-
1
-
-
8344247016
-
Autophagy defends cells against invading group A streptococcus
-
[1] Nakagawa, I., et al. Autophagy defends cells against invading group A streptococcus. Science 306:5698 (2004), 1037–1040.
-
(2004)
Science
, vol.306
, Issue.5698
, pp. 1037-1040
-
-
Nakagawa, I.1
-
2
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
[2] Kuma, A., et al. The role of autophagy during the early neonatal starvation period. Nature 432:7020 (2004), 1032–1036.
-
(2004)
Nature
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
-
3
-
-
85003048223
-
The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation
-
e05289
-
[3] Wei, Y., et al. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife, 4, 2015, e05289.
-
(2015)
Elife
, vol.4
-
-
Wei, Y.1
-
4
-
-
0028800171
-
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
-
[4] Harding, T.M., et al. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 131:3 (1995), 591–602.
-
(1995)
J. Cell Biol.
, vol.131
, Issue.3
, pp. 591-602
-
-
Harding, T.M.1
-
5
-
-
36849088609
-
Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
-
[5] Berry, D.L., Baehrecke, E.H., Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:6 (2007), 1137–1148.
-
(2007)
Cell
, vol.131
, Issue.6
, pp. 1137-1148
-
-
Berry, D.L.1
Baehrecke, E.H.2
-
6
-
-
36849021043
-
Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila
-
[6] Juhász, G., et al. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 21:23 (2007), 3061–3066.
-
(2007)
Genes Dev.
, vol.21
, Issue.23
, pp. 3061-3066
-
-
Juhász, G.1
-
7
-
-
34447636066
-
Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan
-
[7] Kim, Y., Sun, H., Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 6:4 (2007), 489–503.
-
(2007)
Aging Cell
, vol.6
, Issue.4
, pp. 489-503
-
-
Kim, Y.1
Sun, H.2
-
8
-
-
34250811414
-
The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains
-
[8] Zhang, Y., et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:4 (2007), 337–346.
-
(2007)
Autophagy
, vol.3
, Issue.4
, pp. 337-346
-
-
Zhang, Y.1
-
9
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
[9] Komatsu, M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:7095 (2006), 880–884.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 880-884
-
-
Komatsu, M.1
-
10
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
[10] Hara, T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:7095 (2006), 885–889.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 885-889
-
-
Hara, T.1
-
11
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
[11] Degenhardt, K., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:1 (2006), 51–64.
-
(2006)
Cancer Cell
, vol.10
, Issue.1
, pp. 51-64
-
-
Degenhardt, K.1
-
12
-
-
24744441497
-
Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
-
[12] Onodera, J., Ohsumi, Y., Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem., 2005(280), 2005, 36.
-
(2005)
J. Biol. Chem.
, vol.2005
, Issue.280
, pp. 36
-
-
Onodera, J.1
Ohsumi, Y.2
-
13
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
[13] Lum, J.J., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:2 (2005), 237–248.
-
(2005)
Cell
, vol.120
, Issue.2
, pp. 237-248
-
-
Lum, J.J.1
-
14
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
[14] Young, A.R., et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:Pt 18 (2006), 3888–3900.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3888-3900
-
-
Young, A.R.1
-
15
-
-
77954695260
-
p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
-
[15] Okatsu, K., et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15:8 (2010), 887–900.
-
(2010)
Genes Cells
, vol.15
, Issue.8
, pp. 887-900
-
-
Okatsu, K.1
-
16
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
[16] Vives-Bauza, C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U. S. A. 107:1 (2010), 378–383.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.1
, pp. 378-383
-
-
Vives-Bauza, C.1
-
17
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
[17] Mizushima, N., et al. A protein conjugation system essential for autophagy. Nature 395:6700 (1998), 395–398.
-
(1998)
Nature
, vol.395
, Issue.6700
, pp. 395-398
-
-
Mizushima, N.1
-
18
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
[18] Itakura, E., Mizushima, N., Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:6 (2010), 764–776.
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
19
-
-
84857954964
-
Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens
-
M111.014035
-
[19] Dengjel, J., et al. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol. Cell. Proteomics, 11(3), 2012, M111.014035.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, Issue.3
-
-
Dengjel, J.1
-
20
-
-
84946234468
-
Autophagy and proteins involved in vesicular trafficking
-
[20] Amaya, C., Fader, C.M., Colombo, M.I., Autophagy and proteins involved in vesicular trafficking. FEBS Lett. 589:22 (2015), 3343–3353.
-
(2015)
FEBS Lett.
