메뉴 건너뛰기




Volumn 21, Issue 9, 2016, Pages 749-757

Genome Stability and Evolution: Attempting a Holistic View

Author keywords

DNA double strand break repair; Genome size evolution; Genome stability; Karyotype evolution; Whole genome duplication

Indexed keywords

DOUBLE STRANDED DNA BREAK; GENE DUPLICATION; GENETICS; GENOMIC INSTABILITY; MOLECULAR EVOLUTION; PLANT GENOME;

EID: 84978877973     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2016.06.003     Document Type: Review
Times cited : (113)

References (55)
  • 1
    • 0000822856 scopus 로고
    • The genetic organization of chromosomes
    • 1 Thomas, C.A., The genetic organization of chromosomes. Annu. Rev. Genet 5 (1971), 237–256.
    • (1971) Annu. Rev. Genet , vol.5 , pp. 237-256
    • Thomas, C.A.1
  • 2
    • 0035090476 scopus 로고    scopus 로고
    • Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma
    • 2 Gregory, T.R., Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76 (2001), 65–101.
    • (2001) Biol. Rev. Camb. Philos. Soc. , vol.76 , pp. 65-101
    • Gregory, T.R.1
  • 3
    • 21644481551 scopus 로고    scopus 로고
    • Nuclear DNA amounts in angiosperms: progress, problems and prospects
    • 3 Bennett, M.D., Leitch, I.J., Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95 (2005), 45–90.
    • (2005) Ann. Bot. , vol.95 , pp. 45-90
    • Bennett, M.D.1    Leitch, I.J.2
  • 4
    • 79953725418 scopus 로고    scopus 로고
    • Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera)
    • 4 Stelzer, C.P., et al. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera). BMC Evol. Biol., 11, 2011, 90.
    • (2011) BMC Evol. Biol. , vol.11 , pp. 90
    • Stelzer, C.P.1
  • 5
    • 84904266421 scopus 로고    scopus 로고
    • Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity
    • 5 Ellis, L.L., et al. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity. PLoS Genet., 10, 2014, e1004522.
    • (2014) PLoS Genet. , vol.10 , pp. e1004522
    • Ellis, L.L.1
  • 6
    • 77955748920 scopus 로고    scopus 로고
    • Understanding intraspecific variation in genome size in plants
    • 6 Smarda, P., Bures, P., Understanding intraspecific variation in genome size in plants. Preslia 82 (2010), 41–61.
    • (2010) Preslia , vol.82 , pp. 41-61
    • Smarda, P.1    Bures, P.2
  • 7
    • 85010665896 scopus 로고    scopus 로고
    • Intra-specific variation in genome size in maize: cytological and phenotypic correlates
    • 7 Realini, M.F., et al. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. AoB Plants, 8, 2015, plv138.
    • (2015) AoB Plants , vol.8 , pp. plv138
    • Realini, M.F.1
  • 8
    • 2642558707 scopus 로고    scopus 로고
    • DNA damage processing and aberration formation in plants
    • 8 Schubert, I., et al. DNA damage processing and aberration formation in plants. Cytogenet. Genome Res. 104 (2004), 104–108.
    • (2004) Cytogenet. Genome Res. , vol.104 , pp. 104-108
    • Schubert, I.1
  • 9
    • 77953229115 scopus 로고    scopus 로고
    • The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
    • 9 Lieber, M.R., The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79 (2010), 181–211.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 181-211
    • Lieber, M.R.1
  • 10
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • 10 San Filippo, J., et al. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77 (2008), 229–257.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 229-257
    • San Filippo, J.1
  • 11
    • 38049155945 scopus 로고    scopus 로고
    • Regulation of DNA double-strand break repair pathway choice
    • 11 Shrivastav, M., et al. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18 (2008), 134–147.
    • (2008) Cell Res. , vol.18 , pp. 134-147
    • Shrivastav, M.1
  • 12
    • 0029970701 scopus 로고    scopus 로고
    • Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks
    • 12 Moore, J.K., Haber, J.E., Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383 (1996), 644–646.
    • (1996) Nature , vol.383 , pp. 644-646
    • Moore, J.K.1    Haber, J.E.2
  • 13
    • 0029856377 scopus 로고    scopus 로고
    • High intrinsic rate of DNA loss in Drosophila
    • 13 Petrov, D.A., et al. High intrinsic rate of DNA loss in Drosophila. Nature 384 (1996), 346–349.
    • (1996) Nature , vol.384 , pp. 346-349
    • Petrov, D.A.1
  • 14
    • 0036061848 scopus 로고    scopus 로고
    • Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis
    • 14 Devos, K.M., et al. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12 (2002), 1075–1079.
    • (2002) Genome Res. , vol.12 , pp. 1075-1079
    • Devos, K.M.1
  • 15
    • 79955468851 scopus 로고    scopus 로고
    • The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
    • 15 Hu, T.T., et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43 (2011), 476–481.
    • (2011) Nat. Genet. , vol.43 , pp. 476-481
    • Hu, T.T.1
  • 16
    • 0034675997 scopus 로고    scopus 로고
    • Species-specific double-strand break repair and genome evolution in plants
    • 16 Kirik, A., et al. Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19 (2000), 5562–5566.
    • (2000) EMBO J. , vol.19 , pp. 5562-5566
    • Kirik, A.1
  • 17
    • 11444267813 scopus 로고    scopus 로고
    • The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution
    • 17 Puchta, H., The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56 (2005), 1–14.
    • (2005) J. Exp. Bot. , vol.56 , pp. 1-14
    • Puchta, H.1
  • 18
    • 84946811623 scopus 로고    scopus 로고
    • Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus
    • Published online October 21, 2015
    • 18 Vu, G.T.H., et al. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome, 2015, 10.3835/plantgenome2015.04.0021 Published online October 21, 2015.
    • (2015) Plant Genome
    • Vu, G.T.H.1
  • 19
    • 0037342581 scopus 로고    scopus 로고
    • Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution
    • 19 Orel, N., Puchta, H., Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol. Biol. 51 (2003), 523–531.
    • (2003) Plant Mol. Biol. , vol.51 , pp. 523-531
    • Orel, N.1    Puchta, H.2
  • 20
    • 84953212100 scopus 로고    scopus 로고
    • A cell cycle-dependent BRCA1–UHRF1 cascade regulates DNA double-strand break repair pathway choice
    • 20 Zhang, H., et al. A cell cycle-dependent BRCA1–UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat. Commun., 7, 2016, 10201.
    • (2016) Nat. Commun. , vol.7 , pp. 10201
    • Zhang, H.1
  • 21
    • 67349246802 scopus 로고    scopus 로고
    • CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle
    • 21 Yun, M.H., Hiom, K., CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459 (2009), 460–463.
    • (2009) Nature , vol.459 , pp. 460-463
    • Yun, M.H.1    Hiom, K.2
  • 22
    • 79956330054 scopus 로고    scopus 로고
    • Interpretation of karyotype evolution should consider chromosome structural constraints
    • 22 Schubert, I., Lysak, M.A., Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27 (2011), 207–216.
    • (2011) Trends Genet. , vol.27 , pp. 207-216
    • Schubert, I.1    Lysak, M.A.2
  • 23
    • 33846704345 scopus 로고    scopus 로고
    • Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity
    • 23 Hedges, D.J., Deininger, P.L., Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat. Res. 616 (2007), 46–59.
    • (2007) Mutat. Res. , vol.616 , pp. 46-59
    • Hedges, D.J.1    Deininger, P.L.2
  • 24
    • 84855882655 scopus 로고    scopus 로고
    • Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome
    • 24 Fawcett, J.A., et al. Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome. Mol. Biol. Evol. 29 (2012), 849–859.
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 849-859
    • Fawcett, J.A.1
  • 25
    • 65249143921 scopus 로고    scopus 로고
    • Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event
    • 25 Fawcett, J.A., et al. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc. Natl Acad. Sci. U.S.A. 106 (2009), 5737–5742.
    • (2009) Proc. Natl Acad. Sci. U.S.A. , vol.106 , pp. 5737-5742
    • Fawcett, J.A.1
  • 26
    • 84957837182 scopus 로고    scopus 로고
    • Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in Buckler mustard
    • 26 Geiser, C., et al. Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in Buckler mustard. Plant Cell 28 (2016), 17–27.
    • (2016) Plant Cell , vol.28 , pp. 17-27
    • Geiser, C.1
  • 27
    • 84940209020 scopus 로고    scopus 로고
    • Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences
    • 27 Tran, T.D., et al. Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Front. Plant Sci., 6, 2015, 613.
    • (2015) Front. Plant Sci. , vol.6 , pp. 613
    • Tran, T.D.1
  • 28
