-
1
-
-
0034607622
-
A new beginning with new ends: Linearisation of circular chromosomes during bacterial evolution
-
Volff J-N, Altenbuchner J. 2000 A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186, 143-150. (doi:10.1111/j.1574- 6968.2000.tb09095.x)
-
(2000)
FEMS Microbiol. Lett
, vol.186
, pp. 143-150
-
-
Volff, J.-N.1
Altenbuchner, J.2
-
2
-
-
11844264027
-
Vibrios commonly possess two chromosomes
-
Okada K, Iida T, Kita-Tsukamoto K, Honda T. 2005 Vibrios commonly possess two chromosomes. J. Bacteriol. 187, 752-757. (doi:10.1128/JB.187.2. 752-757.2005)
-
(2005)
J. Bacteriol
, vol.187
, pp. 752-757
-
-
Okada, K.1
Iida, T.2
Kita-Tsukamoto, K.3
Honda, T.4
-
3
-
-
84880130007
-
Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu
-
Han K et al. 2013 Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci. Rep. 3, 2101. (doi:10.1038/srep02101)
-
(2013)
Sci. Rep
, vol.3
, pp. 2101
-
-
Han, K.1
-
4
-
-
84856489199
-
The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis
-
Corradi N, Pombert J-F, Farinelli L, Didier ES, Keeling PJ. 2010 The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat. Commun. 1, 77. (doi:10.1038/ncomms1082)
-
(2010)
Nat. Commun
, vol.1
, pp. 77
-
-
Corradi, N.1
Pombert, J.-F.2
Farinelli, L.3
Didier, E.S.4
Keeling, P.J.5
-
5
-
-
77956816001
-
The largest eukaryotic genome of them all?
-
Pellicer J, Fay M, Leitch IJ. 2010 The largest eukaryotic genome of them all? Bot. J. Linn. Soc. 164, 10-15. (doi:10.1111/j.1095-8339.2010. 01072.x)
-
(2010)
Bot. J. Linn. Soc
, vol.164
, pp. 10-15
-
-
Pellicer, J.1
Fay, M.2
Leitch, I.J.3
-
6
-
-
0000822856
-
The genetic organization of chromosomes
-
Thomas CA. 1971 The genetic organization of chromosomes. Ann. Rev. Genet. 5, 237-256. (doi:10.1146/annurev.ge.05.120171.001321)
-
(1971)
Ann. Rev. Genet
, vol.5
, pp. 237-256
-
-
Thomas, C.A.1
-
7
-
-
84902672358
-
The distinction between 'function' and 'effect' in genome biology
-
Doolittle WF, Brunet TDP, Linquist S, Gregory TR. 2014 The distinction between 'function' and 'effect' in genome biology. Genome Biol. Evol. 6, 1234-1237. (doi:10.1093/gbe/evu098)
-
(2014)
Genome Biol. Evol
, vol.6
, pp. 1234-1237
-
-
Doolittle, W.F.1
Brunet, T.D.P.2
Linquist, S.3
Gregory, T.R.4
-
8
-
-
0035090476
-
Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma
-
Gregory TR. 2001 Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65-101. (doi:10.1111/j. 1469-185X.2000.tb00059.x)
-
(2001)
Biol. Rev
, vol.76
, pp. 65-101
-
-
Gregory, T.R.1
-
9
-
-
23944504276
-
Synergy between sequence and size in large-scale genomics
-
Gregory TR. 2005 Synergy between sequence and size in large-scale genomics. Nat. Rev. Genet. 6, 699-708. (doi:10.1038/nrg1674)
-
(2005)
Nat. Rev. Genet
, vol.6
, pp. 699-708
-
-
Gregory, T.R.1
-
13
-
-
84891772639
-
Recent updates and developments to plant genome size databases
-
Garcia S et al. 2014 Recent updates and developments to plant genome size databases. Nucleic Acids Res. 42, 1-8. (doi:10.1093/nar/gkt1195)
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 1-8
-
-
Garcia, S.1
-
14
-
-
84882468079
-
Genome size evolution in plants
-
(ed. TR Gregory), San Diego, CA: Elsevier
-
Bennett MD, Leitch IJ. 2005 Genome size evolution in plants. In The evolution of the genome (ed. TR Gregory), pp. 89-162. San Diego, CA: Elsevier.
