메뉴 건너뛰기




Volumn 16, Issue 11, 2015, Pages 627-640

Genetic variation and the de novo assembly of human genomes

Author keywords

[No Author keywords available]

Indexed keywords

REPETITIVE DNA;

EID: 84944441319     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg3933     Document Type: Review
Times cited : (261)

References (108)
  • 1
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1, 092 human genomes
    • Genomes Project Consortium. An integrated map of genetic variation from 1, 092 human genomes. Nature 491, 56-65 (2012).
    • (2012) Nature , vol.491 , pp. 56-65
  • 2
    • 84884994218 scopus 로고    scopus 로고
    • The Cancer Genome Atlas Pan-Cancer analysis project
    • Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113-1120 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 1113-1120
    • Weinstein, J.N.1
  • 3
    • 73349110071 scopus 로고    scopus 로고
    • Exome sequencing identifies the cause of a mendelian disorder
    • Ng, S. B. et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42, 30-35 (2010).
    • (2010) Nat. Genet. , vol.42 , pp. 30-35
    • Ng, S.B.1
  • 4
    • 84975804424 scopus 로고    scopus 로고
    • Mapping copy number variation by population-scale genome sequencing
    • Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59-65 (2011).
    • (2011) Nature , vol.470 , pp. 59-65
    • Mills, R.E.1
  • 5
    • 84925497196 scopus 로고    scopus 로고
    • Resolving the complexity of the human genome using single-molecule sequencing
    • Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608-611 (2015).
    • (2015) Nature , vol.517 , pp. 608-611
    • Chaisson, M.J.P.1
  • 6
    • 84878234942 scopus 로고    scopus 로고
    • Characterizing and measuring bias in sequence data
    • Ross, M. G. et al. Characterizing and measuring bias in sequence data. Genome Biol. 14, R51 (2013).
    • (2013) Genome Biol. , vol.14 , pp. R51
    • Ross, M.G.1
  • 7
    • 84864407091 scopus 로고    scopus 로고
    • Structural diversity and African origin of the 17q21.31 inversion polymorphism
    • Steinberg, K. M. et al. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat. Genet. 44, 872-880 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 872-880
    • Steinberg, K.M.1
  • 8
    • 84864399189 scopus 로고    scopus 로고
    • Structural haplotypes and recent evolution of the human 17q21.31 region
    • Boettger, L. M., Handsaker, R. E., Zody, M. C. & McCarroll, S. A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881-885 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 881-885
    • Boettger, L.M.1    Handsaker, R.E.2    Zody, M.C.3    McCarroll, S.A.4
  • 9
    • 84860860685 scopus 로고    scopus 로고
    • Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication
    • Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912-922 (2012).
    • (2012) Cell , vol.149 , pp. 912-922
    • Dennis, M.Y.1
  • 11
    • 0034708758 scopus 로고    scopus 로고
    • A whole-genome assembly of Drosophila
    • Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287, 2196-2204 (2000).
    • (2000) Science , vol.287 , pp. 2196-2204
    • Myers, E.W.1
  • 12
    • 0030950735 scopus 로고    scopus 로고
    • Human whole-genome shotgun sequencing
    • Weber, J. L. & Myers, E. W. Human whole-genome shotgun sequencing. Genome Res. 7, 401-409 (1997).
    • (1997) Genome Res. , vol.7 , pp. 401-409
    • Weber, J.L.1    Myers, E.W.2
  • 13
    • 66249148986 scopus 로고    scopus 로고
    • Lineage-specific biology revealed by a finished genome assembly of the mouse
    • Church, D. M. et al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 7, e1000112 (2009).
    • (2009) PLoS Biol. , vol.7 , pp. e1000112
    • Church, D.M.1
  • 14
    • 27544497879 scopus 로고    scopus 로고
    • The fragment assembly string graph
    • Myers, E. W. The fragment assembly string graph. Bioinformatics 21, ii79-ii85 (2005).