    • 0034872749 scopus 로고    scopus 로고
    • Alteration of chromosome numbers by generation of minichromosomes–is there a lower limit of chromosome size for stable segregation?
    • 28 Schubert, I., Alteration of chromosome numbers by generation of minichromosomes–is there a lower limit of chromosome size for stable segregation?. Cytogenet. Cell Genet. 93 (2001), 175–181.
    • (2001) Cytogenet. Cell Genet. , vol.93 , pp. 175-181
    • Schubert, I.1
  • 29
    • 80051566443 scopus 로고    scopus 로고
    • Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes
    • 29 Voss, S.R., et al. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res. 21 (2011), 1306–1312.
    • (2011) Genome Res. , vol.21 , pp. 1306-1312
    • Voss, S.R.1
  • 30
    • 84901035341 scopus 로고    scopus 로고
    • Meiotic behavior of small chromosomes in maize
    • 30 Birchler, J.A., Han, F., Meiotic behavior of small chromosomes in maize. Front. Plant Sci., 4, 2013, 505.
    • (2013) Front. Plant Sci. , vol.4 , pp. 505
    • Birchler, J.A.1    Han, F.2
  • 31
    • 33645508488 scopus 로고    scopus 로고
    • Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species
    • 31 Lysak, M.A., et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl Acad. Sci. U.S.A. 103 (2006), 5224–5229.
    • (2006) Proc. Natl Acad. Sci. U.S.A. , vol.103 , pp. 5224-5229
    • Lysak, M.A.1
  • 32
    • 57749089666 scopus 로고    scopus 로고
    • Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae)
    • 32 Mandakova, T., Lysak, M.A., Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20 (2008), 2559–2570.
    • (2008) Plant Cell , vol.20 , pp. 2559-2570
    • Mandakova, T.1    Lysak, M.A.2
  • 33
    • 77956810194 scopus 로고    scopus 로고
    • Fast diploidization in close mesopolyploid relatives of Arabidopsis
    • 33 Mandakova, T., et al. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22 (2010), 2277–2290.
    • (2010) Plant Cell , vol.22 , pp. 2277-2290
    • Mandakova, T.1
  • 34
    • 0002592669 scopus 로고
    • A new mechanism for altering chromosome number during karyotype evolution
    • 34 Schubert, I., Rieger, R., A new mechanism for altering chromosome number during karyotype evolution. Theor. Appl. Genet. 70 (1985), 213–221.
    • (1985) Theor. Appl. Genet. , vol.70 , pp. 213-221
    • Schubert, I.1    Rieger, R.2
  • 35
    • 0029018149 scopus 로고
    • A comparative study of karyotypes of muntjacs by chromosome painting
    • 35 Yang, F., et al. A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103 (1995), 642–652.
    • (1995) Chromosoma , vol.103 , pp. 642-652
    • Yang, F.1
  • 36
    • 0030936883 scopus 로고    scopus 로고
    • There is an upper limit of chromosome size for normal development of an organism
    • 36 Schubert, I., Oud, J.L., There is an upper limit of chromosome size for normal development of an organism. Cell 88 (1997), 515–520.
    • (1997) Cell , vol.88 , pp. 515-520
    • Schubert, I.1    Oud, J.L.2
  • 37
    • 0036988045 scopus 로고    scopus 로고
    • Barley chromosome arms longer than half of the spindle axis interfere with nuclear divisions
    • 37 Hudakova, S., et al. Barley chromosome arms longer than half of the spindle axis interfere with nuclear divisions. Cytogenet. Genome Res. 98 (2002), 101–107.
    • (2002) Cytogenet. Genome Res. , vol.98 , pp. 101-107
    • Hudakova, S.1
  • 38
    • 0031823023 scopus 로고    scopus 로고
    • Unscheduled apoptosis in meristematic plant cells is triggered via terminal deletions in artificially elongated chromosome arms
    • 38 Schubert, I., et al. Unscheduled apoptosis in meristematic plant cells is triggered via terminal deletions in artificially elongated chromosome arms. Theor. Appl. Genet. 96 (1998), 1022–1026.
    • (1998) Theor. Appl. Genet. , vol.96 , pp. 1022-1026
    • Schubert, I.1
  • 39
    • 0015495926 scopus 로고
    • Nuclear DNA content and minimum generation time in herbaceous plants
    • 39 Bennett, M.D., Nuclear DNA content and minimum generation time in herbaceous plants. Proc. Biol. Sci. 181 (1972), 109–135.
    • (1972) Proc. Biol. Sci. , vol.181 , pp. 109-135
    • Bennett, M.D.1
  • 40
    • 0035058360 scopus 로고    scopus 로고
    • Evolution of genome size: new approaches to an old problem
    • 40 Petrov, D.A., Evolution of genome size: new approaches to an old problem. Trends Genet. 17 (2001), 23–28.
