.V. Lukashov, et al. 2011. Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA glycosylase. PLoS One 6: e23392.
    • (2011) PLoS One , vol.6
    • van Hemert, F.J.1    van de Klundert, M.A.A.2    Lukashov, V.V.3
  • 111
    • 84968903135 scopus 로고    scopus 로고
    • Coming of age: ten years of next-generation sequencing technologies
    • Goodwin, S., J.D. McPherson & W.R. McCombie. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17: 333–351.
    • (2016) Nat. Rev. Genet , vol.17 , pp. 333-351
    • Goodwin, S.1    McPherson, J.D.2    McCombie, W.R.3
  • 112
    • 84944441319 scopus 로고    scopus 로고
    • Genetic variation and the de novo assembly of human genomes
    • Chaisson, M.J.P., R.K. Wilson & E.E. Eichler. 2015. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16: 627–640.
    • (2015) Nat. Rev. Genet , vol.16 , pp. 627-640
    • Chaisson, M.J.P.1    Wilson, R.K.2    Eichler, E.E.3
  • 114
    • 84987900198 scopus 로고    scopus 로고
    • S correlates positively with body mass in birds, raising implications for inferring lineage-specific selection
    • S correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol. 15: 1–13.
    • (2014) Genome Biol , vol.15 , pp. 1-13
    • Weber, C.C.1    Nabholz, B.2    Romiguier, J.3
  • 115
    • 77956858478 scopus 로고    scopus 로고
    • A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome
    • Konkel, M.K. & M.A. Batzer. 2010. A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 20: 211–221.
    • (2010) Semin. Cancer Biol , vol.20 , pp. 211-221
    • Konkel, M.K.1    Batzer, M.A.2
  • 116
    • 24344509193 scopus 로고    scopus 로고
    • Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates
    • van de Lagemaat, L.N., L. Gagnier, P. Medstrand, et al. 2005. Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res. 15: 1243–1249.
    • (2005) Genome Res , vol.15 , pp. 1243-1249
    • de van Lagemaat, L.N.1    Gagnier, L.2    Medstrand, P.3
  • 117
    • 0001592488 scopus 로고
    • The accordion model of Mhc evolution
    • In, J. Gergely, M. Benczúr, A. Erdei, Eds., Berlin, Heidelberg, Springer
    • Klein, J., H. Ono, D. Klein, et al. 1993. The accordion model of Mhc evolution. In Progress in Immunology. Vol. VIII. J. Gergely, M. Benczúr, A. Erdei, Eds.: 137–143. Berlin, Heidelberg: Springer.
    • (1993) Progress in Immunology , vol.8 , pp. 137-143
    • Klein, J.1    Ono, H.2    Klein, D.3
  • 118
    • 0345306751 scopus 로고    scopus 로고
    • The origins of genome complexity
    • Lynch, M. & J.S. Conery. 2003. The origins of genome complexity. Science 302: 1401–1404.
    • (2003) Science , vol.302 , pp. 1401-1404
    • Lynch, M.1    Conery, J.S.2
  • 119
    • 34547396004 scopus 로고    scopus 로고
    • The frailty of adaptive hypotheses for the origins of organismal complexity
    • Lynch, M. 2007. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl. Acad. Sci. U.S.A. 104: 8597–8604.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 8597-8604
    • Lynch, M.1
  • 120
    • 78650526705 scopus 로고    scopus 로고
    • Mutation rate is linked to diversification in birds
    • Lanfear, R., S.Y.W. Ho, D. Love, et al. 2010. Mutation rate is linked to diversification in birds. Proc. Natl. Acad. Sci. U.S.A. 107: 20423–20428.
    • (2010) Proc. Natl. Acad. Sci. U.S.A , vol.107 , pp. 20423-20428
    • Lanfear, R.1    Ho, S.Y.W.2    Love, D.3
  • 121
    • 84859898660 scopus 로고    scopus 로고
    • A beginner's guide to eukaryotic genome annotation
    • Yandell, M. & D. Ence. 2012. A beginner's guide to eukaryotic genome annotation. Nat. Rev. Genet. 13: 329–342.
    • (2012) Nat. Rev. Genet , vol.13 , pp. 329-342
    • Yandell, M.1    Ence, D.2
  • 122
    • 83655201133 scopus 로고    scopus 로고
    • Molecular cytogenetic and genomic insights into chromosomal evolution
    • Ruiz-Herrera, A., M. Farré & T.J. Robinson. 2012. Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity 108: 28–36.