    • (2005) Bioinformatics , vol.21 , pp. ii79-ii85
    • Myers, E.W.1
  • 15
    • 84874194145 scopus 로고    scopus 로고
    • Sequence assembly demystified
    • Nagarajan, N. & Pop, M. Sequence assembly demystified. Nat. Rev. Genet. 14, 157-167 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 157-167
    • Nagarajan, N.1    Pop, M.2
  • 16
    • 0029312158 scopus 로고
    • Toward simplifying and accurately formulating fragment assembly
    • Myers, E. W. Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol. 2, 275-290 (1995).
    • (1995) J. Comput. Biol. , vol.2 , pp. 275-290
    • Myers, E.W.1
  • 17
    • 0036144823 scopus 로고    scopus 로고
    • ARACHNE: A whole-genome shotgun assembler
    • Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177-189 (2002).
    • (2002) Genome Res. , vol.12 , pp. 177-189
    • Batzoglou, S.1
  • 19
    • 79952178131 scopus 로고    scopus 로고
    • High-quality draft assemblies of mammalian genomes from massively parallel sequence data
    • Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513-1518 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 1513-1518
    • Gnerre, S.1
  • 20
    • 84942887758 scopus 로고    scopus 로고
    • SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler
    • Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).
    • (2012) GigaScience , vol.1 , pp. 18
    • Luo, R.1
  • 21
    • 66449136667 scopus 로고    scopus 로고
    • ABySS: A parallel assembler for short read sequence data
    • Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117-1123 (2009).
    • (2009) Genome Res. , vol.19 , pp. 1117-1123
    • Simpson, J.T.1
  • 22
    • 4644275238 scopus 로고    scopus 로고
    • De novo repeat classification and fragment assembly
    • Pevzner, P. A., Tang, H. & Tesler, G. De novo repeat classification and fragment assembly. Genome Res. 14, 1786-1796 (2004).
    • (2004) Genome Res. , vol.14 , pp. 1786-1796
    • Pevzner, P.A.1    Tang, H.2    Tesler, G.3
  • 23
    • 84880798154 scopus 로고    scopus 로고
    • Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data
    • Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 563-569
    • Chin, C.S.1
  • 24
    • 84930851165 scopus 로고    scopus 로고
    • Assembling large genomes with single-molecule sequencing and locality-sensitive hashing
    • Berlin, K. et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33, 623-630 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 623-630
    • Berlin, K.1
  • 25
    • 84938430785 scopus 로고    scopus 로고
    • (eds Raphael, B. & Tang, J.) Springer
    • Myers, G. in Algorithms in Bioinformatics (eds Raphael, B. & Tang, J.) 52-67 (Springer, 2014).
    • (2014) Algorithms in Bioinformatics , pp. 52-67
    • Myers, G.1
  • 26
    • 84938421951 scopus 로고    scopus 로고
    • A complete bacterial genome assembled de novo using only nanopore sequencing data
    • Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733-735 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 733-735
    • Loman, N.J.1    Quick, J.2    Simpson, J.T.3
  • 27
    • 84930083227 scopus 로고    scopus 로고
    • Improved genome inference in the MHC using a population reference graph
    • Dilthey, A., Cox, C., Iqbal, Z., Nelson, M. R. & McVean, G. Improved genome inference in the MHC using a population reference graph. Nat. Genet. 47, 682-688 (2015).
    • (2015) Nat. Genet. , vol.47 , pp. 682-688
    • Dilthey, A.1    Cox, C.2    Iqbal, Z.3    Nelson, M.R.4    McVean, G.5
  • 28
    • 84868313082 scopus 로고    scopus 로고
    • Paired-end sequencing of Fosmid libraries by Illumina
    • Williams, L. J. et al. Paired-end sequencing of Fosmid libraries by Illumina. Genome Res. 22, 2241-2249 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2241-2249
    • Williams, L.J.1
  • 29
    • 84891372280 scopus 로고    scopus 로고
    • Minke whale genome and aquatic adaptation in cetaceans
    • Yim, H. S. et al. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46, 88-92 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 88-92
    • Yim, H.S.1
  • 30
    • 84885574505 scopus 로고    scopus 로고
    • Genome-wide signatures of convergent evolution in echolocating mammals
    • Parker, J. et al. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228-231 (2013).
    • (2013) Nature , vol.502 , pp. 228-231
    • Parker, J.1
  • 31
    • 84917678595 scopus 로고    scopus 로고
    • Comparative genomics reveals insights into avian genome evolution and adaptation
    • Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311-1320 (2014).
