메뉴 건너뛰기




Volumn 428, Issue 16, 2016, Pages 3305-3324

Molecular Functions of Glycoconjugates in Autophagy

Author keywords

Autophagy; Glycoconjugate; Glycosylation; Lectin; O GlcNAc

Indexed keywords

DECORIN; ENDOREPELLIN; GALECTIN; GLYCAN; GLYCOCONJUGATE; GLYCOPROTEIN; HYALURONIC ACID; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; KRINGLE 5; LACRITIN; LAMININ ALPHA2; LIGAND; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PERLECAN; PLANT LECTIN; PROTEOGLYCAN; THROMBOSPONDIN 1; UNCLASSIFIED DRUG; OLIGOSACCHARIDE; POLYSACCHARIDE;

EID: 84982070418     PISSN: 00222836     EISSN: 10898638     Source Type: Journal    
DOI: 10.1016/j.jmb.2016.06.011     Document Type: Review
Times cited : (37)

References (213)
  • 1
    • 8344247016 scopus 로고    scopus 로고
    • Autophagy defends cells against invading group A streptococcus
    • [1] Nakagawa, I., et al. Autophagy defends cells against invading group A streptococcus. Science 306:5698 (2004), 1037–1040.
    • (2004) Science , vol.306 , Issue.5698 , pp. 1037-1040
    • Nakagawa, I.1
  • 2
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • [2] Kuma, A., et al. The role of autophagy during the early neonatal starvation period. Nature 432:7020 (2004), 1032–1036.
    • (2004) Nature , vol.432 , Issue.7020 , pp. 1032-1036
    • Kuma, A.1
  • 3
    • 85003048223 scopus 로고    scopus 로고
    • The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation
    • e05289
    • [3] Wei, Y., et al. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife, 4, 2015, e05289.
    • (2015) Elife , vol.4
    • Wei, Y.1
  • 4
    • 0028800171 scopus 로고
    • Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
    • [4] Harding, T.M., et al. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 131:3 (1995), 591–602.
    • (1995) J. Cell Biol. , vol.131 , Issue.3 , pp. 591-602
    • Harding, T.M.1
  • 5
    • 36849088609 scopus 로고    scopus 로고
    • Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
    • [5] Berry, D.L., Baehrecke, E.H., Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:6 (2007), 1137–1148.
    • (2007) Cell , vol.131 , Issue.6 , pp. 1137-1148
    • Berry, D.L.1    Baehrecke, E.H.2
  • 6
    • 36849021043 scopus 로고    scopus 로고
    • Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila
    • [6] Juhász, G., et al. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 21:23 (2007), 3061–3066.
    • (2007) Genes Dev. , vol.21 , Issue.23 , pp. 3061-3066
    • Juhász, G.1
  • 7
    • 34447636066 scopus 로고    scopus 로고
    • Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan
    • [7] Kim, Y., Sun, H., Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 6:4 (2007), 489–503.
    • (2007) Aging Cell , vol.6 , Issue.4 , pp. 489-503
    • Kim, Y.1    Sun, H.2
  • 8
    • 34250811414 scopus 로고    scopus 로고
    • The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains
    • [8] Zhang, Y., et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:4 (2007), 337–346.
    • (2007) Autophagy , vol.3 , Issue.4 , pp. 337-346
    • Zhang, Y.1
  • 9
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • [9] Komatsu, M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:7095 (2006), 880–884.
    • (2006) Nature , vol.441 , Issue.7095 , pp. 880-884
    • Komatsu, M.1
  • 10
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • [10] Hara, T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:7095 (2006), 885–889.
    • (2006) Nature , vol.441 , Issue.7095 , pp. 885-889
    • Hara, T.1
  • 11
    • 33745713171 scopus 로고    scopus 로고
    • Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
    • [11] Degenhardt, K., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:1 (2006), 51–64.
    • (2006) Cancer Cell , vol.10 , Issue.1 , pp. 51-64
    • Degenhardt, K.1
  • 12
    • 24744441497 scopus 로고    scopus 로고
    • Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
    • [12] Onodera, J., Ohsumi, Y., Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem., 2005(280), 2005, 36.
    • (2005) J. Biol. Chem. , vol.2005 , Issue.280 , pp. 36
    • Onodera, J.1    Ohsumi, Y.2
  • 13
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • [13] Lum, J.J., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:2 (2005), 237–248.
    • (2005) Cell , vol.120 , Issue.2 , pp. 237-248
    • Lum, J.J.1
  • 14
    • 33750366092 scopus 로고    scopus 로고
    • Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
    • [14] Young, A.R., et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:Pt 18 (2006), 3888–3900.
    • (2006) J. Cell Sci. , vol.119 , pp. 3888-3900
    • Young, A.R.1
  • 15
    • 77954695260 scopus 로고    scopus 로고
    • p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
    • [15] Okatsu, K., et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15:8 (2010), 887–900.
    • (2010) Genes Cells , vol.15 , Issue.8 , pp. 887-900
    • Okatsu, K.1
  • 16
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • [16] Vives-Bauza, C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U. S. A. 107:1 (2010), 378–383.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.1 , pp. 378-383
    • Vives-Bauza, C.1
  • 17
    • 0032563798 scopus 로고    scopus 로고
    • A protein conjugation system essential for autophagy
    • [17] Mizushima, N., et al. A protein conjugation system essential for autophagy. Nature 395:6700 (1998), 395–398.
    • (1998) Nature , vol.395 , Issue.6700 , pp. 395-398
    • Mizushima, N.1
  • 18
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • [18] Itakura, E., Mizushima, N., Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:6 (2010), 764–776.
    • (2010) Autophagy , vol.6 , Issue.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 19
    • 84857954964 scopus 로고    scopus 로고
    • Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens
    • M111.014035
    • [19] Dengjel, J., et al. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol. Cell. Proteomics, 11(3), 2012, M111.014035.
    • (2012) Mol. Cell. Proteomics , vol.11 , Issue.3
    • Dengjel, J.1
  • 20
    • 84946234468 scopus 로고    scopus 로고
    • Autophagy and proteins involved in vesicular trafficking
    • [20] Amaya, C., Fader, C.M., Colombo, M.I., Autophagy and proteins involved in vesicular trafficking. FEBS Lett. 589:22 (2015), 3343–3353.
    • (2015) FEBS Lett. , vol.589 , Issue.22 , pp. 3343-3353
    • Amaya, C.1    Fader, C.M.2    Colombo, M.I.3
  • 21
    • 84891747382 scopus 로고    scopus 로고
    • The machinery of macroautophagy
    • [21] Feng, Y., et al. The machinery of macroautophagy. Cell Res. 24:1 (2014), 24–41.
    • (2014) Cell Res. , vol.24 , Issue.1 , pp. 24-41
    • Feng, Y.1
  • 22
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: core molecular machinery and signaling regulation
    • [22] Yang, Z., Klionsky, D.J., Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22:2 (2010), 124–131.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , Issue.2 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 23
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • [23] Lamb, C.A., Yoshimori, T., Tooze, S.A., The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:12 (2013), 759–774.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , Issue.12 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 24
    • 84864991509 scopus 로고    scopus 로고
    • Atg9 vesicles are an important membrane source during early steps of autophagosome formation
    • [24] Yamamoto, H., et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198:2 (2012), 219–233.
    • (2012) J. Cell Biol. , vol.198 , Issue.2 , pp. 219-233
    • Yamamoto, H.1
  • 25
    • 84874274351 scopus 로고    scopus 로고
    • Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy
    • Feb 5 ra9
    • [25] Li, S., et al. Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci. Signal., 6(261), Feb 5 2013, ra9, 10.1126/scisignal.2003730.
    • (2013) Sci. Signal. , vol.6 , Issue.261
    • Li, S.1
  • 26
    • 84949057575 scopus 로고    scopus 로고
    • FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy
    • [26] Olsvik, H.L., et al. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J. Biol. Chem. 290:49 (2015), 29361–29374.
    • (2015) J. Biol. Chem. , vol.290 , Issue.49 , pp. 29361-29374
    • Olsvik, H.L.1
  • 27
    • 76149086512 scopus 로고    scopus 로고
    • FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
    • [27] Pankiv, S., et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188:2 (2010), 253–269.
    • (2010) J. Cell Biol. , vol.188 , Issue.2 , pp. 253-269
    • Pankiv, S.1
  • 28
    • 84920448565 scopus 로고    scopus 로고
    • PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
    • [28] McEwan, D.G., et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:1 (2015), 39–54.
    • (2015) Mol. Cell , vol.57 , Issue.1 , pp. 39-54
    • McEwan, D.G.1
  • 29
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17
    • [29] Jiang, P., et al. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25:8 (2014), 1327–1337.
    • (2014) Mol. Biol. Cell , vol.25 , Issue.8 , pp. 1327-1337
    • Jiang, P.1
  • 30
    • 84922366329 scopus 로고    scopus 로고
    • Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila
    • [30] Morelli, E., et al. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 10:12 (2014), 2251–2268.
    • (2014) Autophagy , vol.10 , Issue.12 , pp. 2251-2268
    • Morelli, E.1
  • 31
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • [31] Itakura, E., Kishi-Itakura, C., Mizushima, N., The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:6 (2012), 1256–1269.