, vol.589
, Issue.22
, pp. 3343-3353
-
-
Amaya, C.1
Fader, C.M.2
Colombo, M.I.3
-
21
-
-
84891747382
-
The machinery of macroautophagy
-
[21] Feng, Y., et al. The machinery of macroautophagy. Cell Res. 24:1 (2014), 24–41.
-
(2014)
Cell Res.
, vol.24
, Issue.1
, pp. 24-41
-
-
Feng, Y.1
-
22
-
-
77951214016
-
Mammalian autophagy: core molecular machinery and signaling regulation
-
[22] Yang, Z., Klionsky, D.J., Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22:2 (2010), 124–131.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, Issue.2
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
23
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
[23] Lamb, C.A., Yoshimori, T., Tooze, S.A., The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:12 (2013), 759–774.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, Issue.12
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
24
-
-
84864991509
-
Atg9 vesicles are an important membrane source during early steps of autophagosome formation
-
[24] Yamamoto, H., et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198:2 (2012), 219–233.
-
(2012)
J. Cell Biol.
, vol.198
, Issue.2
, pp. 219-233
-
-
Yamamoto, H.1
-
25
-
-
84874274351
-
Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy
-
Feb 5 ra9
-
[25] Li, S., et al. Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci. Signal., 6(261), Feb 5 2013, ra9, 10.1126/scisignal.2003730.
-
(2013)
Sci. Signal.
, vol.6
, Issue.261
-
-
Li, S.1
-
26
-
-
84949057575
-
FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy
-
[26] Olsvik, H.L., et al. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J. Biol. Chem. 290:49 (2015), 29361–29374.
-
(2015)
J. Biol. Chem.
, vol.290
, Issue.49
, pp. 29361-29374
-
-
Olsvik, H.L.1
-
27
-
-
76149086512
-
FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
-
[27] Pankiv, S., et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188:2 (2010), 253–269.
-
(2010)
J. Cell Biol.
, vol.188
, Issue.2
, pp. 253-269
-
-
Pankiv, S.1
-
28
-
-
84920448565
-
PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
[28] McEwan, D.G., et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:1 (2015), 39–54.
-
(2015)
Mol. Cell
, vol.57
, Issue.1
, pp. 39-54
-
-
McEwan, D.G.1
-
29
-
-
84901381389
-
The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17
-
[29] Jiang, P., et al. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25:8 (2014), 1327–1337.
-
(2014)
Mol. Biol. Cell
, vol.25
, Issue.8
, pp. 1327-1337
-
-
Jiang, P.1
-
30
-
-
84922366329
-
Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila
-
[30] Morelli, E., et al. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 10:12 (2014), 2251–2268.
-
(2014)
Autophagy
, vol.10
, Issue.12
, pp. 2251-2268
-
-
Morelli, E.1
-
31
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
[31] Itakura, E., Kishi-Itakura, C., Mizushima, N., The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:6 (2012), 1256–1269.
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
32
-
-
79551546749
-
Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
-
[32] Renna, M., et al. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124:Pt 3 (2011), 469–482.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 469-482
-
-
Renna, M.1
-
33
-
-
7244255989
-
Role for Rab7 in maturation of late autophagic vacuoles
-
[33] Jäger, S., et al. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117:Pt 20 (2004), 4837–4848.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 4837-4848
-
-
Jäger, S.1
-
34
-
-
3242877218
-
Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
-
[34] Gutierrez, M.G., et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117:Pt 13 (2004), 2687–2697.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 2687-2697
-
-
Gutierrez, M.G.1
-
35
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
[35] Ichimura, Y., et al. A ubiquitin-like system mediates protein lipidation. Nature 408:6811 (2000), 488–492.
-
(2000)
Nature
, vol.408
, Issue.6811
, pp. 488-492
-
-
Ichimura, Y.1
-
36
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
[36] Kim, J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:2 (2011), 132–141.
-
(2011)
Nat. Cell Biol.
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
-
37
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
[37] Russell, R.C., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:7 (2013), 741–750.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.7
, pp. 741-750
-
-
Russell, R.C.1
-
38
-
-
65249106104
-
Regulation of autophagy by the p300 acetyltransferase
-
[38] Lee, I.H., Finkel, T., Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284:10 (2009), 6322–6328.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.10
, pp. 6322-6328
-
-
Lee, I.H.1
Finkel, T.2
-
39
-
-
79959886743
-
Complex inhibitory effects of nitric oxide on autophagy
-
[39] Sarkar, S., et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 43:1 (2011), 19–32.
-
(2011)
Mol. Cell
, vol.43
, Issue.1
, pp. 19-32
-
-
Sarkar, S.1
-
40
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
[40] Settembre, C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:5 (2012), 1095–1108.