    • (2012) Heredity , vol.108 , pp. 28-36
    • Ruiz-Herrera, A.1    Farré, M.2    Robinson, T.J.3
  • 123
    • 0001866813 scopus 로고
    • A miscellaneous collection of bird karyotypes
    • Belterman, R.H.R. & L.E.M. De Boer. 1990. A miscellaneous collection of bird karyotypes. Genetica 83: 17–29.
    • (1990) Genetica , vol.83 , pp. 17-29
    • Belterman, R.H.R.1    De Boer, L.E.M.2
  • 124
    • 34250140760 scopus 로고
    • A karyological study of 55 species of birds, including karyotypes of 39 species new to cytology
    • Belterman, R.H.R. & L.E.M. De Boer. 1984. A karyological study of 55 species of birds, including karyotypes of 39 species new to cytology. Genetica 65: 39–82.
    • (1984) Genetica , vol.65 , pp. 39-82
    • Belterman, R.H.R.1    De Boer, L.E.M.2
  • 125
    • 1542668502 scopus 로고
    • Studies on the karyotypes of birds XII. 15 species of nonpasserines (Aves)
    • Bian, X., H. Cai, S. Ning, et al. 1991. Studies on the karyotypes of birds XII. 15 species of nonpasserines (Aves). Zool. Res. 4: 016.
    • (1991) Zool. Res , vol.4 , pp. 016
    • Bian, X.1    Cai, H.2    Ning, S.3
  • 126
    • 84880128508 scopus 로고    scopus 로고
    • Chromosomal characterization of four Antarctic Procellariiformes
    • Garnero, A.D.V., M. Boccelli, J.C.P. Oliveira, et al. 2013. Chromosomal characterization of four Antarctic Procellariiformes. Mar. Ornithol. 41: 63–68.
    • (2013) Mar. Ornithol , vol.41 , pp. 63-68
    • Garnero, A.D.V.1    Boccelli, M.2    Oliveira, J.C.P.3
  • 127
    • 34248231212 scopus 로고    scopus 로고
    • The evolution of the avian genome as revealed by comparative molecular cytogenetics
    • Griffin, D.K., L.B.W. Robertson, H.G. Tempest, et al. 2007. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet. Genome Res. 117: 64–77.
    • (2007) Cytogenet. Genome Res , vol.117 , pp. 64-77
    • Griffin, D.K.1    Robertson, L.B.W.2    Tempest, H.G.3
  • 128
    • 84979856712 scopus 로고    scopus 로고
    • Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor
    • Romanov, M., M. Farre, P. Lithgow, et al. 2014. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 15: 1060.
    • (2014) BMC Genomics , vol.15 , pp. 1060
    • Romanov, M.1    Farre, M.2    Lithgow, P.3
  • 129
    • 84927912146 scopus 로고    scopus 로고
    • Rates of karyotypic evolution in Estrildid finches differ between island and continental clades
    • Hooper, D.M. & T.D. Price. 2015. Rates of karyotypic evolution in Estrildid finches differ between island and continental clades. Evolution 69: 890–903.
    • (2015) Evolution , vol.69 , pp. 890-903
    • Hooper, D.M.1    Price, T.D.2
  • 130
    • 84989336841 scopus 로고    scopus 로고
    • Fitness consequences of polymorphic inversions in the zebra finch genome
    • Knief, U., G. Hemmrich-Stanisak, M. Wittig, et al. 2016. Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biol. 17: 1–22.
    • (2016) Genome Biol , vol.17 , pp. 1-22
    • Knief, U.1    Hemmrich-Stanisak, G.2    Wittig, M.3
  • 131
    • 84999103148 scopus 로고    scopus 로고
    • Novel insights into chromosome evolution in birds, archosaurs, and reptiles
    • Farré, M., J. Narayan, G.T. Slavov, et al. 2016. Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol. Evol. 8: 2442–2451.
    • (2016) Genome Biol. Evol , vol.8 , pp. 2442-2451
    • Farré, M.1    Narayan, J.2    Slavov, G.T.3
  • 132
    • 83655201252 scopus 로고    scopus 로고
    • Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints
    • Skinner, B.M. & D.K. Griffin. 2012. Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity 108: 37–41.
    • (2012) Heredity , vol.108 , pp. 37-41
    • Skinner, B.M.1    Griffin, D.K.2
  • 133
    • 62749186214 scopus 로고    scopus 로고
    • Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—an atypical species with low diploid number
    • Nie, W., P.C.M. O'Brien, B.L. Ng, et al. 2009. Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—an atypical species with low diploid number. Chromosome Res. 17: 99–113.
    • (2009) Chromosome Res , vol.17 , pp. 99-113
    • Nie, W.1    O'Brien, P.C.M.2    Ng, B.L.3
  • 134
    • 84942434139 scopus 로고    scopus 로고
    • Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes
    • Nie, W., P. O'Brien, B. Fu, et al. 2015. Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes. BMC Evol. Biol. 15: 205.