    • (2014) Science , vol.346 , pp. 1311-1320
    • Zhang, G.1
  • 32
    • 84873595859 scopus 로고    scopus 로고
    • Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus)
    • Dong, Y. et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135-141 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 135-141
    • Dong, Y.1
  • 33
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (2001).
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.S.1
  • 34
    • 34249848751 scopus 로고    scopus 로고
    • CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes
    • Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 1061-1067
    • Parra, G.1    Bradnam, K.2    Korf, I.3
  • 35
    • 0035895505 scopus 로고    scopus 로고
    • The sequence of the human genome
    • Venter, J. C. et al. The sequence of the human genome. Science 291, 1304-1351 (2001).
    • (2001) Science , vol.291 , pp. 1304-1351
    • Venter, J.C.1
  • 36
    • 10744231402 scopus 로고    scopus 로고
    • Whole-genome shotgun assembly and comparison of human genome assemblies
    • Istrail, S. et al. Whole-genome shotgun assembly and comparison of human genome assemblies. Proc. Natl Acad. Sci. USA 101, 1916-1921 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 1916-1921
    • Istrail, S.1
  • 37
    • 0023988195 scopus 로고
    • Genomic mapping by fingerprinting random clones: A mathematical analysis
    • Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231-239 (1988).
    • (1988) Genomics , vol.2 , pp. 231-239
    • Lander, E.S.1    Waterman, M.S.2
  • 38
    • 78650909427 scopus 로고    scopus 로고
    • Limitations of next-generation genome sequence assembly
    • Alkan, C., Sajjadian, S. & Eichler, E. E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61-65 (2011).
    • (2011) Nat. Methods , vol.8 , pp. 61-65
    • Alkan, C.1    Sajjadian, S.2    Eichler, E.E.3
  • 39
    • 20544462642 scopus 로고    scopus 로고
    • Segmental duplications and copy-number variation in the human genome
    • Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78-88 (2005).
    • (2005) Am. J. Hum. Genet. , vol.77 , pp. 78-88
    • Sharp, A.J.1
  • 40
    • 78049412267 scopus 로고    scopus 로고
    • Diversity of human copy number variation and multicopy genes
    • Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641-646 (2010).
    • (2010) Science , vol.330 , pp. 641-646
    • Sudmant, P.H.1
  • 41
    • 84922523695 scopus 로고    scopus 로고
    • Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability
    • Antonacci, F. et al. Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nat. Genet. 46, 1293-1302 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 1293-1302
    • Antonacci, F.1
  • 42
    • 84873466377 scopus 로고    scopus 로고
    • Recombinant structures expand and contract inter and intragenic diversification at the KIR locus
    • Pyo, C. W. et al. Recombinant structures expand and contract inter and intragenic diversification at the KIR locus. BMC Genomics 14, 89 (2013).
    • (2013) BMC Genomics , vol.14 , pp. 89
    • Pyo, C.W.1
  • 43
    • 50449104624 scopus 로고    scopus 로고
    • Evolutionary toggling of the MAPT 17q21.31 inversion region
    • Zody, M. C. et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat. Genet. 40, 1076-1083 (2008).
    • (2008) Nat. Genet. , vol.40 , pp. 1076-1083
    • Zody, M.C.1
  • 44
    • 84901684467 scopus 로고    scopus 로고
    • Genomic characterization of large heterochromatic gaps in the human genome assembly
    • Altemose, N., Miga, K. H., Maggioni, M. & Willard, H. F. Genomic characterization of large heterochromatic gaps in the human genome assembly. PLoS Comput. Biol. 10, e1003628 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003628
    • Altemose, N.1    Miga, K.H.2    Maggioni, M.3    Willard, H.F.4
  • 45
    • 0035500899 scopus 로고    scopus 로고
    • Recent duplication, domain accretion and the dynamic mutation of the human genome
    • Eichler, E. E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661-669 (2001).
    • (2001) Trends Genet. , vol.17 , pp. 661-669
    • Eichler, E.E.1
  • 46
    • 79960925372 scopus 로고    scopus 로고
    • Modernizing reference genome assemblies
    • Church, D. M. et al. Modernizing reference genome assemblies. PLoS Biol. 9, e1001091 (2011).