    • (2012) Cell , vol.151 , Issue.6 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 32
    • 79551546749 scopus 로고    scopus 로고
    • Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
    • [32] Renna, M., et al. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124:Pt 3 (2011), 469–482.
    • (2011) J. Cell Sci. , vol.124 , pp. 469-482
    • Renna, M.1
  • 33
    • 7244255989 scopus 로고    scopus 로고
    • Role for Rab7 in maturation of late autophagic vacuoles
    • [33] Jäger, S., et al. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117:Pt 20 (2004), 4837–4848.
    • (2004) J. Cell Sci. , vol.117 , pp. 4837-4848
    • Jäger, S.1
  • 34
    • 3242877218 scopus 로고    scopus 로고
    • Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
    • [34] Gutierrez, M.G., et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117:Pt 13 (2004), 2687–2697.
    • (2004) J. Cell Sci. , vol.117 , pp. 2687-2697
    • Gutierrez, M.G.1
  • 35
    • 0034707036 scopus 로고    scopus 로고
    • A ubiquitin-like system mediates protein lipidation
    • [35] Ichimura, Y., et al. A ubiquitin-like system mediates protein lipidation. Nature 408:6811 (2000), 488–492.
    • (2000) Nature , vol.408 , Issue.6811 , pp. 488-492
    • Ichimura, Y.1
  • 36
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • [36] Kim, J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:2 (2011), 132–141.
    • (2011) Nat. Cell Biol. , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1
  • 37
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • [37] Russell, R.C., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:7 (2013), 741–750.
    • (2013) Nat. Cell Biol. , vol.15 , Issue.7 , pp. 741-750
    • Russell, R.C.1
  • 38
    • 65249106104 scopus 로고    scopus 로고
    • Regulation of autophagy by the p300 acetyltransferase
    • [38] Lee, I.H., Finkel, T., Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284:10 (2009), 6322–6328.
    • (2009) J. Biol. Chem. , vol.284 , Issue.10 , pp. 6322-6328
    • Lee, I.H.1    Finkel, T.2
  • 39
    • 79959886743 scopus 로고    scopus 로고
    • Complex inhibitory effects of nitric oxide on autophagy
    • [39] Sarkar, S., et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 43:1 (2011), 19–32.
    • (2011) Mol. Cell , vol.43 , Issue.1 , pp. 19-32
    • Sarkar, S.1
  • 40
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • [40] Settembre, C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:5 (2012), 1095–1108.
    • (2012) EMBO J. , vol.31 , Issue.5 , pp. 1095-1108
    • Settembre, C.1
  • 41
    • 84884200207 scopus 로고    scopus 로고
    • Basal autophagy is required for the efficient catabolism of sialyloligosaccharides
    • [41] Seino, J., et al. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J. Biol. Chem. 288:37 (2013), 26898–26907.
    • (2013) J. Biol. Chem. , vol.288 , Issue.37 , pp. 26898-26907
    • Seino, J.1
  • 42
    • 0025217177 scopus 로고
    • Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry
    • [42] Yamamoto, A., Masaki, R., Tashiro, Y., Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J. Histochem. Cytochem. 38:4 (1990), 573–580.
    • (1990) J. Histochem. Cytochem. , vol.38 , Issue.4 , pp. 573-580
    • Yamamoto, A.1    Masaki, R.2    Tashiro, Y.3
  • 43
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • [43] Axe, E.L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:4 (2008), 685–701.
    • (2008) J. Cell Biol. , vol.182 , Issue.4 , pp. 685-701
    • Axe, E.L.1
  • 44
    • 71649112895 scopus 로고    scopus 로고
    • 3D tomography reveals connections between the phagophore and endoplasmic reticulum
    • (Epub 2009 Nov 8., 2009. 5(8): p. 1180–5 Nov
    • [44] Ylä-Anttila, P., et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:8 (Nov 2009), 1180–1185 (Epub 2009 Nov 8., 2009. 5(8): p. 1180–5.
    • (2009) Autophagy , vol.5 , Issue.8 , pp. 1180-1185
    • Ylä-Anttila, P.1
  • 45
    • 71649087199 scopus 로고    scopus 로고
    • A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
    • [45] Hayashi-Nishino, M., et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:12 (2009), 1433–1437.
    • (2009) Nat. Cell Biol. , vol.11 , Issue.12 , pp. 1433-1437
    • Hayashi-Nishino, M.1
  • 46
    • 77955131007 scopus 로고    scopus 로고
    • Plasma membrane contributes to the formation of pre-autophagosomal structures
    • [46] Ravikumar, B., et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:8 (2010), 747–757.
    • (2010) Nat. Cell Biol. , vol.12 , Issue.8 , pp. 747-757
    • Ravikumar, B.1
  • 47
    • 84881506338 scopus 로고    scopus 로고
    • The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • e00947
    • [47] Ge, L., et al. The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife, 2, 2013, e00947.
    • (2013) Elife , vol.2
    • Ge, L.1
  • 48
    • 77954197767 scopus 로고    scopus 로고
    • Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae
    • [48] van der Vaart, A., Griffith, J., Reggiori, F., Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell 21:13 (2010), 2270–2284.
    • (2010) Mol. Biol. Cell , vol.21 , Issue.13 , pp. 2270-2284
    • van der Vaart, A.1    Griffith, J.2    Reggiori, F.3
  • 49
    • 27644544004 scopus 로고    scopus 로고
    • Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts
    • [49] Reggiori, F., et al. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:2 (2005), 101–109.
    • (2005) Autophagy , vol.1 , Issue.2 , pp. 101-109
    • Reggiori, F.1
  • 50
    • 84925307913 scopus 로고    scopus 로고
    • Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
    • [50] Suzuki, S.W., et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. U. S. A. 112:11 (2015), 3350–3355.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , Issue.11 , pp. 3350-3355
    • Suzuki, S.W.1
  • 51
    • 59449097721 scopus 로고    scopus 로고
    • Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy
    • [51] He, C., et al. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell 19:12 (2008), 5506–5516.
    • (2008) Mol. Biol. Cell , vol.19 , Issue.12 , pp. 5506-5516
    • He, C.1
  • 52
    • 78650816366 scopus 로고    scopus 로고
    • Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy
    • [52] Takahashi, Y., et al. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy, 7(1), 2011.
    • (2011) Autophagy , vol.7 , Issue.1
    • Takahashi, Y.1
  • 53
    • 0033202958 scopus 로고    scopus 로고
    • The lectin ERGIC-53 is a cargo transport receptor for glycoproteins
    • [53] Appenzeller, C., et al. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1:6 (1999), 330–334.
    • (1999) Nat. Cell Biol. , vol.1 , Issue.6 , pp. 330-334
    • Appenzeller, C.1
  • 54
    • 0035192612 scopus 로고    scopus 로고
    • Autophagosome requires specific early sec proteins for its formation and NSF/SNARE for vacuolar fusion
    • [54] Ishihara, N., et al. Autophagosome requires specific early sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12:11 (2001), 3690–3702.
    • (2001) Mol. Biol. Cell , vol.12 , Issue.11 , pp. 3690-3702
    • Ishihara, N.1
  • 55
    • 84894350140 scopus 로고    scopus 로고
    • The ER–Golgi intermediate compartment feeds the phagophore membrane
    • [55] Ge, L., Schekman, R., The ER–Golgi intermediate compartment feeds the phagophore membrane. Autophagy 10:1 (2014), 170–172.
    • (2014) Autophagy , vol.10 , Issue.1 , pp. 170-172
    • Ge, L.1    Schekman, R.2
  • 56
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment
    • e04135
    • [56] Ge, L., Zhang, M., Schekman, R., Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment. Elife, 3, 2014, e04135.
    • (2014) Elife , vol.3
    • Ge, L.1    Zhang, M.2    Schekman, R.3
  • 57
    • 0028233498 scopus 로고
    • COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum
    • [57] Barlowe, C., et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:6 (1994), 895–907.
    • (1994) Cell , vol.77 , Issue.6 , pp. 895-907
    • Barlowe, C.1
  • 58
    • 1542298251 scopus 로고    scopus 로고
    • Regulation of a COPII component by cytosolic O-glycosylation during mitosis
    • [58] Dudognon, P., et al. Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett. 561:1–3 (2004), 44–50.
    • (2004) FEBS Lett. , vol.561 , Issue.1-3 , pp. 44-50
    • Dudognon, P.1
  • 59
    • 79954434103 scopus 로고    scopus 로고
    • The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways
    • [59] Zachara, N.E., et al. The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40:3 (2011), 793–808.
    • (2011) Amino Acids , vol.40 , Issue.3 , pp. 793-808
    • Zachara, N.E.1
  • 60
    • 12244260748 scopus 로고    scopus 로고
    • Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids
    • [60] Akiyoshi, K., et al. Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids. FEBS Lett. 534:1–3 (2003), 33–38.
    • (2003) FEBS Lett. , vol.534 , Issue.1-3 , pp. 33-38
    • Akiyoshi, K.1
  • 61
    • 84899768745 scopus 로고    scopus 로고
    • Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation
    • [61] Matarrese, P., et al. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10:5 (2014), 750–765.