    • (2015) BMC Evol. Biol , vol.15 , pp. 205
    • Nie, W.1    O'Brien, P.2    Fu, B.3
  • 135
    • 39749124923 scopus 로고    scopus 로고
    • Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation
    • Nishida, C., J. Ishijima, A. Kosaka, et al. 2008. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res. 16: 171–181.
    • (2008) Chromosome Res , vol.16 , pp. 171-181
    • Nishida, C.1    Ishijima, J.2    Kosaka, A.3
  • 136
    • 84939165698 scopus 로고    scopus 로고
    • Chromosomal diversity and karyotype evolution in South American macaws (Psittaciformes, Psittacidae)
    • de Oliveira Furo, I., R. Kretschmer, P.C. O'Brien, et al. 2015. Chromosomal diversity and karyotype evolution in South American macaws (Psittaciformes, Psittacidae). PLoS One 10: e0130157.
    • (2015) PLoS One , vol.10
    • de Oliveira Furo, I.1    Kretschmer, R.2    O'Brien, P.C.3
  • 137
    • 84888632073 scopus 로고    scopus 로고
    • Nothing in genetics makes sense except in light of genomic conflict
    • Rice, W.R. 2013. Nothing in genetics makes sense except in light of genomic conflict. Annu. Rev. Ecol. Evol. Syst. 44: 217–237.
    • (2013) Annu. Rev. Ecol. Evol. Syst , vol.44 , pp. 217-237
    • Rice, W.R.1
  • 138
    • 84968054140 scopus 로고
    • Nothing in biology makes sense except in the light of evolution
    • Dobzhansky, T. 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35: 125–129.
    • (1973) Am. Biol. Teach , vol.35 , pp. 125-129
    • Dobzhansky, T.1
  • 139
    • 84941117508 scopus 로고    scopus 로고
    • VirHostNet 2.0: surfing on the web of virus/host molecular interactions data
    • Guirimand, T., S. Delmotte & V. Navratil. 2015. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res. 43: D583–D587.
    • (2015) Nucleic Acids Res , vol.43 , pp. D583-D587
    • Guirimand, T.1    Delmotte, S.2    Navratil, V.3
  • 140
    • 40349106161 scopus 로고    scopus 로고
    • The landscape of human proteins interacting with viruses and other pathogens
    • Dyer, M.D., T.M. Murali & B.W. Sobral. 2008. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog. 4: e32.
    • (2008) PLoS Pathog , vol.4
    • Dyer, M.D.1    Murali, T.M.2    Sobral, B.W.3
  • 141
    • 84971645878 scopus 로고    scopus 로고
    • Viruses are a dominant driver of protein adaptation in mammals
    • Enard, D., L. Cai, C. Gwennap, et al. 2016. Viruses are a dominant driver of protein adaptation in mammals. Elife 5: e12469.
    • (2016) Elife , vol.5
    • Enard, D.1    Cai, L.2    Gwennap, C.3
  • 142
    • 84982112297 scopus 로고    scopus 로고
    • Restricting retrotransposons: a review
    • Goodier, J.L. 2016. Restricting retrotransposons: a review. Mob. DNA 7: 16.
    • (2016) Mob. DNA , vol.7 , pp. 16
    • Goodier, J.L.1
  • 143
    • 84964603345 scopus 로고    scopus 로고
    • DNA editing of LTR retrotransposons reveals the impact of APOBECs on vertebrate genomes
    • Knisbacher, B.A. & E.Y. Levanon. 2015. DNA editing of LTR retrotransposons reveals the impact of APOBECs on vertebrate genomes. Mol. Biol. Evol. 33: 554–567.
    • (2015) Mol. Biol. Evol , vol.33 , pp. 554-567
    • Knisbacher, B.A.1    Levanon, E.Y.2
  • 144
    • 43749098985 scopus 로고    scopus 로고
    • DNA methylation landscapes: provocative insights from epigenomics
    • Suzuki, M.M. & A. Bird. 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9: 465–476.
    • (2008) Nat. Rev. Genet , vol.9 , pp. 465-476
    • Suzuki, M.M.1    Bird, A.2
  • 145
    • 77952355762 scopus 로고    scopus 로고
    • Genome-wide evolutionary analysis of eukaryotic DNA methylation
    • Zemach, A., I.E. McDaniel, P. Silva, et al. 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328: 916–919.