-
(2005)
The evolution of the genome
, pp. 89-162
-
-
Bennett, M.D.1
Leitch, I.J.2
-
15
-
-
84882496107
-
Genome size evolution in animals
-
(ed. TR Gregory), San Diego, CA: Elsevier
-
Gregory TR. 2005 Genome size evolution in animals. In The evolution of the genome (ed. TR Gregory), pp. 3-87. San Diego, CA: Elsevier.
-
(2005)
The evolution of the genome
, pp. 3-87
-
-
Gregory, T.R.1
-
16
-
-
84878420758
-
The Norway spruce genome sequence and conifer genome evolution
-
Nystedt B et al. 2013 The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579-584. (doi:10.1038/nature12211)
-
(2013)
Nature
, vol.497
, pp. 579-584
-
-
Nystedt, B.1
-
17
-
-
0022203256
-
Phylogenies and the comparative method
-
Felsenstein J. 1985 Phylogenies and the comparative method. Am. Nat. 125, 1-15. (doi:10.1086/284325)
-
(1985)
Am. Nat
, vol.125
, pp. 1-15
-
-
Felsenstein, J.1
-
21
-
-
12044252802
-
Polytomies in comparative analyses of continuous characters
-
Purvis A, Garland T. 1993 Polytomies in comparative analyses of continuous characters. Syst. Biol. 42, 569-575. (doi:10.2307/2992489)
-
(1993)
Syst. Biol
, vol.42
, pp. 569-575
-
-
Purvis, A.1
Garland, T.2
-
22
-
-
0036290221
-
From pixels to picograms: A beginners' guide to genome quantification by Feulgen image analysis densitometry
-
Hardie DC, Gregory TR, Hebert PDN. 2002 From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry. J. Histochem. Cytochem. 50, 735-749. (doi:10.1177/002215540205000601)
-
(2002)
J. Histochem. Cytochem
, vol.50
, pp. 735-749
-
-
Hardie, D.C.1
Gregory, T.R.2
Hebert, P.D.N.3
-
23
-
-
83855165105
-
Repetitive DNA and next-generation sequencing, computational challenges and solutions
-
Treangen TJ, Salzberg SL. 2012 Repetitive DNA and next-generation sequencing, computational challenges and solutions. Nat. Rev. Genet. 13, 36-44. (doi:10.1038/nrg3117)
-
(2012)
Nat. Rev. Genet
, vol.13
, pp. 36-44
-
-
Treangen, T.J.1
Salzberg, S.L.2
-
24
-
-
84857223453
-
Under-representation of repetitive sequences in whole-genome shotgun sequence databases: An illustration using a recently acquired transposable element
-
Koga A. 2012 Under-representation of repetitive sequences in whole-genome shotgun sequence databases: an illustration using a recently acquired transposable element. Genome 55, 172-175. (doi:10.1139/g11-088)
-
(2012)
Genome
, vol.55
, pp. 172-175
-
-
Koga, A.1
-
25
-
-
82955247979
-
A guided tour of large genome size in animals: What we know and where we are heading
-
Dufresne F, Jeffery N. 2011 A guided tour of large genome size in animals: what we know and where we are heading. Genome 19, 925-938. (doi:10. 1007/s10577-011-9248-x)
-
(2011)
Genome
, vol.19
, pp. 925-938
-
-
Dufresne, F.1
Jeffery, N.2
-
26
-
-
0035895513
-
What if there are only 30,000 human genes?