    • (2011) PLoS Biol. , vol.9 , pp. e1001091
    • Church, D.M.1
  • 47
    • 24344496533 scopus 로고    scopus 로고
    • Ancient haplotypes of the HLA Class II region
    • Raymond, C. K. et al. Ancient haplotypes of the HLA Class II region. Genome Res. 15, 1250-1257 (2005).
    • (2005) Genome Res. , vol.15 , pp. 1250-1257
    • Raymond, C.K.1
  • 48
    • 84913546864 scopus 로고    scopus 로고
    • Towards better understanding of artifacts in variant calling from high-coverage samples
    • Li, H. Towards better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843-2851 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 2843-2851
    • Li, H.1
  • 49
    • 70349956433 scopus 로고    scopus 로고
    • Finding the missing heritability of complex diseases
    • Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747-753 (2009).
    • (2009) Nature , vol.461 , pp. 747-753
    • Manolio, T.A.1
  • 50
    • 0035868530 scopus 로고    scopus 로고
    • Refinement of the gene locus for autosomal dominant medullary cystic kidney disease type 1 (MCKD1) and construction of a physical and partial transcriptional map of the region
    • Fuchshuber, A. et al. Refinement of the gene locus for autosomal dominant medullary cystic kidney disease type 1 (MCKD1) and construction of a physical and partial transcriptional map of the region. Genomics 72, 278-284 (2001).
    • (2001) Genomics , vol.72 , pp. 278-284
    • Fuchshuber, A.1
  • 51
    • 84874662323 scopus 로고    scopus 로고
    • Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
    • Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299-303 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 299-303
    • Kirby, A.1
  • 52
    • 80054837386 scopus 로고    scopus 로고
    • A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD
    • Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257-268 (2011).
    • (2011) Neuron , vol.72 , pp. 257-268
    • Renton, A.E.1
  • 53
    • 80054832080 scopus 로고    scopus 로고
    • Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS
    • DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256 (2011).
    • (2011) Neuron , vol.72 , pp. 245-256
    • Dejesus-Hernandez, M.1
  • 54
    • 0029916569 scopus 로고    scopus 로고
    • Haplotype and interspersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome
    • Eichler, E. E. et al. Haplotype and interspersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome. Hum. Mol. Genet. 5, 319-330 (1996).
    • (1996) Hum. Mol. Genet. , vol.5 , pp. 319-330
    • Eichler, E.E.1
  • 55
    • 84870516109 scopus 로고    scopus 로고
    • Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2
    • Lemmers, R. J. et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat. Genet. 44, 1370-1374 (2012).
    • (2012) Nat. Genet. , vol.44 , pp. 1370-1374
    • Lemmers, R.J.1
  • 56
    • 73349132366 scopus 로고    scopus 로고
    • Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis
    • Ryan, D. P. et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 140, 88-98 (2010).
    • (2010) Cell , vol.140 , pp. 88-98
    • Ryan, D.P.1
  • 57
    • 79251493015 scopus 로고    scopus 로고
    • A human genome structural variation sequencing resource reveals insights into mutational mechanisms
    • Kidd, J. M. et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 143, 837-847 (2010).
    • (2010) Cell , vol.143 , pp. 837-847
    • Kidd, J.M.1
  • 58
    • 84875737598 scopus 로고    scopus 로고
    • Using population admixture to help complete maps of the human genome
    • Genovese, G. et al. Using population admixture to help complete maps of the human genome. Nat. Genet. 45, 406-414 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 406-414
    • Genovese, G.1
  • 59
    • 74049090046 scopus 로고    scopus 로고
    • Building the sequence map of the human pan-genome
    • Li, R. et al. Building the sequence map of the human pan-genome. Nat. Biotechnol. 28, 57-63 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 57-63
    • Li, R.1
  • 60
    • 84899622971 scopus 로고    scopus 로고
    • Low copy number of the salivary amylase gene predisposes to obesity
    • Falchi, M. et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat. Genet. 46, 492-497 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 492-497
    • Falchi, M.1
  • 61
    • 34250841166 scopus 로고    scopus 로고
    • Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): Low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans
    • Yang, Y. et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am. J. Hum. Genet. 80, 1037-1054 (2007).