    • (2010) Science , vol.328 , pp. 916-919
    • Zemach, A.1    McDaniel, I.E.2    Silva, P.3
  • 146
    • 84858078622 scopus 로고    scopus 로고
    • Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens
    • Nätt, D., C.-J. Rubin, D. Wright, et al. 2012. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13: 1–12.
    • (2012) BMC Genomics , vol.13 , pp. 1-12
    • Nätt, D.1    Rubin, C.-J.2    Wright, D.3
  • 147
    • 84924658469 scopus 로고    scopus 로고
    • Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes
    • Mugal, C.F., P.F. Arndt, L. Holm, et al. 2015. Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes. G3 5: 441–447.
    • (2015) G3 , vol.5 , pp. 441-447
    • Mugal, C.F.1    Arndt, P.F.2    Holm, L.3
  • 148
    • 85007569618 scopus 로고    scopus 로고
    • Gene and transposable element methylation in great tit (Parus major) brain and blood
    • Derks, M.F.L., K.M. Schachtschneider, O. Madsen, et al. 2016. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17: 1–13.
    • (2016) BMC Genomics , vol.17 , pp. 1-13
    • Derks, M.F.L.1    Schachtschneider, K.M.2    Madsen, O.3
  • 149
    • 84990888281 scopus 로고    scopus 로고
    • AgIn: measuring the landscape of CpG methylation of individual repetitive elements
    • Suzuki, Y., J. Korlach, S.W. Turner, et al. 2015. AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32: 2911–2919.
    • (2015) Bioinformatics , vol.32 , pp. 2911-2919
    • Suzuki, Y.1    Korlach, J.2    Turner, S.W.3
  • 150
    • 42349096534 scopus 로고    scopus 로고
    • Transposable elements and the evolution of regulatory networks
    • Feschotte, C. 2008. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9: 397–405.
    • (2008) Nat. Rev. Genet , vol.9 , pp. 397-405
    • Feschotte, C.1
  • 151
    • 84938839824 scopus 로고    scopus 로고
    • Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites
    • Grandi, F.C., J.M. Rosser, S.J. Newkirk, et al. 2015. Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res. 25: 1135–1146.
    • (2015) Genome Res , vol.25 , pp. 1135-1146
    • Grandi, F.C.1    Rosser, J.M.2    Newkirk, S.J.3
  • 152
    • 84962820636 scopus 로고    scopus 로고
    • Divergence in gene expression within and between two closely related flycatcher species
    • Uebbing, S., A. Künstner, H. Mäkinen, et al. 2016. Divergence in gene expression within and between two closely related flycatcher species. Mol. Ecol. 25: 2015–2028.
    • (2016) Mol. Ecol , vol.25 , pp. 2015-2028
    • Uebbing, S.1    Künstner, A.2    Mäkinen, H.3
  • 153
    • 84948680438 scopus 로고    scopus 로고
    • Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans
    • Rogers, R.L. 2015. Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans. Mol. Biol. Evol. 32: 3064–3078.
    • (2015) Mol. Biol. Evol , vol.32 , pp. 3064-3078
    • Rogers, R.L.1
  • 154
    • 77950522488 scopus 로고    scopus 로고
    • Gene duplication and fragmentation in the zebra finch major histocompatibility complex
    • Balakrishnan, C.N., R. Ekblom, M. Völker, et al. 2010. Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol. 8: 1–19.
    • (2010) BMC Biol , vol.8 , pp. 1-19
    • Balakrishnan, C.N.1    Ekblom, R.2    Völker, M.3
  • 155
    • 84992189527 scopus 로고    scopus 로고
    • Early duplication of a single MHC IIB locus prior to the passerine radiations
    • Eimes, J.A., S.-I. Lee, A.K. Townsend, et al. 2016. Early duplication of a single MHC IIB locus prior to the passerine radiations. PLoS One 11: e0163456.
    • (2016) PLoS One , vol.11
    • Eimes, J.A.1    Lee, S.-I.2    Townsend, A.K.3
  • 156
    • 84941551807 scopus 로고    scopus 로고
    • Evolution of the avian β-defensin and cathelicidin genes
    • Cheng, Y., M.D. Prickett, W. Gutowska, et al. 2015. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol. Biol. 15: 1–17.
    • (2015) BMC Evol. Biol , vol.15 , pp. 1-17
    • Cheng, Y.1    Prickett, M.D.2    Gutowska, W.3
  • 157
    • 84866398771 scopus 로고    scopus 로고
    • Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin
    • Grueber, C.E., G.P. Wallis, T.M. King, et al. 2012. Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS One 7: e45011.