-
Claverie J-M. 2001 What if there are only 30,000 human genes? Science 291, 1255-1257. (doi:10. 1126/science.1058969)
-
(2001)
Science
, vol.291
, pp. 1255-1257
-
-
Claverie, J.-M.1
-
27
-
-
0035992053
-
The G-value paradox
-
Hahn MW, Wray GA. 2002 The G-value paradox. Evol. Dev. 4, 73-75. (doi:10.1046/j.1525-142X. 2002.01069.x)
-
(2002)
Evol. Dev
, vol.4
, pp. 73-75
-
-
Hahn, M.W.1
Wray, G.A.2
-
28
-
-
70349202709
-
Distinct gene number-genome size relationships for eukaryotes and noneukaryotes: Gene content estimation for dinoflagellate genomes
-
Hou Y, Lin S. 2009 Distinct gene number-genome size relationships for eukaryotes and noneukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE 4, e6978. (doi:10. 1371/journal.pone.0006978)
-
(2009)
PLoS ONE
, vol.4
-
-
Hou, Y.1
Lin, S.2
-
29
-
-
84862105854
-
Genome sizes and the Benford distribution
-
Friar JL, Goldman T, Perez-Mercader J. 2012 Genome sizes and the Benford distribution. PLoS ONE 7, e36624. (doi:10.1371/journal.pone.0036624)
-
(2012)
PLoS ONE
, vol.7
-
-
Friar, J.L.1
Goldman, T.2
Perez-Mercader, J.3
-
30
-
-
0037310350
-
The correlation between rDNA copy number and genome size in eukaryotes
-
Prokopowich CD, Gregory TR, Crease TJ. 2003 The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48-50. (doi:10.1139/G02-103)
-
(2003)
Genome
, vol.46
, pp. 48-50
-
-
Prokopowich, C.D.1
Gregory, T.R.2
Crease, T.J.3
-
31
-
-
33748566229
-
Comparative genomics in prokaryotes
-
(ed. TR Gregory), San Diego, CA: Elsevier
-
Gregory TR, DeSalle R. 2005 Comparative genomics in prokaryotes. In The evolution of the genome (ed. TR Gregory), pp. 585-675. San Diego, CA: Elsevier.
-
(2005)
The evolution of the genome
, pp. 585-675
-
-
Gregory, T.R.1
DeSalle, R.2
-
32
-
-
0345306751
-
The origins of genome complexity
-
Lynch M, Conery JS. 2003 The origins of genome complexity. Science 302, 1401-1403. (doi:10.1126/ science.1089370)
-
(2003)
Science
, vol.302
, pp. 1401-1403
-
-
Lynch, M.1
Conery, J.S.2
-
33
-
-
0032876994
-
Intron-genome size relationship on a large evolutionary scale
-
Vinogradov AE. 1999 Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49, 376-384. (doi:10.1007/PL00006561)
-
(1999)
J. Mol. Evol
, vol.49
, pp. 376-384
-
-
Vinogradov, A.E.1
-
34
-
-
0036841106
-
Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs
-
Waltari E, Edwards SV. 2002 Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs. Am. Nat. 160, 539-552. (doi:10.1086/342079)
-
(2002)
Am. Nat
, vol.160
, pp. 539-552
-
-
Waltari, E.1
Edwards, S.V.2
-
35
-
-
0036897696
-
Intron size and genome size in plants
-
Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL, Senchina DS. 2002 Intron size and genome size in plants. Mol. Biol. Evol. 19, 2346-2352. (doi:10. 1093/oxfordjournals.molbev.a004062)
-
(2002)
Mol. Biol. Evol
, vol.19
, pp. 2346-2352
-
-
Wendel, J.F.1
Cronn, R.C.2
Alvarez, I.3
Liu, B.4
Small, R.L.5
Senchina, D.S.6
-
36
-
-
84875077993
-
The evolution of intron size in amniotes: A role for powered flight?