    • (2001) Trends Genet. , vol.17 , pp. 23-28
    • Petrov, D.A.1
  • 41
    • 48849097481 scopus 로고    scopus 로고
    • The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae)
    • 41 Leitch, I.J., et al. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann. Bot. 101 (2008), 805–814.
    • (2008) Ann. Bot. , vol.101 , pp. 805-814
    • Leitch, I.J.1
  • 42
    • 84942835210 scopus 로고    scopus 로고
    • Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size
    • 42 Kelly, L.J., et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. 208 (2015), 596–607.
    • (2015) New Phytol. , vol.208 , pp. 596-607
    • Kelly, L.J.1
  • 43
    • 84878420758 scopus 로고    scopus 로고
    • The Norway spruce genome sequence and conifer genome evolution
    • 43 Nystedt, B., et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497 (2013), 579–584.
    • (2013) Nature , vol.497 , pp. 579-584
    • Nystedt, B.1
  • 44
    • 0034612315 scopus 로고    scopus 로고
    • Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence
    • 44 Kalendar, R., et al. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl Acad. Sci. U.S.A. 97 (2000), 6603–6607.
    • (2000) Proc. Natl Acad. Sci. U.S.A. , vol.97 , pp. 6603-6607
    • Kalendar, R.1
  • 45
    • 84954289258 scopus 로고    scopus 로고
    • Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny
    • 45 Clark, J., et al. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol. 210 (2016), 1072–1082.
    • (2016) New Phytol. , vol.210 , pp. 1072-1082
    • Clark, J.1
  • 46
    • 84930926129 scopus 로고    scopus 로고
    • A solution to the C-value paradox and the function of junk DNA: the genome balance hypothesis
    • 46 Freeling, M., et al. A solution to the C-value paradox and the function of junk DNA: the genome balance hypothesis. Mol. Plant 8 (2015), 899–910.
    • (2015) Mol. Plant , vol.8 , pp. 899-910
    • Freeling, M.1
  • 47
    • 0042423488 scopus 로고    scopus 로고
    • Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences
    • 47 Navratilova, A., et al. Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann. Bot. 91 (2003), 921–926.
    • (2003) Ann. Bot. , vol.91 , pp. 921-926
    • Navratilova, A.1
  • 48
    • 0347255538 scopus 로고
    • Alteration by centric fission of the diploid chromosome-number in Vicia faba L
    • 48 Schubert, I., Rieger, R., Alteration by centric fission of the diploid chromosome-number in Vicia faba L. Genetica 81 (1990), 67–69.
    • (1990) Genetica , vol.81 , pp. 67-69
    • Schubert, I.1    Rieger, R.2
  • 50
    • 0027442202 scopus 로고
    • Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo
    • 50 Sullivan, W., et al. Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo. Mol. Biol. Cell 4 (1993), 885–896.
    • (1993) Mol. Biol. Cell , vol.4 , pp. 885-896
    • Sullivan, W.1
  • 51
    • 33745888167 scopus 로고    scopus 로고
    • Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size
    • 51 Greilhuber, J., et al. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol. (Stuttg.) 8 (2006), 770–777.
    • (2006) Plant Biol. (Stuttg.) , vol.8 , pp. 770-777
    • Greilhuber, J.1
  • 52
    • 84946787990 scopus 로고    scopus 로고
    • Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea
    • 52 Tran, T.D., et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. 84 (2015), 1087–1099.
    • (2015) Plant J. , vol.84 , pp. 1087-1099
    • Tran, T.D.1
  • 53
    • 84903579362 scopus 로고    scopus 로고
    • Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid
    • 53 Vu, G.T., et al. Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell 26 (2014), 2156–2167.
    • (2014) Plant Cell , vol.26 , pp. 2156-2167
    • Vu, G.T.1
  • 54
    • 84859623413 scopus 로고    scopus 로고
    • Ecological and genetic factors linked to contrasting genome dynamics in seed plants
    • 54 Leitch, A.R., Leitch, I.J., Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 194 (2012), 629–646.
    • (2012) New Phytol. , vol.194 , pp. 629-646
    • Leitch, A.R.1    Leitch, I.J.2
  • 55
    • 85024917092 scopus 로고    scopus 로고
    • Early genome duplications in conifers and other seed plants
    • 55 Li, Z., et al. Early genome duplications in conifers and other seed plants. Sci. Adv., 1, 2015, e1501084.
    • (2015) Sci. Adv. , vol.1 , pp. e1501084
    • Li, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.