    • (2012) PLoS One , vol.7
    • Grueber, C.E.1    Wallis, G.P.2    King, T.M.3
  • 158
    • 68449102355 scopus 로고    scopus 로고
    • OVEX1, a novel chicken endogenous retrovirus with sex-specific and left–right asymmetrical expression in gonads
    • Carré-Eusèbe, D., N. Coudouel & S. Magre. 2009. OVEX1, a novel chicken endogenous retrovirus with sex-specific and left–right asymmetrical expression in gonads. Retrovirology 6: 1–24.
    • (2009) Retrovirology , vol.6 , pp. 1-24
    • Carré-Eusèbe, D.1    Coudouel, N.2    Magre, S.3
  • 159
    • 84922971647 scopus 로고    scopus 로고
    • An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons
    • Jacobs, F.M.J., D. Greenberg, N. Nguyen, et al. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516: 242–245.
    • (2014) Nature , vol.516 , pp. 242-245
    • Jacobs, F.M.J.1    Greenberg, D.2    Nguyen, N.3
  • 160
    • 84963548310 scopus 로고    scopus 로고
    • Long-read sequence assembly of the gorilla genome
    • Gordon, D., J. Huddleston, M.J.P. Chaisson, et al. 2016. Long-read sequence assembly of the gorilla genome. Science 352: aae0344.
    • (2016) Science , vol.352 , pp. aae0344
    • Gordon, D.1    Huddleston, J.2    Chaisson, M.J.P.3
  • 161
    • 85007197691 scopus 로고    scopus 로고
    • Accurate transposable element annotation is vital when analyzing new genome assemblies
    • Platt II, R.N., L. Blanco-Berdugo & D.A. Ray. 2016. Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol. Evol. 8: 403–410.
    • (2016) Genome Biol. Evol , vol.8 , pp. 403-410
    • Platt, R.N.1    Blanco-Berdugo, L.2    Ray, D.A.3
  • 163
    • 84930641238 scopus 로고    scopus 로고
    • Repbase Update, a database of repetitive elements in eukaryotic genomes
    • &, Last accessed May 27, 2016
    • Bao, W., K. Kojima & O. Kohany. 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6: 11. Last accessed May 27, 2016.
    • (2015) Mob. DNA , vol.6 , pp. 11
    • Bao, W.1    Kojima, K.2    Kohany, O.3
  • 165
    • 84976871290 scopus 로고    scopus 로고
    • The Dfam database of repetitive DNA families
    • Hubley, R., R.D. Finn, J. Clements, et al. 2016. The Dfam database of repetitive DNA families. Nucleic Acids Res. 44: D81–D89.
    • (2016) Nucleic Acids Res , vol.44 , pp. D81-D89
    • Hubley, R.1    Finn, R.D.2    Clements, J.3
  • 166
    • 84984612124 scopus 로고    scopus 로고
    • A new look at the LTR retrotransposon content of the chicken genome
    • Mason, A.S., J.E. Fulton, P.M. Hocking, et al. 2016. A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics 17: 688.
    • (2016) BMC Genomics , vol.17 , pp. 688
    • Mason, A.S.1    Fulton, J.E.2    Hocking, P.M.3
  • 167
    • 28844444029 scopus 로고    scopus 로고
    • Combined evidence annotation of transposable elements in genome sequences
    • Quesneville, H., C.M. Bergman, O. Andrieu, et al. 2005. Combined evidence annotation of transposable elements in genome sequences. PLoS Comput. Biol. 1: e22.
    • (2005) PLoS Comput. Biol , vol.1
    • Quesneville, H.1    Bergman, C.M.2    Andrieu, O.3
  • 168
    • 84982263988 scopus 로고    scopus 로고
    • Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools
    • Guizard, S., B. Piégu, P. Arensburger, et al. 2016. Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genomics 17: 1–23.
    • (2016) BMC Genomics , vol.17 , pp. 1-23
    • Guizard, S.1    Piégu, B.2    Arensburger, P.3
  • 169
    • 40849139706 scopus 로고    scopus 로고
    • Biased distributions and decay of long interspersed nuclear elements in the chicken genome
    • Abrusán, G., H.-J. Krambeck, T. Junier, et al. 2008. Biased distributions and decay of long interspersed nuclear elements in the chicken genome. Genetics 178: 573–581.
    • (2008) Genetics , vol.178 , pp. 573-581
    • Abrusán, G.1    Krambeck, H.-J.2    Junier, T.3
  • 170
    • 84861182813 scopus 로고    scopus 로고
    • Genome evolution in filamentous plant pathogens: why bigger can be better
    • Raffaele, S. & S. Kamoun. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Micro. 10: 417–430.