-
Zhang Q, Edwards SV. 2012 The evolution of intron size in amniotes: a role for powered flight? Genome Biol. Evol. 4, 1033-1043. (doi:10.1093/gbe/evs070)
-
(2012)
Genome Biol. Evol
, vol.4
, pp. 1033-1043
-
-
Zhang, Q.1
Edwards, S.V.2
-
37
-
-
0034160156
-
Transposable elements and host genome evolution
-
Kidwell MG, Lisch DR. 2000 Transposable elements and host genome evolution. Trends Ecol Evol. 15, 95-99. (doi:10.1016/S0169-5347(99)01817-0)
-
(2000)
Trends Ecol Evol
, vol.15
, pp. 95-99
-
-
Kidwell, M.G.1
Lisch, D.R.2
-
38
-
-
0036021699
-
Transposable elements and the evolution of genome size in eukaryotes
-
Kidwell MG. 2002 Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49-63. (doi:10.1023/A:1016072014259)
-
(2002)
Genetica
, vol.115
, pp. 49-63
-
-
Kidwell, M.G.1
-
39
-
-
79251581868
-
A brief history of the status of transposable elements: From junk DNA to major players in evolution
-
Biémont C. 2010 A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186, 1085-1093. (doi:10.1534/genetics.110.124180)
-
(2010)
Genetics
, vol.186
, pp. 1085-1093
-
-
Biémont, C.1
-
40
-
-
84905086449
-
Plant genome size variation, bloating and purging DNA
-
Michael TP. 2014 Plant genome size variation, bloating and purging DNA. Brief. Function. Genomics 13, 308-317. (doi:10.1093/bfgp/elu005)
-
(2014)
Brief. Function. Genomics
, vol.13
, pp. 308-317
-
-
Michael, T.P.1
-
41
-
-
1542513556
-
Mobile elements: Drivers of genome evolution
-
Kazazian HH. 2004 Mobile elements: drivers of genome evolution. Science 303, 1626-1632. (doi:10.1126/science.1089670)
-
(2004)
Science
, vol.303
, pp. 1626-1632
-
-
Kazazian, H.H.1
-
42
-
-
33749522239
-
Genetics: Junk DNA as an evolutionary force
-
Biémont C, Vieira C. 2006 Genetics: junk DNA as an evolutionary force. Nature 443, 521-524. (doi:10. 1038/443521a)
-
(2006)
Nature
, vol.443
, pp. 521-524
-
-
Biémont, C.1
Vieira, C.2
-
43
-
-
34247344319
-
Retrotransposable elements and human disease
-
(ed. J-N Volff ), Basel, Switzerland: Karger
-
Callinan PA, Beltzer MA. 2006 Retrotransposable elements and human disease. In Genome and disease (ed. J-N Volff ), pp. 104-115. Basel, Switzerland: Karger.
-
(2006)
Genome and disease
, pp. 104-115
-
-
Callinan, P.A.1
Beltzer, M.A.2
-
44
-
-
84862507347
-
Active human retrotransposons: Variation and disease
-
Hancks DC, Kazazian HH. 2012 Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191-203. (doi:10.1016/j.gde.2012. 02.006)
-
(2012)
Curr. Opin. Genet. Dev
, vol.22
, pp. 191-203
-
-
Hancks, D.C.1
Kazazian, H.H.2
-
45
-
-
38449096702
-
The necessary junk: New functions for transposable elements
-
Muotri AR, Marchetto MCN, Coufal NG, Gage FH. 2007 The necessary junk: new functions for transposable elements. Hum. Mol. Genet. 16, R159-R167. (doi:10.1093/hmg/ddm196)
-
(2007)
Hum. Mol. Genet
, vol.16
, pp. R159-R167
-
-
Muotri, A.R.1
Marchetto, M.C.N.2
Coufal, N.G.3
Gage, F.H.4
-
46
-
-
33748345782
-
Macroevolution and the genome
-
(ed. TR Gregory), San Diego, CA: Elsevier
-
Gregory TR. 2005 Macroevolution and the genome. In The evolution of the genome (ed. TR Gregory), pp. 679-729. San Diego, CA: Elsevier.