    • (2007) Am. J. Hum. Genet. , vol.80 , pp. 1037-1054
    • Yang, Y.1
  • 62
    • 84887072151 scopus 로고    scopus 로고
    • The essential detail: The genetics and genomics of the primate immune response
    • Shen, S., Pyo, C. W., Vu, Q., Wang, R. & Geraghty, D. E. The essential detail: the genetics and genomics of the primate immune response. ILAR J. 54, 181-195 (2013).
    • (2013) ILAR J. , vol.54 , pp. 181-195
    • Shen, S.1    Pyo, C.W.2    Vu, Q.3    Wang, R.4    Geraghty, D.E.5
  • 63
    • 84910133583 scopus 로고    scopus 로고
    • Human gene copy number variation and infectious disease
    • Hollox, E. J. & Hoh, B. P. Human gene copy number variation and infectious disease. Hum. Genet. 133, 1217-1233 (2014).
    • (2014) Hum. Genet. , vol.133 , pp. 1217-1233
    • Hollox, E.J.1    Hoh, B.P.2
  • 64
    • 84938281161 scopus 로고    scopus 로고
    • Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity
    • Usher, C. L. et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat. Genet. 47, 921-925 (2015).
    • (2015) Nat. Genet. , vol.47 , pp. 921-925
    • Usher, C.L.1
  • 65
    • 13944278863 scopus 로고    scopus 로고
    • A common inversion under selection in Europeans
    • Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129-137 (2005).
    • (2005) Nat. Genet. , vol.37 , pp. 129-137
    • Stefansson, H.1
  • 66
    • 33748323156 scopus 로고    scopus 로고
    • A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism
    • Koolen, D. A. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat. Genet. 38, 999-1001 (2006).
    • (2006) Nat. Genet. , vol.38 , pp. 999-1001
    • Koolen, D.A.1
  • 67
    • 84860858726 scopus 로고    scopus 로고
    • Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation
    • Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923-935 (2012).
    • (2012) Cell , vol.149 , pp. 923-935
    • Charrier, C.1
  • 68
    • 84928704517 scopus 로고    scopus 로고
    • Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion
    • Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465-1470 (2015).
    • (2015) Science , vol.347 , pp. 1465-1470
    • Florio, M.1
  • 69
    • 84883784774 scopus 로고    scopus 로고
    • Space-efficient and exact de Bruijn graph representation based on a Bloom filter
    • Chikhi, R. & Rizk, G. Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms Mol. Biol. 8, 22 (2013).
    • (2013) Algorithms Mol. Biol. , vol.8 , pp. 22
    • Chikhi, R.1    Rizk, G.2
  • 70
    • 84857838310 scopus 로고    scopus 로고
    • Efficient de novo assembly of large genomes using compressed data structures
    • Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22, 549-556 (2012).
    • (2012) Genome Res. , vol.22 , pp. 549-556
    • Simpson, J.T.1    Durbin, R.2
  • 71
    • 84885968059 scopus 로고    scopus 로고
    • The MaSuRCA genome assembler
    • Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669-2677 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2669-2677
    • Zimin, A.V.1
  • 72
    • 84922584295 scopus 로고    scopus 로고
    • Comprehensive variation discovery in single human genomes
    • Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nat. Genet. 46, 1350-1355 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 1350-1355
    • Weisenfeld, N.I.1
  • 73
    • 84864119729 scopus 로고    scopus 로고
    • Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly
    • Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28, 1838-1844 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 1838-1844
    • Li, H.1
  • 74
    • 84885626275 scopus 로고    scopus 로고
    • Assembling single-cell genomes and mini-metagenomes from chimeric MDA products
    • Nurk, S. et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 20, 714-737 (2013).
    • (2013) J. Comput. Biol. , vol.20 , pp. 714-737
    • Nurk, S.1
  • 75
    • 84897492912 scopus 로고    scopus 로고
    • Tackling soil diversity with the assembly of large, complex metagenomes
    • Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904-4909 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 4904-4909
    • Howe, A.C.1
  • 76
    • 84860771820 scopus 로고    scopus 로고
    • SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing
    • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012).