    • (2014) Autophagy , vol.10 , Issue.5 , pp. 750-765
    • Matarrese, P.1
  • 62
    • 76449116319 scopus 로고    scopus 로고
    • Gangliosides induce autophagic cell death in astrocytes
    • [62] Hwang, J., et al. Gangliosides induce autophagic cell death in astrocytes. Br. J. Pharmacol. 159:3 (2010), 586–603.
    • (2010) Br. J. Pharmacol. , vol.159 , Issue.3 , pp. 586-603
    • Hwang, J.1
  • 63
    • 77956392170 scopus 로고    scopus 로고
    • NF-κB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes
    • [63] Hwang, J., et al. NF-κB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes. J. Neuroimmunol. 226:1–2 (2010), 66–72.
    • (2010) J. Neuroimmunol. , vol.226 , Issue.1-2 , pp. 66-72
    • Hwang, J.1
  • 64
    • 44849102178 scopus 로고    scopus 로고
    • Getting in and out from calnexin/calreticulin cycles
    • [64] Caramelo, J.J., Parodi, A.J., Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283:16 (2008), 10221–10225.
    • (2008) J. Biol. Chem. , vol.283 , Issue.16 , pp. 10221-10225
    • Caramelo, J.J.1    Parodi, A.J.2
  • 65
    • 0029876344 scopus 로고    scopus 로고
    • ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins
    • [65] Itin, C., et al. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol. Biol. Cell 7:3 (1996), 483–493.
    • (1996) Mol. Biol. Cell , vol.7 , Issue.3 , pp. 483-493
    • Itin, C.1
  • 66
    • 84920941027 scopus 로고    scopus 로고
    • Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy
    • [66] Jiang, Q.L., et al. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif. 48:1 (2015), 17–28.
    • (2015) Cell Prolif. , vol.48 , Issue.1 , pp. 17-28
    • Jiang, Q.L.1
  • 67
    • 0023158844 scopus 로고
    • Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides
    • [67] Bhattacharyya, L., et al. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides. J. Biol. Chem. 262:3 (1987), 1288–1293.
    • (1987) J. Biol. Chem. , vol.262 , Issue.3 , pp. 1288-1293
    • Bhattacharyya, L.1
  • 68
    • 0017327512 scopus 로고
    • Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells
    • [68] Albertini, D.F., Anderson, E., Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells. J. Cell Biol. 73:1 (1977), 111–127.
    • (1977) J. Cell Biol. , vol.73 , Issue.1 , pp. 111-127
    • Albertini, D.F.1    Anderson, E.2
  • 69
    • 0025019682 scopus 로고
    • Modulation of the binding and endocytosis of concanavalin A by guinea pig keratinocytes: reversible antagonistic effects of cholesterol and phospholipid-liposomes
    • [69] Callaghan, T.M., et al. Modulation of the binding and endocytosis of concanavalin A by guinea pig keratinocytes: reversible antagonistic effects of cholesterol and phospholipid-liposomes. J. Investig. Dermatol. 94:1 (1990), 58–64.
    • (1990) J. Investig. Dermatol. , vol.94 , Issue.1 , pp. 58-64
    • Callaghan, T.M.1
  • 70
    • 84893369762 scopus 로고    scopus 로고
    • Role of PI3K/Akt/mTOR and MEK/ERK pathway in concanavalin A induced autophagy in HeLa cells
    • [70] Roy, B., et al. Role of PI3K/Akt/mTOR and MEK/ERK pathway in concanavalin A induced autophagy in HeLa cells. Chem. Biol. Interact. 210 (2014), 96–102.
    • (2014) Chem. Biol. Interact. , vol.210 , pp. 96-102
    • Roy, B.1
  • 71
    • 69449092724 scopus 로고    scopus 로고
    • Activation of the PI3K–Akt–mTOR signaling pathway promotes necrotic cell death via suppression of autophagy
    • [71] Wu, Y.T., et al. Activation of the PI3K–Akt–mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5:6 (2009), 824–834.
    • (2009) Autophagy , vol.5 , Issue.6 , pp. 824-834
    • Wu, Y.T.1
  • 72
    • 84893578869 scopus 로고    scopus 로고
    • Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1–MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells
    • [72] Pratt, J., Annabi, B., Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1–MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal. 26:5 (2014), 917–924.
    • (2014) Cell. Signal. , vol.26 , Issue.5 , pp. 917-924
    • Pratt, J.1    Annabi, B.2
  • 73
    • 34247242084 scopus 로고    scopus 로고
    • Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision
    • [73] Belkaid, A., et al. Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 9:4 (2007), 332–340.
    • (2007) Neoplasia , vol.9 , Issue.4 , pp. 332-340
    • Belkaid, A.1
  • 74
    • 84864436118 scopus 로고    scopus 로고
    • Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells
    • [74] Pratt, J., Roy, R., Annabi, B., Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology 22:9 (2012), 1245–1255.
    • (2012) Glycobiology , vol.22 , Issue.9 , pp. 1245-1255
    • Pratt, J.1    Roy, R.2    Annabi, B.3
  • 75
    • 0033942613 scopus 로고    scopus 로고
    • BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore
    • [75] Vande Velde, C., et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol. 20:15 (2000), 5454–5468.
    • (2000) Mol. Cell. Biol. , vol.20 , Issue.15 , pp. 5454-5468
    • Vande Velde, C.1
  • 76
    • 79952617818 scopus 로고    scopus 로고
    • Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover
    • [76] Rikka, S., et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 18:4 (2011), 721–731.
    • (2011) Cell Death Differ. , vol.18 , Issue.4 , pp. 721-731
    • Rikka, S.1
  • 77
    • 58749105634 scopus 로고    scopus 로고
    • Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS–p38–p53 pathway
    • [77] Liu, B., et al. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS–p38–p53 pathway. Cancer Lett. 275:1 (2009), 54–60.
    • (2009) Cancer Lett. , vol.275 , Issue.1 , pp. 54-60
    • Liu, B.1
  • 78
    • 78650250800 scopus 로고    scopus 로고
    • Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras–Raf and PI3K–Akt signaling pathways
    • [78] Liu, B., et al. Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras–Raf and PI3K–Akt signaling pathways. Biochimie 92:12 (2010), 1934–1938.
    • (2010) Biochimie , vol.92 , Issue.12 , pp. 1934-1938
    • Liu, B.1
  • 79
    • 84921839935 scopus 로고    scopus 로고
    • Evolving mechanistic insights into galectin functions
    • [79] Arthur, C.M., et al. Evolving mechanistic insights into galectin functions. Methods Mol. Biol. 1207 (2015), 1–35.
    • (2015) Methods Mol. Biol. , vol.1207 , pp. 1-35
    • Arthur, C.M.1
  • 80
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • [80] Thurston, T.L., et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:7385 (2012), 414–418.
    • (2012) Nature , vol.482 , Issue.7385 , pp. 414-418
    • Thurston, T.L.1
  • 81
    • 84943747270 scopus 로고    scopus 로고
    • Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay
    • [81] Aits, S., et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11:8 (2015), 1408–1424.
    • (2015) Autophagy , vol.11 , Issue.8 , pp. 1408-1424
    • Aits, S.1
  • 82
    • 77954271859 scopus 로고    scopus 로고
    • Galectin-3, a marker for vacuole lysis by invasive pathogens
    • [82] Paz, I., et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 12:4 (2010), 530–544.
    • (2010) Cell. Microbiol. , vol.12 , Issue.4 , pp. 530-544
    • Paz, I.1
  • 83
    • 79952348751 scopus 로고    scopus 로고
    • The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway
    • [83] Cemma, M., Kim, P.K., Brumell, J.H., The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7:3 (2011), 341–345.
    • (2011) Autophagy , vol.7 , Issue.3 , pp. 341-345
    • Cemma, M.1    Kim, P.K.2    Brumell, J.H.3
  • 84
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • [84] Zheng, Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183:9 (2009), 5909–5916.
    • (2009) J. Immunol. , vol.183 , Issue.9 , pp. 5909-5916
    • Zheng, Y.T.1
  • 85
    • 84898939299 scopus 로고    scopus 로고
    • Autophagy induced by calcium phosphate precipitates targets damaged endosomes
    • [85] Chen, X., et al. Autophagy induced by calcium phosphate precipitates targets damaged endosomes. J. Biol. Chem. 289:16 (2014), 11162–11174.
    • (2014) J. Biol. Chem. , vol.289 , Issue.16 , pp. 11162-11174
    • Chen, X.1
  • 86
    • 0020328493 scopus 로고
    • Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy
    • [86] Loyter, A., et al. Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy. Exp. Cell Res. 139:1 (1982), 223–234.
    • (1982) Exp. Cell Res. , vol.139 , Issue.1 , pp. 223-234
    • Loyter, A.1
  • 87
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • [87] Maejima, I., et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32:17 (2013), 2336–2347.
    • (2013) EMBO J. , vol.32 , Issue.17 , pp. 2336-2347
    • Maejima, I.1
  • 88
    • 84876117810 scopus 로고    scopus 로고
    • C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways
    • [88] Plato, A., Willment, J.A., Brown, G.D., C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int. Rev. Immunol. 32:2 (2013), 134–156.