-
(2005)
The evolution of the genome
, pp. 679-729
-
-
Gregory, T.R.1
-
47
-
-
84929575420
-
Do larger genomes contain more diverse transposable elements?
-
Elliott TA, Gregory TR. 2015 Do larger genomes contain more diverse transposable elements? BMC Evol. Biol. 15, 69. (doi:10.1186/s12862-015- 0339-8)
-
(2015)
BMC Evol. Biol
, vol.15
, pp. 69
-
-
Elliott, T.A.1
Gregory, T.R.2
-
48
-
-
82955233409
-
Exploring giant plant genomes with next-generation sequencing technology
-
Kelly LJ, Leitch IJ. 2011 Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res. 19, 939-953. (doi:10.1007/s10577-011-9246-z)
-
(2011)
Chromosome Res
, vol.19
, pp. 939-953
-
-
Kelly, L.J.1
Leitch, I.J.2
-
49
-
-
84920001686
-
Accommodating the load: The transposable element content of very large genomes
-
Metcalfe C, Casane D. 2013 Accommodating the load: the transposable element content of very large genomes. Mob. Genet. Elem. 3, e24775. (doi:10.4161/mge.24775)
-
(2013)
Mob. Genet. Elem
, vol.3
-
-
Metcalfe, C.1
Casane, D.2
-
50
-
-
84867761085
-
Evolution of the Australian lungfish (Neoceratodus forsteri) genome: A major role for CR1 and L2 LINE elements
-
Metcalfe CJ, Filée J, Germon I, Joss J, Casane D. 2012 Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Mol. Biol. Evol. 29, 3529-3539. (doi:10.1093/molbev/mss159)
-
(2012)
Mol. Biol. Evol
, vol.29
, pp. 3529-3539
-
-
Metcalfe, C.J.1
Filée, J.2
Germon, I.3
Joss, J.4
Casane, D.5
-
51
-
-
60849108658
-
Genic regions of a large salamander genome contain long introns and novel genes
-
Smith JJ et al. 2009 Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics 10, 19. (doi:10.1186/1471-2164-10-19)
-
(2009)
BMC Genomics
, vol.10
, pp. 19
-
-
Smith, J.J.1
-
52
-
-
84865806641
-
LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders
-
Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL. 2012 LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol. Evol. 4, 168-183. (doi:10.1093/gbe/evr139)
-
(2012)
Genome Biol. Evol
, vol.4
, pp. 168-183
-
-
Sun, C.1
Shepard, D.B.2
Chong, R.A.3
López Arriaza, J.4
Hall, K.5
Castoe, T.A.6
Feschotte, C.7
Pollock, D.D.8
Mueller, R.L.9
-
53
-
-
84925505962
-
Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders
-
Frahry MB, Sun C, Chong RA, Mueller RL. 2015 Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. J. Mol. Evol. 80, 120-129. (doi:10. 1007/s00239-014-9663-7)
-
(2015)
J. Mol. Evol
, vol.80
, pp. 120-129
-
-
Frahry, M.B.1
Sun, C.2
Chong, R.A.3
Mueller, R.L.4
-
54
-
-
77954270761
-
The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences
-
Kovach A et al. 2010 The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11, 420. (doi:10.1186/1471-2164-11-420)
-
(2010)
BMC Genomics
, vol.11
, pp. 420
-
-
Kovach, A.1
-
55
-
-
84899126607
-
Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation
-
Wegrzyn JL et al. 2014 Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196, 891-909. (doi:10.1534/genetics.113.159996)
-
(2014)
Genetics
, vol.196
, pp. 891-909
-
-
Wegrzyn, J.L.1
-
56
-
-
79551534165
-
Diverse retrotransposon families and AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies
-
Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, Koblížková A, Macas J, Lysak MA. 2011 Diverse retrotransposon families and AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann. Bot. 107, 255-268. (doi:10.1093/aob/mcq235)