    • (2012) J. Comput. Biol. , vol.19 , pp. 455-477
    • Bankevich, A.1
  • 77
    • 84913548467 scopus 로고    scopus 로고
    • In vitro, long-range sequence information for de novo genome assembly via transposase contiguity
    • Adey, A. et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 24, 2041-2049 (2014).
    • (2014) Genome Res. , vol.24 , pp. 2041-2049
    • Adey, A.1
  • 78
    • 84890034912 scopus 로고    scopus 로고
    • Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions
    • Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119-1125 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1119-1125
    • Burton, J.N.1
  • 79
    • 84890023970 scopus 로고    scopus 로고
    • Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing
    • Selvaraj, S., Dixon, J. R., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111-1118 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1111-1118
    • Selvaraj, S.1    Dixon, J.R.2    Bansal, V.3    Ren, B.4
  • 80
    • 84922537404 scopus 로고    scopus 로고
    • Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing
    • Amini, S. et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet. 46, 1343-1349 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 1343-1349
    • Amini, S.1
  • 81
    • 84929508843 scopus 로고    scopus 로고
    • Haplotype-resolved genome sequencing: Experimental methods and applications
    • Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet. 16, 344-358 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 344-358
    • Snyder, M.W.1    Adey, A.2    Kitzman, J.O.3    Shendure, J.4
  • 82
    • 84875864497 scopus 로고    scopus 로고
    • Whole-genome haplotyping by dilution, amplification, and sequencing
    • Kaper, F. et al. Whole-genome haplotyping by dilution, amplification, and sequencing. Proc. Natl Acad. Sci. USA 110, 5552-5557 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 5552-5557
    • Kaper, F.1
  • 83
    • 84898654757 scopus 로고    scopus 로고
    • Whole-genome haplotyping using long reads and statistical methods
    • Kuleshov, V. et al. Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol. 32, 261-266 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 261-266
    • Kuleshov, V.1
  • 84
    • 78651333227 scopus 로고    scopus 로고
    • Haplotype-resolved genome sequencing of a Gujarati Indian individual
    • Kitzman, J. O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol. 29, 59-63 (2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 59-63
    • Kitzman, J.O.1
  • 85
    • 84881496498 scopus 로고    scopus 로고
    • The genome sequence of the colonial chordate
    • Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2, e00569 (2013).
    • (2013) Botryllus Schlosseri. ELife , vol.2 , pp. e00569
    • Voskoboynik, A.1
  • 86
    • 84907087679 scopus 로고    scopus 로고
    • Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex highly-repetitive transposable elements
    • McCoy, R. C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e106689
    • McCoy, R.C.1
  • 87
    • 0027485082 scopus 로고
    • Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping
    • Schwartz, D. C. et al. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262, 110-114 (1993).
    • (1993) Science , vol.262 , pp. 110-114
    • Schwartz, D.C.1
  • 88
    • 84876212011 scopus 로고    scopus 로고
    • Enhanced de novo assembly of high throughput pyrosequencing data using whole genome mapping
    • Onmus-Leone, F. et al. Enhanced de novo assembly of high throughput pyrosequencing data using whole genome mapping. PLoS ONE 8, e61762 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e61762
    • Onmus-Leone, F.1
  • 89
    • 84864883566 scopus 로고    scopus 로고
    • Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly
    • Lam, E. T. et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30, 771-776 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 771-776
    • Lam, E.T.1
  • 90
    • 84902080336 scopus 로고    scopus 로고
    • Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human genome
    • O'Bleness, M. et al. Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human genome. BMC Genomics 15, 387 (2014).
    • (2014) BMC Genomics , vol.15 , pp. 387
    • O'Bleness, M.1
  • 91
    • 58149234737 scopus 로고    scopus 로고
    • Real-time DNA sequencing from single polymerase molecules
    • Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133-138 (2009).
    • (2009) Science , vol.323 , pp. 133-138
    • Eid, J.1
  • 92
    • 84860373543 scopus 로고    scopus 로고
    • Integrated nanopore sensing platform with sub-microsecond temporal resolution
    • Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487-492 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 487-492
    • Rosenstein, J.K.1    Wanunu, M.2    Merchant, C.A.3    Drndic, M.4    Shepard, K.L.5
  • 93
    • 67650064593 scopus 로고    scopus 로고
    • Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes
    • Hormozdiari, F., Alkan, C., Eichler, E. E. & Sahinalp, S. C. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19, 1270-1278 (2009).