    • (2013) Int. Rev. Immunol. , vol.32 , Issue.2 , pp. 134-156
    • Plato, A.1    Willment, J.A.2    Brown, G.D.3
  • 89
    • 84880276658 scopus 로고    scopus 로고
    • Glycobiology of cell death: when glycans and lectins govern cell fate
    • [89] Lichtenstein, R.G., Rabinovich, G.A., Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 20:8 (2013), 976–986.
    • (2013) Cell Death Differ. , vol.20 , Issue.8 , pp. 976-986
    • Lichtenstein, R.G.1    Rabinovich, G.A.2
  • 90
    • 84936871761 scopus 로고    scopus 로고
    • Recent insights into structures and functions of C-type lectins in the immune system
    • [90] Drickamer, K., Taylor, M.E., Recent insights into structures and functions of C-type lectins in the immune system. Curr. Opin. Struct. Biol. 34 (2015), 26–34.
    • (2015) Curr. Opin. Struct. Biol. , vol.34 , pp. 26-34
    • Drickamer, K.1    Taylor, M.E.2
  • 91
    • 84938818192 scopus 로고    scopus 로고
    • CR3 and dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk–JNK–AP-1 pathway
    • e1004985
    • [91] Huang, J.H., et al. CR3 and dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk–JNK–AP-1 pathway. PLoS Pathog., 11(7), 2015, e1004985.
    • (2015) PLoS Pathog. , vol.11 , Issue.7
    • Huang, J.H.1
  • 92
    • 27144521657 scopus 로고    scopus 로고
    • Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production
    • [92] Underhill, D.M., et al. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:7 (2005), 2543–2550.
    • (2005) Blood , vol.106 , Issue.7 , pp. 2543-2550
    • Underhill, D.M.1
  • 93
    • 84867268375 scopus 로고    scopus 로고
    • Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens
    • [93] Ma, J., et al. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J. Biol. Chem. 287:41 (2012), 34149–34156.
    • (2012) J. Biol. Chem. , vol.287 , Issue.41 , pp. 34149-34156
    • Ma, J.1
  • 94
    • 84945156965 scopus 로고    scopus 로고
    • SHIP-1 couples to the dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to Candida albicans
    • [94] Blanco-Menéndez, N., et al. SHIP-1 couples to the dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to Candida albicans. J. Immunol. 95:9 (2015), 4466–4478.
    • (2015) J. Immunol. , vol.95 , Issue.9 , pp. 4466-4478
    • Blanco-Menéndez, N.1
  • 95
    • 84922295311 scopus 로고    scopus 로고
    • Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages
    • [95] Tam, J.M., et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 210:11 (2014), 1844–1854.
    • (2014) J. Infect. Dis. , vol.210 , Issue.11 , pp. 1844-1854
    • Tam, J.M.1
  • 96
    • 84880668491 scopus 로고    scopus 로고
    • Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling
    • [96] Kyrmizi, I., et al. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 91:3 (2013), 1287–1299.
    • (2013) J. Immunol. , vol.91 , Issue.3 , pp. 1287-1299
    • Kyrmizi, I.1
  • 97
    • 84896723873 scopus 로고    scopus 로고
    • Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production
    • [97] Ma, J., et al. Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J. Immunol. 192:4 (2014), 1356–1360.
    • (2014) J. Immunol. , vol.192 , Issue.4 , pp. 1356-1360
    • Ma, J.1
  • 98
    • 84902141285 scopus 로고    scopus 로고
    • Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages
    • [98] Öhman, T., et al. Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages. J. Immunol. 192:12 (2014), 5952–5962.
    • (2014) J. Immunol. , vol.192 , Issue.12 , pp. 5952-5962
    • Öhman, T.1
  • 99
    • 84883114523 scopus 로고    scopus 로고
    • Overexpression of Atg5 in mice activates autophagy and extends lifespan
    • [99] Pyo, J.O., et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun., 4, 2013, 2300.
    • (2013) Nat. Commun. , vol.4 , pp. 2300
    • Pyo, J.O.1
  • 100
    • 0035494493 scopus 로고    scopus 로고
    • Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation
    • [100] Vieira, O.V., et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155:1 (2001), 19–25.
    • (2001) J. Cell Biol. , vol.155 , Issue.1 , pp. 19-25
    • Vieira, O.V.1
  • 101
    • 84870861513 scopus 로고    scopus 로고
    • Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes
    • [101] Henault, J., et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37:6 (2012), 986–997.
    • (2012) Immunity , vol.37 , Issue.6 , pp. 986-997
    • Henault, J.1
  • 102
    • 80054825045 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
    • [102] Martinez, J., et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. U. S. A. 108:42 (2011), 17396–17401.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.42 , pp. 17396-17401
    • Martinez, J.1
  • 103
    • 0031897801 scopus 로고    scopus 로고
    • Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements
    • [103] Barnden, M.J., et al. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76:1 (1998), 34–40.
    • (1998) Immunol. Cell Biol. , vol.76 , Issue.1 , pp. 34-40
    • Barnden, M.J.1
  • 104
    • 84926686351 scopus 로고    scopus 로고
    • Three decades of research on O-GlcNAcylation—a major nutrient sensor that regulates signaling, transcription and cellular metabolism
    • [104] Hart, G.W., Three decades of research on O-GlcNAcylation—a major nutrient sensor that regulates signaling, transcription and cellular metabolism. Front. Endocrinol. (Lausanne), 5, 2014, 183.
    • (2014) Front. Endocrinol. (Lausanne) , vol.5 , pp. 183
    • Hart, G.W.1
  • 105
    • 58649095123 scopus 로고    scopus 로고
    • Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose
    • [105] Hu, Y., et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J. Biol. Chem. 284:1 (2009), 547–555.
    • (2009) J. Biol. Chem. , vol.284 , Issue.1 , pp. 547-555
    • Hu, Y.1
  • 106
    • 47749149232 scopus 로고    scopus 로고
    • O-GlcNAc regulates FoxO activation in response to glucose
    • [106] Housley, M.P., et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283:24 (2008), 16283–16292.
    • (2008) J. Biol. Chem. , vol.283 , Issue.24 , pp. 16283-16292
    • Housley, M.P.1
  • 107
    • 84900540044 scopus 로고    scopus 로고
    • Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis
    • [107] Aguilar, H., et al. Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am. J. Phys. Cell Physiol. 306:9 (2014), C794–C804.
    • (2014) Am. J. Phys. Cell Physiol. , vol.306 , Issue.9 , pp. C794-C804
    • Aguilar, H.1
  • 108
    • 25444501339 scopus 로고    scopus 로고
    • Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis
    • [108] Slawson, C., et al. Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280:38 (2005), 32944–32956.
    • (2005) J. Biol. Chem. , vol.280 , Issue.38 , pp. 32944-32956
    • Slawson, C.1
  • 109
    • 80054818714 scopus 로고    scopus 로고
    • Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated
    • [109] Zhang, S., et al. Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286:43 (2011), 37483–37495.
    • (2011) J. Biol. Chem. , vol.286 , Issue.43 , pp. 37483-37495
    • Zhang, S.1
  • 110
    • 70350482930 scopus 로고    scopus 로고
    • O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death
    • [110] Ngoh, G.A., et al. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am. J. Physiol. Heart Circ. Physiol. 297:5 (2009), H1711–H1719.
    • (2009) Am. J. Physiol. Heart Circ. Physiol. , vol.297 , Issue.5 , pp. H1711-H1719
    • Ngoh, G.A.1
  • 111
    • 84878470417 scopus 로고    scopus 로고
    • O-GlcNAcylation of alphaB-crystallin regulates its stress-induced translocation and cytoprotection
    • [111] Krishnamoorthy, V., Donofrio, A.J., Martin, J.L., O-GlcNAcylation of alphaB-crystallin regulates its stress-induced translocation and cytoprotection. Mol. Cell. Biochem. 379:1–2 (2013), 59–68.
    • (2013) Mol. Cell. Biochem. , vol.379 , Issue.1-2 , pp. 59-68
    • Krishnamoorthy, V.1    Donofrio, A.J.2    Martin, J.L.3
  • 112
    • 78649894035 scopus 로고    scopus 로고
    • O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner
    • [112] Kazemi, Z., et al. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J. Biol. Chem. 285:50 (2010), 39096–39107.
    • (2010) J. Biol. Chem. , vol.285 , Issue.50 , pp. 39096-39107
    • Kazemi, Z.1
  • 113
    • 84925284243 scopus 로고    scopus 로고
    • O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
    • [113] Guo, B., et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:12 (2014), 1215–1226.
    • (2014) Nat. Cell Biol. , vol.16 , Issue.12 , pp. 1215-1226
    • Guo, B.1
  • 114
    • 77952171341 scopus 로고    scopus 로고
    • Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity
    • [114] Love, D.C., et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl. Acad. Sci. U. S. A. 107:16 (2010), 7413–7418.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.16 , pp. 7413-7418
    • Love, D.C.1
  • 115
    • 84875210462 scopus 로고    scopus 로고
    • Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
    • [115] Marsh, S.A., et al. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92:11 (2013), 648–656.