    • (2012) Nat. Rev. Micro , vol.10 , pp. 417-430
    • Raffaele, S.1    Kamoun, S.2
  • 171
    • 84982953280 scopus 로고    scopus 로고
    • Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen
    • Faino, L., M.F. Seidl, X. Shi-Kunne, et al. 2016. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 26: 1091–1100.
    • (2016) Genome Res , vol.26 , pp. 1091-1100
    • Faino, L.1    Seidl, M.F.2    Shi-Kunne, X.3
  • 172
    • 11144358205 scopus 로고    scopus 로고
    • Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype
    • Masabanda, J.S., D.W. Burt, P.C.M. O'Brien, et al. 2004. Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166: 1367–1373.
    • (2004) Genetics , vol.166 , pp. 1367-1373
    • Masabanda, J.S.1    Burt, D.W.2    O'Brien, P.C.M.3
  • 173
    • 84951931383 scopus 로고    scopus 로고
    • Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs
    • Schartl, M., M. Schmid & I. Nanda. 2016. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125: 553–571.
    • (2016) Chromosoma , vol.125 , pp. 553-571
    • Schartl, M.1    Schmid, M.2    Nanda, I.3
  • 174
    • 84977275949 scopus 로고    scopus 로고
    • How to make a sex chromosome
    • Wright, A.E., R. Dean, F. Zimmer, et al. 2016. How to make a sex chromosome. Nat. Commun. 7: 12087.
    • (2016) Nat. Commun , vol.7 , pp. 12087
    • Wright, A.E.1    Dean, R.2    Zimmer, F.3
  • 175
    • 85013269849 scopus 로고    scopus 로고
    • A retroposon-based view on the temporal differentiation of sex chromosomes
    • Suh, A. 2012. A retroposon-based view on the temporal differentiation of sex chromosomes. Mob. Genet. Elements 2: 158–162.
    • (2012) Mob. Genet. Elements , vol.2 , pp. 158-162
    • Suh, A.1
  • 176
    • 77956913111 scopus 로고    scopus 로고
    • A W-linked palindrome and gene conversion in New World sparrows and blackbirds
    • Davis, J.K., P.J. Thomas & J.W. Thomas. 2010. A W-linked palindrome and gene conversion in New World sparrows and blackbirds. Chromosome Res. 18: 543–553.
    • (2010) Chromosome Res , vol.18 , pp. 543-553
    • Davis, J.K.1    Thomas, P.J.2    Thomas, J.W.3
  • 177
  • 178
    • 77956285927 scopus 로고    scopus 로고
    • Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences
    • Shang, W.-H., T. Hori, A. Toyoda, et al. 2010. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 20: 1219–1228.
    • (2010) Genome Res , vol.20 , pp. 1219-1228
    • Shang, W.-H.1    Hori, T.2    Toyoda, A.3
  • 179
    • 33646420077 scopus 로고    scopus 로고
    • A CR1 element is embedded in a novel tandem repeat (HinfI repeat) within the chicken genome
    • Li, J. & F.C. Leung. 2006. A CR1 element is embedded in a novel tandem repeat (HinfI repeat) within the chicken genome. Genome 49: 97–103.
    • (2006) Genome , vol.49 , pp. 97-103
    • Li, J.1    Leung, F.C.2
  • 180
    • 84947487137 scopus 로고    scopus 로고
    • Structural and functional liaisons between transposable elements and satellite DNAs
    • Meštrović, N., B. Mravinac, M. Pavlek, et al. 2015. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 23: 583–596.
    • (2015) Chromosome Res , vol.23 , pp. 583-596
    • Meštrović, N.1    Mravinac, B.2    Pavlek, M.3
  • 181
    • 84892486707 scopus 로고    scopus 로고
    • Marsupial centomeres and telomeres: dynamic chromosome domains
    • &, In, E.J. Deakin, D.P. Waters, &, A.J. Marshall Graves, Eds., Dordrecht, Springer
    • Carone, D.M. & R.J. O'Neill. 2010. Marsupial centomeres and telomeres: dynamic chromosome domains. In Marsupial Genetics and Genomics. E.J. Deakin, D.P. Waters & A.J. Marshall Graves, Eds.: 55–73. Dordrecht: Springer.
    • (2010) Marsupial Genetics and Genomics , pp. 55-73
    • Carone, D.M.1    O'Neill, R.J.2
  • 182
    • 0035839066 scopus 로고    scopus 로고
    • The centromere paradox: stable inheritance with rapidly evolving DNA
    • Henikoff, S., K. Ahmad & H.S. Malik. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.