    • (2009) Genome Res. , vol.19 , pp. 1270-1278
    • Hormozdiari, F.1    Alkan, C.2    Eichler, E.E.3    Sahinalp, S.C.4
  • 94
    • 84866440781 scopus 로고    scopus 로고
    • DELLY: Structural variant discovery by integrated paired-end and split-read analysis
    • Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333-i339 (2012).
    • (2012) Bioinformatics , vol.28 , pp. i333-i339
    • Rausch, T.1
  • 95
    • 79952194317 scopus 로고    scopus 로고
    • Discovery and genotyping of genome structural polymorphism by sequencing on a population scale
    • Handsaker, R. E., Korn, J. M., Nemesh, J. & McCarroll, S. A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 43, 269-276 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 269-276
    • Handsaker, R.E.1    Korn, J.M.2    Nemesh, J.3    McCarroll, S.A.4
  • 96
    • 84943171338 scopus 로고    scopus 로고
    • A global reference for human genetic variation
    • The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature http://www.dx.doi.org/10.1038/nature15393 (2015).
    • (2015) Nature
  • 97
    • 39749154724 scopus 로고    scopus 로고
    • A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures
    • Sharp, A. J. et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat. Genet. 40, 322-328 (2008).
    • (2008) Nat. Genet. , vol.40 , pp. 322-328
    • Sharp, A.J.1
  • 98
    • 84866266717 scopus 로고    scopus 로고
    • Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory
    • Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012).
    • (2012) BMC Bioinformatics , vol.13 , pp. 238
    • Chaisson, M.J.1    Tesler, G.2
  • 100
    • 84897965254 scopus 로고    scopus 로고
    • Reconstructing complex regions of genomes using long-read sequencing technology
    • Huddleston, J. et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24, 688-696 (2014).
    • (2014) Genome Res. , vol.24 , pp. 688-696
    • Huddleston, J.1
  • 101
    • 84863664355 scopus 로고    scopus 로고
    • A hybrid approach for the automated finishing of bacterial genomes
    • Bashir, A. et al. A hybrid approach for the automated finishing of bacterial genomes. Nat. Biotechnol. 30, 701-707 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 701-707
    • Bashir, A.1
  • 102
    • 84863651532 scopus 로고    scopus 로고
    • Hybrid error correction and de novo assembly of single-molecule sequencing reads
    • Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693-700 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 693-700
    • Koren, S.1
  • 103
    • 84902509478 scopus 로고    scopus 로고
    • ExSPAnder: A universal repeat resolver for DNA fragment assembly
    • Prjibelski, A. D. et al. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics 30, i293-301 (2014).
    • (2014) Bioinformatics , vol.30 , pp. i293-301
    • Prjibelski, A.D.1
  • 104
    • 84869814079 scopus 로고    scopus 로고
    • Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology
    • English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e47768
    • English, A.C.1
  • 105
    • 84922393704 scopus 로고    scopus 로고
    • 'Platinum' genome takes on disease
    • Callaway, E. 'Platinum' genome takes on disease. Nature 515, 323 (2014).
    • (2014) Nature , vol.515 , pp. 323
    • Callaway, E.1
  • 106
    • 84944442752 scopus 로고    scopus 로고
    • Human Genome Structural Variation Consortium. The phase 3 structural variant dataset. 1000 Genomes [online]
    • Human Genome Structural Variation Consortium. The phase 3 structural variant dataset. 1000 Genomes [online], http://www.1000genomes.org/phase-3-structural-variant-dataset (2015).
    • (2015)
  • 107
    • 0034831138 scopus 로고    scopus 로고
    • Segmental duplications: Organization and impact within the current human genome project assembly
    • Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005-1017 (2001).
    • (2001) Genome Res. , vol.11 , pp. 1005-1017
    • Bailey, J.A.1    Yavor, A.M.2    Massa, H.F.3    Trask, B.J.4    Eichler, E.E.5
  • 108
    • 77950461601 scopus 로고    scopus 로고
    • Origins and functional impact of copy number variation in the human genome
    • Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704-712 (2010).
    • (2010) Nature , vol.464 , pp. 704-712
    • Conrad, D.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.