    • (2013) Life Sci. , vol.92 , Issue.11 , pp. 648-656
    • Marsh, S.A.1
  • 116
    • 84937739068 scopus 로고    scopus 로고
    • O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster
    • [116] Park, S., et al. O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster. Cell. Mol. Life Sci. 72:16 (2015), 3173–3183.
    • (2015) Cell. Mol. Life Sci. , vol.72 , Issue.16 , pp. 3173-3183
    • Park, S.1
  • 117
    • 84867908726 scopus 로고    scopus 로고
    • O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases
    • [117] Wang, P., et al. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc. Natl. Acad. Sci. U. S. A. 109:43 (2012), 17669–17674.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , Issue.43 , pp. 17669-17674
    • Wang, P.1
  • 118
    • 84864878724 scopus 로고    scopus 로고
    • Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy
    • [118] van der Vos, K.E., et al. Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nat. Cell Biol. 14:8 (2012), 829–837.
    • (2012) Nat. Cell Biol. , vol.14 , Issue.8 , pp. 829-837
    • van der Vos, K.E.1
  • 119
    • 77954225200 scopus 로고    scopus 로고
    • Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
    • [119] Zhao, Y., et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12:7 (2010), 665–675.
    • (2010) Nat. Cell Biol. , vol.12 , Issue.7 , pp. 665-675
    • Zhao, Y.1
  • 120
    • 71549132691 scopus 로고    scopus 로고
    • O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress
    • [120] Ho, S.R., et al. O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress. FEBS Lett. 584:1 (2010), 49–54.
    • (2010) FEBS Lett. , vol.584 , Issue.1 , pp. 49-54
    • Ho, S.R.1
  • 121
    • 84898613353 scopus 로고    scopus 로고
    • Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK)
    • [121] Bullen, J.W., et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289:15 (2014), 10592–10606.
    • (2014) J. Biol. Chem. , vol.289 , Issue.15 , pp. 10592-10606
    • Bullen, J.W.1
  • 122
    • 64149111641 scopus 로고    scopus 로고
    • A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose
    • [122] Housley, M.P., et al. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284:8 (2009), 5148–5157.
    • (2009) J. Biol. Chem. , vol.284 , Issue.8 , pp. 5148-5157
    • Housley, M.P.1
  • 123
    • 84880060656 scopus 로고    scopus 로고
    • Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism
    • [123] Wang, N., et al. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J. Biol. Chem. 288:25 (2013), 18146–18161.
    • (2013) J. Biol. Chem. , vol.288 , Issue.25 , pp. 18146-18161
    • Wang, N.1
  • 124
    • 0034806213 scopus 로고    scopus 로고
    • SNAP-29 is a promiscuous syntaxin-binding SNARE
    • [124] Hohenstein, A.C., Roche, P.A., SNAP-29 is a promiscuous syntaxin-binding SNARE. Biochem. Biophys. Res. Commun. 285:2 (2001), 167–171.
    • (2001) Biochem. Biophys. Res. Commun. , vol.285 , Issue.2 , pp. 167-171
    • Hohenstein, A.C.1    Roche, P.A.2
  • 125
    • 84924898037 scopus 로고    scopus 로고
    • Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis
    • [125] Keembiyehetty, C., et al. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J. Biol. Chem. 290:11 (2015), 7097–7113.
    • (2015) J. Biol. Chem. , vol.290 , Issue.11 , pp. 7097-7113
    • Keembiyehetty, C.1
  • 126
    • 84860872762 scopus 로고    scopus 로고
    • O-GlcNAcase is essential for embryonic development and maintenance of genomic stability
    • [126] Yang, Y.R., et al. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 11:3 (2012), 439–448.
    • (2012) Aging Cell , vol.11 , Issue.3 , pp. 439-448
    • Yang, Y.R.1
  • 127
    • 0842347416 scopus 로고    scopus 로고
    • Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability
    • [127] O'Donnell, N., et al. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24:4 (2004), 1680–1690.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.4 , pp. 1680-1690
    • O'Donnell, N.1
  • 128
    • 0034705030 scopus 로고    scopus 로고
    • The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny
    • [128] Shafi, R., et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. U. S. A. 97:11 (2000), 5735–5739.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , Issue.11 , pp. 5735-5739
    • Shafi, R.1
  • 129
    • 41149165746 scopus 로고    scopus 로고
    • Cardioprotection by N-acetylglucosamine linkage to cellular proteins
    • [129] Jones, S.P., et al. Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117:9 (2008), 1172–1182.
    • (2008) Circulation , vol.117 , Issue.9 , pp. 1172-1182
    • Jones, S.P.1
  • 130
    • 84959481890 scopus 로고    scopus 로고
    • The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation
    • [130] Yamano, K., Matsuda, N., Tanaka, K., The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17:3 (2016), 300–316.
    • (2016) EMBO Rep. , vol.17 , Issue.3 , pp. 300-316
    • Yamano, K.1    Matsuda, N.2    Tanaka, K.3
  • 131
    • 84555179609 scopus 로고    scopus 로고
    • Extracellular matrix degradation and remodeling in development and disease
    • (p. pii: a005058)
    • [131] Lu, P., et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 3(12), 2011 (p. pii: a005058).
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.3 , Issue.12
    • Lu, P.1
  • 132
    • 84879905523 scopus 로고    scopus 로고
    • Decorin causes autophagy in endothelial cells via Peg3
    • [132] Buraschi, S., et al. Decorin causes autophagy in endothelial cells via Peg3. Proc. Natl. Acad. Sci. U. S. A. 110:28 (2013), E2582–E2591.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.28 , pp. E2582-E2591
    • Buraschi, S.1
  • 133
    • 84894342780 scopus 로고    scopus 로고
    • Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells
    • [133] Goyal, A., et al. Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol. 34 (2014), 46–54.
    • (2014) Matrix Biol. , vol.34 , pp. 46-54
    • Goyal, A.1
  • 134
    • 84947795871 scopus 로고    scopus 로고
    • Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy
    • [134] Gubbiotti, M.A., et al. Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol. 48 (2015), 14–25.
    • (2015) Matrix Biol. , vol.48 , pp. 14-25
    • Gubbiotti, M.A.1
  • 135
    • 84894479646 scopus 로고    scopus 로고
    • Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin
    • [135] Neill, T., et al. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin. J. Biol. Chem. 289:8 (2014), 4952–4968.
    • (2014) J. Biol. Chem. , vol.289 , Issue.8 , pp. 4952-4968
    • Neill, T.1
  • 136
    • 84905842674 scopus 로고    scopus 로고
    • A cleavage-potentiated fragment of tear lacritin is bactericidal
    • [136] McKown, R.L., et al. A cleavage-potentiated fragment of tear lacritin is bactericidal. J. Biol. Chem. 289:32 (2014), 22172–22182.
    • (2014) J. Biol. Chem. , vol.289 , Issue.32 , pp. 22172-22182
    • McKown, R.L.1
  • 137
    • 84947870176 scopus 로고    scopus 로고
    • Perlecan inhibits autophagy to maintain muscle homeostasis in mouse soleus muscle
    • [137] Ning, L., et al. Perlecan inhibits autophagy to maintain muscle homeostasis in mouse soleus muscle. Matrix Biol. 48 (2015), 26–35.
    • (2015) Matrix Biol. , vol.48 , pp. 26-35
    • Ning, L.1
  • 138
    • 77449091329 scopus 로고    scopus 로고
    • Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and beta-catenin levels
    • [138] Nguyen, T.M., et al. Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and beta-catenin levels. J. Cell. Mol. Med. 13:9B (2009), 3687–3698.
    • (2009) J. Cell. Mol. Med. , vol.13 , Issue.9B , pp. 3687-3698
    • Nguyen, T.M.1
  • 139
    • 84907209949 scopus 로고    scopus 로고
    • Endostar, a modified recombinant human endostatin, suppresses angiogenesis through inhibition of Wnt/β-catenin signaling pathway
    • e107463
    • [139] Xu, X., et al. Endostar, a modified recombinant human endostatin, suppresses angiogenesis through inhibition of Wnt/β-catenin signaling pathway. PLoS ONE, 9(9), 2014, e107463.
    • (2014) PLoS ONE , vol.9 , Issue.9
    • Xu, X.1
  • 140
    • 84902177225 scopus 로고    scopus 로고
    • Endorepellin evokes autophagy in endothelial cells
    • [140] Poluzzi, C., et al. Endorepellin evokes autophagy in endothelial cells. J. Biol. Chem. 289:23 (2014), 16114–16128.
    • (2014) J. Biol. Chem. , vol.289 , Issue.23 , pp. 16114-16128
    • Poluzzi, C.1
  • 141
    • 34249658435 scopus 로고    scopus 로고
    • Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
    • [141] Nguyen, T.M., et al. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 109:11 (2007), 4793–4802.
    • (2007) Blood , vol.109 , Issue.11 , pp. 4793-4802
    • Nguyen, T.M.1
  • 142
    • 81855205301 scopus 로고    scopus 로고
    • Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A
    • [142] Carmignac, V., et al. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum. Mol. Genet. 20:24 (2011), 4891–4902.