-
(2012)
EMBO J.
, vol.31
, Issue.5
, pp. 1095-1108
-
-
Settembre, C.1
-
41
-
-
84884200207
-
Basal autophagy is required for the efficient catabolism of sialyloligosaccharides
-
[41] Seino, J., et al. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J. Biol. Chem. 288:37 (2013), 26898–26907.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.37
, pp. 26898-26907
-
-
Seino, J.1
-
42
-
-
0025217177
-
Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry
-
[42] Yamamoto, A., Masaki, R., Tashiro, Y., Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J. Histochem. Cytochem. 38:4 (1990), 573–580.
-
(1990)
J. Histochem. Cytochem.
, vol.38
, Issue.4
, pp. 573-580
-
-
Yamamoto, A.1
Masaki, R.2
Tashiro, Y.3
-
43
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
[43] Axe, E.L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:4 (2008), 685–701.
-
(2008)
J. Cell Biol.
, vol.182
, Issue.4
, pp. 685-701
-
-
Axe, E.L.1
-
44
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
(Epub 2009 Nov 8., 2009. 5(8): p. 1180–5 Nov
-
[44] Ylä-Anttila, P., et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:8 (Nov 2009), 1180–1185 (Epub 2009 Nov 8., 2009. 5(8): p. 1180–5.
-
(2009)
Autophagy
, vol.5
, Issue.8
, pp. 1180-1185
-
-
Ylä-Anttila, P.1
-
45
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
[45] Hayashi-Nishino, M., et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:12 (2009), 1433–1437.
-
(2009)
Nat. Cell Biol.
, vol.11
, Issue.12
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
-
46
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
[46] Ravikumar, B., et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:8 (2010), 747–757.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.8
, pp. 747-757
-
-
Ravikumar, B.1
-
47
-
-
84881506338
-
The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
e00947
-
[47] Ge, L., et al. The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife, 2, 2013, e00947.
-
(2013)
Elife
, vol.2
-
-
Ge, L.1
-
48
-
-
77954197767
-
Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae
-
[48] van der Vaart, A., Griffith, J., Reggiori, F., Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell 21:13 (2010), 2270–2284.
-
(2010)
Mol. Biol. Cell
, vol.21
, Issue.13
, pp. 2270-2284
-
-
van der Vaart, A.1
Griffith, J.2
Reggiori, F.3
-
49
-
-
27644544004
-
Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts
-
[49] Reggiori, F., et al. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:2 (2005), 101–109.
-
(2005)
Autophagy
, vol.1
, Issue.2
, pp. 101-109
-
-
Reggiori, F.1
-
50
-
-
84925307913
-
Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
-
[50] Suzuki, S.W., et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. U. S. A. 112:11 (2015), 3350–3355.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, Issue.11
, pp. 3350-3355
-
-
Suzuki, S.W.1
-
51
-
-
59449097721
-
Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy
-
[51] He, C., et al. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell 19:12 (2008), 5506–5516.
-
(2008)
Mol. Biol. Cell
, vol.19
, Issue.12
, pp. 5506-5516
-
-
He, C.1
-
52
-
-
78650816366
-
Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy
-
[52] Takahashi, Y., et al. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy, 7(1), 2011.
-
(2011)
Autophagy
, vol.7
, Issue.1
-
-
Takahashi, Y.1
-
53
-
-
0033202958
-
The lectin ERGIC-53 is a cargo transport receptor for glycoproteins
-
[53] Appenzeller, C., et al. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1:6 (1999), 330–334.
-
(1999)
Nat. Cell Biol.
, vol.1
, Issue.6
, pp. 330-334
-
-
Appenzeller, C.1
-
54
-
-
0035192612
-
Autophagosome requires specific early sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
[54] Ishihara, N., et al. Autophagosome requires specific early sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12:11 (2001), 3690–3702.
-
(2001)
Mol. Biol. Cell
, vol.12
, Issue.11
, pp. 3690-3702
-
-
Ishihara, N.1
-
55
-
-
84894350140
-
The ER–Golgi intermediate compartment feeds the phagophore membrane
-
[55] Ge, L., Schekman, R., The ER–Golgi intermediate compartment feeds the phagophore membrane. Autophagy 10:1 (2014), 170–172.
-
(2014)
Autophagy
, vol.10
, Issue.1
, pp. 170-172
-
-
Ge, L.1
Schekman, R.2
-
56
-
-
84927720203
-
Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment
-
e04135
-
[56] Ge, L., Zhang, M., Schekman, R., Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment. Elife, 3, 2014, e04135.