    • (2001) Science , vol.293 , pp. 1098-1102
    • Henikoff, S.1    Ahmad, K.2    Malik, H.S.3
  • 183
    • 84962110359 scopus 로고    scopus 로고
    • The ecology and evolutionary dynamics of meiotic drive
    • Lindholm, A.K., K.A. Dyer, R.C. Firman, et al. 2016. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 31: 315–326.
    • (2016) Trends Ecol. Evol , vol.31 , pp. 315-326
    • Lindholm, A.K.1    Dyer, K.A.2    Firman, R.C.3
  • 184
    • 84947492787 scopus 로고    scopus 로고
    • Completing the human genome: the progress and challenge of satellite DNA assembly
    • Miga, K.H. 2015. Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosome Res. 23: 421–426.
    • (2015) Chromosome Res , vol.23 , pp. 421-426
    • Miga, K.H.1
  • 185
    • 84964854635 scopus 로고    scopus 로고
    • Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding
    • Vij, S., H. Kuhl, I.S. Kuznetsova, et al. 2016. Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet. 12: e1005954.
    • (2016) PLoS Genet , vol.12
    • Vij, S.1    Kuhl, H.2    Kuznetsova, I.S.3
  • 186
    • 85013346356 scopus 로고    scopus 로고
    • Single-molecule sequencing and conformational capture enable de novo mammalian reference genomes
    • Bickhart, D.M., B.D. Rosen, S. Koren, et al. 2016. Single-molecule sequencing and conformational capture enable de novo mammalian reference genomes. bioRxiv doi: 10.1101/064352.
    • (2016) bioRxiv
    • Bickhart, D.M.1    Rosen, B.D.2    Koren, S.3
  • 187
    • 72649095357 scopus 로고    scopus 로고
    • Amniotes (Amniota)
    • &, In, S.B. Hedges, &, S. Kumar, Eds., New York, Oxford University Press
    • Shedlock, A.M. & S.V. Edwards. 2009. Amniotes (Amniota). In The Timetree of Life. S.B. Hedges & S. Kumar, Eds.: 375–379. New York: Oxford University Press.
    • (2009) The Timetree of Life , pp. 375-379
    • Shedlock, A.M.1    Edwards, S.V.2
  • 188
    • 0347275780 scopus 로고    scopus 로고
    • Nuclear DNA content and genome size of trout and human
    • Doležel, J., J. Bartoš, H. Voglmayr, et al. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127–128.
    • (2003) Cytometry A , vol.51 , pp. 127-128
    • Doležel, J.1    Bartoš, J.2    Voglmayr, H.3
  • 189
    • 84879020737 scopus 로고    scopus 로고
    • The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage
    • Shaffer, H.B., P. Minx, D. Warren, et al. 2013. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 14: R28.
    • (2013) Genome Biol , vol.14 , pp. R28
    • Shaffer, H.B.1    Minx, P.2    Warren, D.3
  • 190
    • 80053359585 scopus 로고    scopus 로고
    • The genome of the green anole lizard and a comparative analysis with birds and mammals
    • Alföldi, J., F. Di Palma, M. Grabherr, et al. 2011. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477: 587–591.
    • (2011) Nature , vol.477 , pp. 587-591
    • Alföldi, J.1    Di Palma, F.2    Grabherr, M.3
  • 191
    • 84889242806 scopus 로고    scopus 로고
    • RNA editing regulates transposon-mediated heterochromatic gene silencing
    • Savva, Y.A., J.E.C. Jepson, Y.-J. Chang, et al. 2013. RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat. Commun. 4: 2745.
    • (2013) Nat. Commun , vol.4 , pp. 2745
    • Savva, Y.A.1    Jepson, J.E.C.2    Chang, Y.-J.3
  • 192
    • 84948424417 scopus 로고    scopus 로고
    • Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons
    • Hatanaka, Y., K. Inoue, M. Oikawa, et al. 2015. Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc. Natl. Acad. Sci. U.S.A. 112: 14641–14646.
    • (2015) Proc. Natl. Acad. Sci. U.S.A , vol.112 , pp. 14641-14646
    • Hatanaka, Y.1    Inoue, K.2    Oikawa, M.3
  • 193
    • 4544223707 scopus 로고    scopus 로고
    • Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
    • Bourc'his, D. & T.H. Bestor. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431: 96–99.
    • (2004) Nature , vol.431 , pp. 96-99
    • Bourc'his, D.1    Bestor, T.H.2
  • 194
    • 84946600989 scopus 로고    scopus 로고
    • HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse
    • Lim, S.L., Z.P. Qu, R.D. Kortschak, et al. 2015. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 11: e1005620.