    • (2011) Hum. Mol. Genet. , vol.20 , Issue.24 , pp. 4891-4902
    • Carmignac, V.1
  • 143
    • 84876771337 scopus 로고    scopus 로고
    • Thrombospondin-1 receptor mediates autophagy of RAS-expressing cancer cells and triggers tumour growth inhibition
    • [143] Kalas, W., et al. Thrombospondin-1 receptor mediates autophagy of RAS-expressing cancer cells and triggers tumour growth inhibition. Anticancer Res. 33:4 (2013), 1429–1438.
    • (2013) Anticancer Res. , vol.33 , Issue.4 , pp. 1429-1438
    • Kalas, W.1
  • 144
    • 67650242385 scopus 로고    scopus 로고
    • Cyclin D3 mediates synthesis of a hyaluronan matrix that is adhesive for monocytes in mesangial cells stimulated to divide in hyperglycemic medium
    • [144] Ren, J., Hascall, V.C., Wang, A., Cyclin D3 mediates synthesis of a hyaluronan matrix that is adhesive for monocytes in mesangial cells stimulated to divide in hyperglycemic medium. J. Biol. Chem. 284:24 (2009), 16621–16632.
    • (2009) J. Biol. Chem. , vol.284 , Issue.24 , pp. 16621-16632
    • Ren, J.1    Hascall, V.C.2    Wang, A.3
  • 145
    • 84885698888 scopus 로고    scopus 로고
    • Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan
    • e78131
    • [145] Saha, P., et al. Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan. PLoS ONE, 8(10), 2013, e78131.
    • (2013) PLoS ONE , vol.8 , Issue.10
    • Saha, P.1
  • 146
    • 84904966129 scopus 로고    scopus 로고
    • Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency
    • [146] Saha, P., Ghosh, I., Datta, K., Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency. PLoS One, 9(7), 2014, e103208.
    • (2014) PLoS One , vol.9 , Issue.7 , pp. e103208
    • Saha, P.1    Ghosh, I.2    Datta, K.3
  • 147
    • 84897425443 scopus 로고    scopus 로고
    • Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division
    • [147] Wang, A., et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division. J. Biol. Chem. 289:13 (2014), 9418–9429.
    • (2014) J. Biol. Chem. , vol.289 , Issue.13 , pp. 9418-9429
    • Wang, A.1
  • 148
    • 84908350153 scopus 로고    scopus 로고
    • Revisiting the matricellular concept
    • [148] Murphy-Ullrich, J.E., Sage, E.H., Revisiting the matricellular concept. Matrix Biol. 37 (2014), 1–14.
    • (2014) Matrix Biol. , vol.37 , pp. 1-14
    • Murphy-Ullrich, J.E.1    Sage, E.H.2
  • 149
    • 84901390292 scopus 로고    scopus 로고
    • The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling
    • [149] Lord, M.S., et al. The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling. Matrix Biol. 35 (2014), 112–122.
    • (2014) Matrix Biol. , vol.35 , pp. 112-122
    • Lord, M.S.1
  • 150
    • 0027199292 scopus 로고
    • Differential expression of thrombospondin 1, 2, and 3 during murine development
    • [150] Iruela-Arispe, M.L., et al. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev. Dyn. 197:1 (1993), 40–56.
    • (1993) Dev. Dyn. , vol.197 , Issue.1 , pp. 40-56
    • Iruela-Arispe, M.L.1
  • 151
    • 84897053519 scopus 로고    scopus 로고
    • Small leucine-rich proteoglycans exhibit unique spatiotemporal expression profiles during cardiac valve development
    • [151] Dupuis, L.E., Kern, C.B., Small leucine-rich proteoglycans exhibit unique spatiotemporal expression profiles during cardiac valve development. Dev. Dyn. 243:4 (2014), 601–611.
    • (2014) Dev. Dyn. , vol.243 , Issue.4 , pp. 601-611
    • Dupuis, L.E.1    Kern, C.B.2
  • 152
    • 11844298904 scopus 로고    scopus 로고
    • The role of thrombospondins 1 and 2 in the regulation of cell–matrix interactions, collagen fibril formation, and the response to injury
    • [152] Bornstein, P., Agah, A., Kyriakides, T.R., The role of thrombospondins 1 and 2 in the regulation of cell–matrix interactions, collagen fibril formation, and the response to injury. Int. J. Biochem. Cell Biol. 36:6 (2004), 1115–1125.
    • (2004) Int. J. Biochem. Cell Biol. , vol.36 , Issue.6 , pp. 1115-1125
    • Bornstein, P.1    Agah, A.2    Kyriakides, T.R.3
  • 153
    • 47749104114 scopus 로고    scopus 로고
    • Decorin regulates endothelial cell motility on collagen I through activation of insulin-like growth factor I receptor and modulation of alpha2beta1 integrin activity
    • [153] Fiedler, L.R., et al. Decorin regulates endothelial cell motility on collagen I through activation of insulin-like growth factor I receptor and modulation of alpha2beta1 integrin activity. J. Biol. Chem. 283:25 (2008), 17406–17415.
    • (2008) J. Biol. Chem. , vol.283 , Issue.25 , pp. 17406-17415
    • Fiedler, L.R.1
  • 154
    • 0034653421 scopus 로고    scopus 로고
    • Secreted cathepsin L generates endostatin from collagen XVIII
    • [154] Felbor, U., et al. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19:6 (2000), 1187–1194.
    • (2000) EMBO J. , vol.19 , Issue.6 , pp. 1187-1194
    • Felbor, U.1
  • 155
    • 55249104973 scopus 로고    scopus 로고
    • Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis
    • [155] Cailhier, J.F., et al. Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis. J. Biol. Chem. 283:40 (2008), 27220–27229.
    • (2008) J. Biol. Chem. , vol.283 , Issue.40 , pp. 27220-27229
    • Cailhier, J.F.1
  • 156
    • 0030606329 scopus 로고    scopus 로고
    • Purification and characterization of perlecan fragment in urine of end-stage renal failure patients
    • [156] Oda, O., et al. Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin. Chim. Acta 255:2 (1996), 119–132.
    • (1996) Clin. Chim. Acta , vol.255 , Issue.2 , pp. 119-132
    • Oda, O.1
  • 157
    • 14844299756 scopus 로고    scopus 로고
    • BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan
    • [157] Gonzalez, E.M., et al. BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem. 280:8 (2005), 7080–7087.
    • (2005) J. Biol. Chem. , vol.280 , Issue.8 , pp. 7080-7087
    • Gonzalez, E.M.1
  • 158
    • 70349667325 scopus 로고    scopus 로고
    • Ischemia–reperfusion injury activates early extracellular matrix processing and expression of endostatin in the heart with differential effects of temperature
    • [158] Lauten, A., et al. Ischemia–reperfusion injury activates early extracellular matrix processing and expression of endostatin in the heart with differential effects of temperature. Basic Res. Cardiol. 104:5 (2009), 559–569.
    • (2009) Basic Res. Cardiol. , vol.104 , Issue.5 , pp. 559-569
    • Lauten, A.1
  • 159
    • 84871560447 scopus 로고    scopus 로고
    • Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1alpha and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation
    • [159] Goyal, A., et al. Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1alpha and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation. J. Biol. Chem. 287:52 (2012), 43543–43556.
    • (2012) J. Biol. Chem. , vol.287 , Issue.52 , pp. 43543-43556
    • Goyal, A.1
  • 160
    • 84957801865 scopus 로고    scopus 로고
    • Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers
    • [160] Poluzzi, C., Iozzo, R.V., Schaefer, L., Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv. Drug Deliv. Rev. 97 (2016), 156–173.
    • (2016) Adv. Drug Deliv. Rev. , vol.97 , pp. 156-173
    • Poluzzi, C.1    Iozzo, R.V.2    Schaefer, L.3
  • 161
    • 0025262156 scopus 로고
    • Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis
    • [161] Mann, D.M., et al. Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis. J. Biol. Chem. 265:9 (1990), 5317–5323.
    • (1990) J. Biol. Chem. , vol.265 , Issue.9 , pp. 5317-5323
    • Mann, D.M.1
  • 162
    • 84870327019 scopus 로고    scopus 로고
    • DNA-binding motif and target genes of the imprinted transcription factor PEG3
    • [162] Thiaville, M.M., et al. DNA-binding motif and target genes of the imprinted transcription factor PEG3. Gene 512:2 (2013), 314–320.
    • (2013) Gene , vol.512 , Issue.2 , pp. 314-320
    • Thiaville, M.M.1
  • 163
    • 79955812386 scopus 로고    scopus 로고
    • Mitostatin is down-regulated in human prostate cancer and suppresses the invasive phenotype of prostate cancer cells
    • e19771
    • [163] Fassan, M., et al. Mitostatin is down-regulated in human prostate cancer and suppresses the invasive phenotype of prostate cancer cells. PLoS ONE, 6(5), 2011, e19771.
    • (2011) PLoS ONE , vol.6 , Issue.5
    • Fassan, M.1
  • 164
    • 58249112899 scopus 로고    scopus 로고
    • MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer
    • [164] Vecchione, A., et al. MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer. Oncogene 28:2 (2009), 257–269.