-
(2011)
Ann. Bot
, vol.107
, pp. 255-268
-
-
Ambrožová, K.1
Mandáková, T.2
Bureš, P.3
Neumann, P.4
Leitch, I.J.5
Koblížková, A.6
Macas, J.7
Lysak, M.A.8
-
57
-
-
84942835210
-
Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size
-
In press
-
Kelly LJ et al. In press. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. (doi:10.1111/nph.13471)
-
New Phytol
-
-
Kelly, L.J.1
-
58
-
-
0031914878
-
Genome size and GC-percent in vertebrates as determined by flow cytometry: The triangular relationship
-
Vinogradov AE. 1998 Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31, 100-109. (doi:10.1002/(SICI)1097-0320(19980201)31: 2,100::AID-CYTO5.3.0.CO;2-Q)
-
(1998)
Cytometry
, vol.31
, pp. 100-109
-
-
Vinogradov, A.E.1
-
59
-
-
84907584860
-
Ecological and evolutionary significance of genomic GC content diversity in monocots
-
Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, Tichý L, Grulich V, Rotreklová O. 2014 Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl Acad. Sci. USA 111, E4096-E4102. (doi:10.1073/pnas.1321152111)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E4096-E4102
-
-
Šmarda, P.1
Bureš, P.2
Horová, L.3
Leitch, I.J.4
Mucina, L.5
Pacini, E.6
Tichý, L.7
Grulich, V.8
Rotreklová, O.9
-
60
-
-
84897965254
-
Reconstructing complex regions of genomes using long-read sequencing technology
-
Huddleston J et al. 2014 Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 24, 688-696. (doi:10. 1101/gr.168450.113)
-
(2014)
Genome Res
, vol.24
, pp. 688-696
-
-
Huddleston, J.1
-
61
-
-
84921874530
-
-
See
-
Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. 2014 Error correction and assembly complexity of single molecule sequencing reads. See http://www.biorxiv.org/content/early/2014/06/18/ 006395.
-
(2014)
Error correction and assembly complexity of single molecule sequencing reads
-
-
Lee, H.1
Gurtowski, J.2
Yoo, S.3
Marcus, S.4
McCombie, W.R.5
Schatz, M.6
-
62
-
-
84907087679
-
Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements
-
McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D, Petrov DA, Fiston-Lavier A-S. 2014 Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689. (doi:10.1371/journal.pone.0106689)
-
(2014)
PLoS ONE
, vol.9
-
-
McCoy, R.C.1
Taylor, R.W.2
Blauwkamp, T.A.3
Kelley, J.L.4
Kertesz, M.5
Pushkarev, D.6
Petrov, D.A.7
Fiston-Lavier, A.-S.8
-
63
-
-
84924284350
-
Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications
-
Lucas SJ, Akpinar BA, Šimková H, Kubaláková M, Doležel J, Budak H. 2014 Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics 15, 1080. (doi:10.1186/1471-2164-15-1080)
-
(2014)
BMC Genomics
, vol.15
, pp. 1080
-
-
Lucas, S.J.1
Akpinar, B.A.2
Šimková, H.3
Kubaláková, M.4
Doležel, J.5
Budak, H.6
-
64
-
-
84899103272
-
Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies
-
Neale DB et al. 2014 Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15, R59. (doi:10. 1186/gb-2014-15-3-r59)
-
(2014)
Genome Biol
, vol.15
-
-
Neale, D.B.1
-
65
-
-
84864867560
-
Total centromere size and genome size are strongly correlated in ten grass species
-
Zhang H, Dawe RK. 2012 Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res. 20, 403-412. (doi:10. 1007/s10577-012-9284-1)
-
(2012)
Chromosome Res
, vol.20
, pp. 403-412
-
-
Zhang, H.1
Dawe, R.K.2
|