-
(2014)
Elife
, vol.3
-
-
Ge, L.1
Zhang, M.2
Schekman, R.3
-
57
-
-
0028233498
-
COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum
-
[57] Barlowe, C., et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:6 (1994), 895–907.
-
(1994)
Cell
, vol.77
, Issue.6
, pp. 895-907
-
-
Barlowe, C.1
-
58
-
-
1542298251
-
Regulation of a COPII component by cytosolic O-glycosylation during mitosis
-
[58] Dudognon, P., et al. Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett. 561:1–3 (2004), 44–50.
-
(2004)
FEBS Lett.
, vol.561
, Issue.1-3
, pp. 44-50
-
-
Dudognon, P.1
-
59
-
-
79954434103
-
The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways
-
[59] Zachara, N.E., et al. The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40:3 (2011), 793–808.
-
(2011)
Amino Acids
, vol.40
, Issue.3
, pp. 793-808
-
-
Zachara, N.E.1
-
60
-
-
12244260748
-
Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids
-
[60] Akiyoshi, K., et al. Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids. FEBS Lett. 534:1–3 (2003), 33–38.
-
(2003)
FEBS Lett.
, vol.534
, Issue.1-3
, pp. 33-38
-
-
Akiyoshi, K.1
-
61
-
-
84899768745
-
Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation
-
[61] Matarrese, P., et al. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10:5 (2014), 750–765.
-
(2014)
Autophagy
, vol.10
, Issue.5
, pp. 750-765
-
-
Matarrese, P.1
-
62
-
-
76449116319
-
Gangliosides induce autophagic cell death in astrocytes
-
[62] Hwang, J., et al. Gangliosides induce autophagic cell death in astrocytes. Br. J. Pharmacol. 159:3 (2010), 586–603.
-
(2010)
Br. J. Pharmacol.
, vol.159
, Issue.3
, pp. 586-603
-
-
Hwang, J.1
-
63
-
-
77956392170
-
NF-κB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes
-
[63] Hwang, J., et al. NF-κB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes. J. Neuroimmunol. 226:1–2 (2010), 66–72.
-
(2010)
J. Neuroimmunol.
, vol.226
, Issue.1-2
, pp. 66-72
-
-
Hwang, J.1
-
64
-
-
44849102178
-
Getting in and out from calnexin/calreticulin cycles
-
[64] Caramelo, J.J., Parodi, A.J., Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283:16 (2008), 10221–10225.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.16
, pp. 10221-10225
-
-
Caramelo, J.J.1
Parodi, A.J.2
-
65
-
-
0029876344
-
ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins
-
[65] Itin, C., et al. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol. Biol. Cell 7:3 (1996), 483–493.
-
(1996)
Mol. Biol. Cell
, vol.7
, Issue.3
, pp. 483-493
-
-
Itin, C.1
-
66
-
-
84920941027
-
Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy
-
[66] Jiang, Q.L., et al. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif. 48:1 (2015), 17–28.
-
(2015)
Cell Prolif.
, vol.48
, Issue.1
, pp. 17-28
-
-
Jiang, Q.L.1
-
67
-
-
0023158844
-
Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides
-
[67] Bhattacharyya, L., et al. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides. J. Biol. Chem. 262:3 (1987), 1288–1293.
-
(1987)
J. Biol. Chem.
, vol.262
, Issue.3
, pp. 1288-1293
-
-
Bhattacharyya, L.1
-
68
-
-
0017327512
-
Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells
-
[68] Albertini, D.F., Anderson, E., Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells. J. Cell Biol. 73:1 (1977), 111–127.
-
(1977)
J. Cell Biol.
, vol.73
, Issue.1
, pp. 111-127
-
-
Albertini, D.F.1
Anderson, E.2
-
69
-
-
0025019682
-
Modulation of the binding and endocytosis of concanavalin A by guinea pig keratinocytes: reversible antagonistic effects of cholesterol and phospholipid-liposomes
-
[69] Callaghan, T.M., et al. Modulation of the binding and endocytosis of concanavalin A by guinea pig keratinocytes: reversible antagonistic effects of cholesterol and phospholipid-liposomes. J. Investig. Dermatol. 94:1 (1990), 58–64.
-
(1990)
J. Investig. Dermatol.
, vol.94
, Issue.1
, pp. 58-64
-
-
Callaghan, T.M.1
-
70
-
-
84893369762
-
Role of PI3K/Akt/mTOR and MEK/ERK pathway in concanavalin A induced autophagy in HeLa cells
-
[70] Roy, B., et al. Role of PI3K/Akt/mTOR and MEK/ERK pathway in concanavalin A induced autophagy in HeLa cells. Chem. Biol. Interact. 210 (2014), 96–102.