    • (2015) PLoS Genet , vol.11
    • Lim, S.L.1    Qu, Z.P.2    Kortschak, R.D.3
  • 195
    • 84971655186 scopus 로고    scopus 로고
    • Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals
    • Daugherty, M.D., A.M. Schaller, A.P. Geballe, et al. 2016. Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals. Elife 5: e14228.
    • (2016) Elife , vol.5
    • Daugherty, M.D.1    Schaller, A.M.2    Geballe, A.P.3
  • 196
    • 84923329893 scopus 로고    scopus 로고
    • MORC1 represses transposable elements in the mouse male germline
    • Pastor, W.A., H. Stroud, K. Nee, et al. 2014. MORC1 represses transposable elements in the mouse male germline. Nat. Commun. 5: 6795.
    • (2014) Nat. Commun , vol.5 , pp. 6795
    • Pastor, W.A.1    Stroud, H.2    Nee, K.3
  • 197
    • 84868099592 scopus 로고    scopus 로고
    • MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells
    • Goodier, J.L., L.E. Cheung & H.H. Kazazian, Jr. 2012. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8: e1002941.
    • (2012) PLoS Genet , vol.8
    • Goodier, J.L.1    Cheung, L.E.2    Kazazian, H.H.3
  • 198
    • 84944457356 scopus 로고    scopus 로고
    • Panoramix enforces piRNA-dependent cotranscriptional silencing
    • Yu, Y., J. Gu, Y. Jin, et al. 2015. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 350: 339–342.
    • (2015) Science , vol.350 , pp. 339-342
    • Yu, Y.1    Gu, J.2    Jin, Y.3
  • 199
    • 84929380410 scopus 로고    scopus 로고
    • piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production
    • Han, B.W., W. Wang, C. Li, et al. 2015. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348: 817–821.
    • (2015) Science , vol.348 , pp. 817-821
    • Han, B.W.1    Wang, W.2    Li, C.3
  • 200
    • 84940885469 scopus 로고    scopus 로고
    • Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms
    • Wang, W., Bo W. Han, C. Tipping, et al. 2015. Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol. Cell 59: 819–830.
    • (2015) Mol. Cell , vol.59 , pp. 819-830
    • Wang, W.1    Han, B.W.2    Tipping, C.3
  • 201
    • 84884590112 scopus 로고    scopus 로고
    • Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi–Goutières syndrome-related SAMHD1
    • Zhao, K., J. Du, X. Han, et al. 2013. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi–Goutières syndrome-related SAMHD1. Cell Rep. 4: 1108–1115.
    • (2013) Cell Rep , vol.4 , pp. 1108-1115
    • Zhao, K.1    Du, J.2    Han, X.3
  • 202
    • 84968779632 scopus 로고    scopus 로고
    • Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells
    • Pasquarella, A., A. Ebert, G.P. de Almeida, et al. 2016. Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development 143: 1788–1799.
    • (2016) Development , vol.143 , pp. 1788-1799
    • Pasquarella, A.1    Ebert, A.2    de Almeida, G.P.3
  • 203
    • 84945472619 scopus 로고    scopus 로고
    • Systematic identification of factors for provirus silencing in embryonic stem cells
    • Yang, B.X., C.A. El Farran, H.C. Guo, et al. 2015. Systematic identification of factors for provirus silencing in embryonic stem cells. Cell 163: 230–245.
    • (2015) Cell , vol.163 , pp. 230-245
    • Yang, B.X.1    El Farran, C.A.2    Guo, H.C.3
  • 204
    • 84953337239 scopus 로고    scopus 로고
    • Trim33 binds and silences a class of young endogenous retroviruses in the mouse testis; a novel component of the arms race between retrotransposons and the host genome
    • Isbel, L., R. Srivastava, H. Oey, et al. 2015. Trim33 binds and silences a class of young endogenous retroviruses in the mouse testis; a novel component of the arms race between retrotransposons and the host genome. PLoS Genet. 11: e1005693.
    • (2015) PLoS Genet , vol.11
    • Isbel, L.1    Srivastava, R.2    Oey, H.3
  • 205
    • 84930817295 scopus 로고    scopus 로고
    • The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition
    • Moldovan, J.B. & J.V. Moran. 2015. The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLoS Genet. 11: e1005121.
    • (2015) PLoS Genet , vol.11
    • Moldovan, J.B.1    Moran, J.V.2
  • 206
    • 85008472795 scopus 로고    scopus 로고
    • A new chicken genome assembly provides insight into avian genome structure
    • Warren, W.C., L.W. Hillier, C. Tomlinson, et al. 2016. A new chicken genome assembly provides insight into avian genome structure. G3. doi: 10.1534/g3.116.035923.
    • (2016) G3
    • Warren, W.C.1    Hillier, L.W.2    Tomlinson, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.