    • (2009) Oncogene , vol.28 , Issue.2 , pp. 257-269
    • Vecchione, A.1
  • 165
    • 84950301764 scopus 로고    scopus 로고
    • Lacritin salvages human corneal epithelial cells from lipopolysaccharide induced cell death
    • [165] Vantaku, V.R., et al. Lacritin salvages human corneal epithelial cells from lipopolysaccharide induced cell death. Sci. Rep., 5, 2015, 18362.
    • (2015) Sci. Rep. , vol.5 , pp. 18362
    • Vantaku, V.R.1
  • 166
    • 84908565995 scopus 로고    scopus 로고
    • Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles
    • [166] Wang, W., et al. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. J. Mater. Chem. B Mater. Biol. Med. 2:46 (2014), 8131–8141.
    • (2014) J. Mater. Chem. B Mater. Biol. Med. , vol.2 , Issue.46 , pp. 8131-8141
    • Wang, W.1
  • 167
    • 84939968330 scopus 로고    scopus 로고
    • Proteoglycan form and function: a comprehensive nomenclature of proteoglycans
    • [167] Iozzo, R.V., L., S., Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42 (2015), 11–55.
    • (2015) Matrix Biol. , vol.42 , pp. 11-55
    • Iozzo, R.V.1    L., S.2
  • 168
    • 33748121374 scopus 로고    scopus 로고
    • Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin
    • [168] Ma, P., et al. Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174:7 (2006), 1097–1106.
    • (2006) J. Cell Biol. , vol.174 , Issue.7 , pp. 1097-1106
    • Ma, P.1
  • 169
    • 84876934292 scopus 로고    scopus 로고
    • Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved Core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity
    • [169] Zhang, Y., et al. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved Core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J. Biol. Chem. 288:17 (2013), 12090–12101.
    • (2013) J. Biol. Chem. , vol.288 , Issue.17 , pp. 12090-12101
    • Zhang, Y.1
  • 170
    • 67549110195 scopus 로고    scopus 로고
    • A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
    • (Epub 2009 Jul 20., 2009. 5(5): p. 649–62) Jul
    • [170] Mercer, C.A., Kaliappan, A., D.P.B., A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:5 (Jul 2009), 649–662 (Epub 2009 Jul 20., 2009. 5(5): p. 649–62).
    • (2009) Autophagy , vol.5 , Issue.5 , pp. 649-662
    • Mercer, C.A.1    Kaliappan, A.2    D.P.B.3
  • 171
    • 0038267444 scopus 로고    scopus 로고
    • CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis
    • [171] Lamy, L., et al. CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. J. Biol. Chem. 278:26 (2003), 23915–23921.
    • (2003) J. Biol. Chem. , vol.278 , Issue.26 , pp. 23915-23921
    • Lamy, L.1
  • 172
    • 84901020367 scopus 로고    scopus 로고
    • Mammalian protein glycosylation—structure versus function
    • [172] Defaus, S., et al. Mammalian protein glycosylation—structure versus function. Analyst, 139(12), 2014, 2944.
    • (2014) Analyst , vol.139 , Issue.12 , pp. 2944
    • Defaus, S.1
  • 173
    • 0035794220 scopus 로고    scopus 로고
    • C-mannosylation and O-fucosylation of the thrombospondin type 1 module
    • [173] Hofsteenge, J., et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J. Biol. Chem. 276:9 (2000), 6485–6498.
    • (2000) J. Biol. Chem. , vol.276 , Issue.9 , pp. 6485-6498
    • Hofsteenge, J.1
  • 174
    • 79955386559 scopus 로고    scopus 로고
    • Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1
    • [174] Kaur, S., et al. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J. Biol. Chem. 286:17 (2011), 14991–15002.
    • (2011) J. Biol. Chem. , vol.286 , Issue.17 , pp. 14991-15002
    • Kaur, S.1
  • 175
    • 84908347357 scopus 로고    scopus 로고
    • Current understanding of the thrombospondin-1 interactome
    • [175] Resovi, A., et al. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 37 (2014), 83–91.
    • (2014) Matrix Biol. , vol.37 , pp. 83-91
    • Resovi, A.1
  • 176
    • 84901301539 scopus 로고    scopus 로고
    • CD47-independent effects mediated by the TSP-derived 4N1K peptide
    • e98358
    • [176] Leclair, P., Lim, C.J., CD47-independent effects mediated by the TSP-derived 4N1K peptide. PLoS One, 9(5), 2014, e98358.
    • (2014) PLoS One , vol.9 , Issue.5
    • Leclair, P.1    Lim, C.J.2
  • 177
    • 84869408875 scopus 로고    scopus 로고
    • CD47 deficiency confers cell and tissue radioprotection by activation of autophagy
    • [177] Soto-Pantoja, D.R., et al. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy 8:11 (2012), 1628–1642.
    • (2012) Autophagy , vol.8 , Issue.11 , pp. 1628-1642
    • Soto-Pantoja, D.R.1
  • 178
    • 84872735865 scopus 로고    scopus 로고
    • Blockade of CD47 increases survival of mice exposed to lethal total body irradiation
    • [178] Soto-Pantoja, D.R., et al. Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci. Rep., 3, 2013, 1038.
    • (2013) Sci. Rep. , vol.3 , pp. 1038
    • Soto-Pantoja, D.R.1
  • 179
    • 84877710796 scopus 로고    scopus 로고
    • Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells
    • [179] Willis, C.D., et al. Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells. FEBS J. 280:10 (2013), 2271–2284.
    • (2013) FEBS J. , vol.280 , Issue.10 , pp. 2271-2284
    • Willis, C.D.1
  • 180
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • [180] Pattingre, S., et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:6 (2005), 927–939.
    • (2005) Cell , vol.122 , Issue.6 , pp. 927-939
    • Pattingre, S.1
  • 181
    • 84872799206 scopus 로고    scopus 로고
    • The VMP1–Beclin 1 interaction regulates autophagy induction
    • [181] Molejon, M.I., et al. The VMP1–Beclin 1 interaction regulates autophagy induction. Sci. Rep., 3, 2013, 1055.
    • (2013) Sci. Rep. , vol.3 , pp. 1055
    • Molejon, M.I.1
  • 182
    • 84880202019 scopus 로고    scopus 로고
    • Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk
    • [182] Petherick, K.J., et al. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 32:13 (2013), 1903–1916.
    • (2013) EMBO J. , vol.32 , Issue.13 , pp. 1903-1916
    • Petherick, K.J.1
  • 183
    • 84867435785 scopus 로고    scopus 로고
    • Extracellular matrix regulation of metabolism and implications for tumorigenesis
    • [183] Grassian, A.R., Coloff, J.L., Brugge, J.S., Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb. Symp. Quant. Biol. 76 (2011), 313–324.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 313-324
    • Grassian, A.R.1    Coloff, J.L.2    Brugge, J.S.3
  • 184
    • 80052342419 scopus 로고    scopus 로고
    • PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment
    • [184] Avivar-Valderas, A., et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol. 31:17 (2011), 3616–3629.
    • (2011) Mol. Cell. Biol. , vol.31 , Issue.17 , pp. 3616-3629
    • Avivar-Valderas, A.1
  • 185
    • 84885582468 scopus 로고    scopus 로고
    • Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
    • [185] Avivar-Valderas, A., et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32:41 (2013), 4932–4940.
    • (2013) Oncogene , vol.32 , Issue.41 , pp. 4932-4940
    • Avivar-Valderas, A.1
  • 186
    • 27644439209 scopus 로고    scopus 로고
    • Anoikis
    • [186] Gilmore, A.P., Anoikis. Cell Death Differ. 12:Suppl. 2 (2005), 1473–1477.
    • (2005) Cell Death Differ. , vol.12 , pp. 1473-1477
    • Gilmore, A.P.1
  • 187
    • 41449109334 scopus 로고    scopus 로고
    • Induction of autophagy during extracellular matrix detachment promotes cell survival
    • [187] Fung, C., et al. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19:3 (2008), 797–806.
    • (2008) Mol. Biol. Cell , vol.19 , Issue.3 , pp. 797-806
    • Fung, C.1
  • 188
    • 54849436630 scopus 로고    scopus 로고
    • Diverse cell signaling events modulated by perlecan
    • [188] Whitelock, J.M., Melrose, J., Iozzo, R.V., Diverse cell signaling events modulated by perlecan. Biochemistry 47:43 (2008), 1174–11183.
    • (2008) Biochemistry , vol.47 , Issue.43 , pp. 1174-11183
    • Whitelock, J.M.1    Melrose, J.2    Iozzo, R.V.3
  • 189
    • 38349091953 scopus 로고    scopus 로고
    • Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis
    • (Epub 2007 Oct 24., 2007. 134(23): p. 4177–86) Dec
    • [189] Patel, V.N., et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:23 (Dec 2007), 4177–4186 (Epub 2007 Oct 24., 2007. 134(23): p. 4177–86).
    • (2007) Development , vol.134 , Issue.23 , pp. 4177-4186
    • Patel, V.N.1
  • 190
    • 0345148341 scopus 로고    scopus 로고
    • Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V
    • [190] Friedrich, M.V., et al. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J. Mol. Biol. 294:1 (1999), 259–270.
    • (1999) J. Mol. Biol. , vol.294 , Issue.1 , pp. 259-270
    • Friedrich, M.V.1
  • 191
    • 23044444804 scopus 로고    scopus 로고
    • Heparan sulfate: a complex polymer charged with biological activity
    • [191] Whitelock, J.M., Iozzo, R.V., Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105:7 (2005), 2745–2764.
    • (2005) Chem. Rev. , vol.105 , Issue.7 , pp. 2745-2764
    • Whitelock, J.M.1    Iozzo, R.V.2
  • 192
    • 84942907310 scopus 로고    scopus 로고
    • Heparanase enhances tumor growth and chemoresistance by promoting autophagy
    • [192] Shteingauz, A., et al. Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Res. 75:18 (2015), 3946–3957.
    • (2015) Cancer Res. , vol.75 , Issue.18 , pp. 3946-3957
    • Shteingauz, A.1
  • 193
    • 84941114402 scopus 로고    scopus 로고
    • Glycobiology of alpha-dystroglycan and muscular dystrophy
    • [193] Endo, T., Glycobiology of alpha-dystroglycan and muscular dystrophy. J. Biochem. 157:1 (2015), 1–12.
    • (2015) J. Biochem. , vol.157 , Issue.1 , pp. 1-12
    • Endo, T.1
  • 194
    • 78651076693 scopus 로고    scopus 로고
    • Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice
    • [194] Carmignac, V., Quéré, R., Durbeej, M., Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice. Hum. Mol. Genet. 20:3 (2011), 541–552.
    • (2011) Hum. Mol. Genet. , vol.20 , Issue.3 , pp. 541-552
    • Carmignac, V.1    Quéré, R.2    Durbeej, M.3
  • 195
    • 0008031036 scopus 로고
    • On glycoproteins: II. The polysaccharides of vitreous humor and of umbilical cord
    • [195] Meyer, K., Palmer, J.W., On glycoproteins: II. The polysaccharides of vitreous humor and of umbilical cord. J. Biol. Chem. 114:3 (1936), 689–703.
    • (1936) J. Biol. Chem. , vol.114 , Issue.3 , pp. 689-703
    • Meyer, K.1    Palmer, J.W.2
  • 196
    • 0001413280 scopus 로고
    • The polysaccharide of the vitreous humor
    • [196] Meyer, K., Palmer, J.W., The polysaccharide of the vitreous humor. J. Biol. Chem. 107 (1934), 629–634.
    • (1934) J. Biol. Chem. , vol.107 , pp. 629-634
    • Meyer, K.1    Palmer, J.W.2
  • 197
    • 84863084736 scopus 로고    scopus 로고
    • Qualitative and quantitative analysis of hyaluronan oligosaccharides with high performance thin layer chromatography using reagent-free derivatization on amino-modified silica and electrospray ionization-quadrupole time-of-flight mass spectrometry coupling on normal phase
    • [197] Rothenhöfer, M., et al. Qualitative and quantitative analysis of hyaluronan oligosaccharides with high performance thin layer chromatography using reagent-free derivatization on amino-modified silica and electrospray ionization-quadrupole time-of-flight mass spectrometry coupling on normal phase. J. Chromatogr. A 1248 (2012), 169–177.
    • (2012) J. Chromatogr. A , vol.1248 , pp. 169-177
    • Rothenhöfer, M.1
  • 198
    • 67349260101 scopus 로고    scopus 로고
    • 4-methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3
    • [198] Kultti, A., et al. 4-methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell Res. 315:11 (2009), 1914–1923.
    • (2009) Exp. Cell Res. , vol.315 , Issue.11 , pp. 1914-1923
    • Kultti, A.1
  • 199
    • 84874326675 scopus 로고    scopus 로고
    • Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3
    • [199] Rilla, K., et al. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J. Biol. Chem. 288:8 (2013), 5973–5983.
    • (2013) J. Biol. Chem. , vol.288 , Issue.8 , pp. 5973-5983
    • Rilla, K.1
  • 200
    • 33746040501 scopus 로고    scopus 로고
    • Hyaluronan fragments: an information-rich system
    • [200] Stern, R., Asari, A.A., Sugahara, K.N., Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 65:8 (2006), 699–715.
    • (2006) Eur. J. Cell Biol. , vol.65 , Issue.8 , pp. 699-715
    • Stern, R.1    Asari, A.A.2    Sugahara, K.N.3
  • 201
    • 24744446818 scopus 로고    scopus 로고
    • Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity
    • [201] Rilla, K., et al. Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J. Biol. Chem. 280:36 (2005), 31890–31897.
    • (2005) J. Biol. Chem. , vol.280 , Issue.36 , pp. 31890-31897
    • Rilla, K.1
  • 202
    • 84892653194 scopus 로고    scopus 로고
    • Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes
    • [202] Törrönen, K., et al. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem. Cell Biol. 141:1 (2014), 17–31.
    • (2014) Histochem. Cell Biol. , vol.141 , Issue.1 , pp. 17-31
    • Törrönen, K.1
  • 203
    • 84892439945 scopus 로고    scopus 로고
    • Effect of a cholesterol-rich lipid environment on the enzymatic activity of reconstituted hyaluronan synthase
    • [203] Ontong, P., et al. Effect of a cholesterol-rich lipid environment on the enzymatic activity of reconstituted hyaluronan synthase. Biochem. Biophys. Res. Commun. 442:2 (2014), 666–671.
    • (2014) Biochem. Biophys. Res. Commun. , vol.442 , Issue.2 , pp. 666-671
    • Ontong, P.1
  • 204
    • 33847197478 scopus 로고    scopus 로고
    • Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo
    • [204] Pedersen, T.A., et al. Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J. 26:4 (2007), 1081–1093.
    • (2007) EMBO J. , vol.26 , Issue.4 , pp. 1081-1093
    • Pedersen, T.A.1
  • 205
    • 38349035719 scopus 로고    scopus 로고
    • Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR)
    • [205] Chowdhury, A.R., Ghosh, I., Datta, K., Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR). Exp. Cell Res. 314:3 (2008), 651–667.
    • (2008) Exp. Cell Res. , vol.314 , Issue.3 , pp. 651-667
    • Chowdhury, A.R.1    Ghosh, I.2    Datta, K.3
  • 206
    • 0028084472 scopus 로고
    • Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins
    • [206] Villers, C., et al. Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins. Biochem. J. 298:Pt 1 (1994), 135–142.
    • (1994) Biochem. J. , vol.298 , pp. 135-142
    • Villers, C.1
  • 207
    • 0032712592 scopus 로고    scopus 로고
    • Trafficking of oligomannosides released during N-glycosylation—a clearing mechanism of the rough endoplasmic reticulum
    • [207] Verbert, A., Cacan, R., Trafficking of oligomannosides released during N-glycosylation—a clearing mechanism of the rough endoplasmic reticulum. Biochim. Biophys. Acta 1473:1 (1999), 137–146.
    • (1999) Biochim. Biophys. Acta , vol.1473 , Issue.1 , pp. 137-146
    • Verbert, A.1    Cacan, R.2
  • 208
    • 84863711034 scopus 로고    scopus 로고
    • Free N-linked oligosaccharide chains: formation and degradation
    • [208] Suzuki, T., Funakoshi, Y., Free N-linked oligosaccharide chains: formation and degradation. Glycoconj. J. 23:5–6 (2006), 291–302.
    • (2006) Glycoconj. J. , vol.23 , Issue.5-6 , pp. 291-302
    • Suzuki, T.1    Funakoshi, Y.2
  • 209
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
    • [209] Orsi, A., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:10 (2012), 1860–1873.
    • (2012) Mol. Biol. Cell , vol.23 , Issue.10 , pp. 1860-1873
    • Orsi, A.1
  • 210
    • 33646204392 scopus 로고    scopus 로고
    • Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size
    • [210] Hosokawa, N., Hara, Y., Mizushima, N., Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580:11 (2006), 2623–2629.
    • (2006) FEBS Lett. , vol.580 , Issue.11 , pp. 2623-2629
    • Hosokawa, N.1    Hara, Y.2    Mizushima, N.3
  • 211
    • 33751002037 scopus 로고    scopus 로고
    • Lectin-resistant CHO glycosylation mutants
    • [211] Patnaik, S.K., Stanley, P., Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416 (2006), 159–182.
    • (2006) Methods Enzymol. , vol.416 , pp. 159-182
    • Patnaik, S.K.1    Stanley, P.2
  • 212
    • 84859447703 scopus 로고    scopus 로고
    • Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners
    • [212] Yu, S.H., et al. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc. Natl. Acad. Sci. U. S. A. 109:13 (2012), 4834–4839.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , Issue.13 , pp. 4834-4839
    • Yu, S.H.1
  • 213
    • 68149098694 scopus 로고    scopus 로고
    • Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars
    • [213] Bond, M.R., et al. Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat. Protoc. 4:7 (2009), 1044–1063.
    • (2009) Nat. Protoc. , vol.4 , Issue.7 , pp. 1044-1063
    • Bond, M.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.