-
(2014)
Chem. Biol. Interact.
, vol.210
, pp. 96-102
-
-
Roy, B.1
-
71
-
-
69449092724
-
Activation of the PI3K–Akt–mTOR signaling pathway promotes necrotic cell death via suppression of autophagy
-
[71] Wu, Y.T., et al. Activation of the PI3K–Akt–mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5:6 (2009), 824–834.
-
(2009)
Autophagy
, vol.5
, Issue.6
, pp. 824-834
-
-
Wu, Y.T.1
-
72
-
-
84893578869
-
Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1–MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells
-
[72] Pratt, J., Annabi, B., Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1–MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell. Signal. 26:5 (2014), 917–924.
-
(2014)
Cell. Signal.
, vol.26
, Issue.5
, pp. 917-924
-
-
Pratt, J.1
Annabi, B.2
-
73
-
-
34247242084
-
Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision
-
[73] Belkaid, A., et al. Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 9:4 (2007), 332–340.
-
(2007)
Neoplasia
, vol.9
, Issue.4
, pp. 332-340
-
-
Belkaid, A.1
-
74
-
-
84864436118
-
Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells
-
[74] Pratt, J., Roy, R., Annabi, B., Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology 22:9 (2012), 1245–1255.
-
(2012)
Glycobiology
, vol.22
, Issue.9
, pp. 1245-1255
-
-
Pratt, J.1
Roy, R.2
Annabi, B.3
-
75
-
-
0033942613
-
BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore
-
[75] Vande Velde, C., et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol. 20:15 (2000), 5454–5468.
-
(2000)
Mol. Cell. Biol.
, vol.20
, Issue.15
, pp. 5454-5468
-
-
Vande Velde, C.1
-
76
-
-
79952617818
-
Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover
-
[76] Rikka, S., et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 18:4 (2011), 721–731.
-
(2011)
Cell Death Differ.
, vol.18
, Issue.4
, pp. 721-731
-
-
Rikka, S.1
-
77
-
-
58749105634
-
Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS–p38–p53 pathway
-
[77] Liu, B., et al. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS–p38–p53 pathway. Cancer Lett. 275:1 (2009), 54–60.
-
(2009)
Cancer Lett.
, vol.275
, Issue.1
, pp. 54-60
-
-
Liu, B.1
-
78
-
-
78650250800
-
Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras–Raf and PI3K–Akt signaling pathways
-
[78] Liu, B., et al. Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras–Raf and PI3K–Akt signaling pathways. Biochimie 92:12 (2010), 1934–1938.
-
(2010)
Biochimie
, vol.92
, Issue.12
, pp. 1934-1938
-
-
Liu, B.1
-
79
-
-
84921839935
-
Evolving mechanistic insights into galectin functions
-
[79] Arthur, C.M., et al. Evolving mechanistic insights into galectin functions. Methods Mol. Biol. 1207 (2015), 1–35.
-
(2015)
Methods Mol. Biol.
, vol.1207
, pp. 1-35
-
-
Arthur, C.M.1
-
80
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
[80] Thurston, T.L., et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:7385 (2012), 414–418.
-
(2012)
Nature
, vol.482
, Issue.7385
, pp. 414-418
-
-
Thurston, T.L.1
-
81
-
-
84943747270
-
Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay
-
[81] Aits, S., et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11:8 (2015), 1408–1424.
-
(2015)
Autophagy
, vol.11
, Issue.8
, pp. 1408-1424
-
-
Aits, S.1
-
82
-
-
77954271859
-
Galectin-3, a marker for vacuole lysis by invasive pathogens
-
[82] Paz, I., et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 12:4 (2010), 530–544.
-
(2010)
Cell. Microbiol.
, vol.12
, Issue.4
, pp. 530-544
-
-
Paz, I.1
-
83
-
-
79952348751
-
The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway
-
[83] Cemma, M., Kim, P.K., Brumell, J.H., The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 7:3 (2011), 341–345.
-
(2011)
Autophagy
, vol.7
, Issue.3
, pp. 341-345
-
-
Cemma, M.1
Kim, P.K.2
Brumell, J.H.3
-
84
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
[84] Zheng, Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183:9 (2009), 5909–5916.
-
(2009)
J. Immunol.
, vol.183
, Issue.9
, pp. 5909-5916
-
-
Zheng, Y.T.1
-
85
-
-
84898939299
-
Autophagy induced by calcium phosphate precipitates targets damaged endosomes
-
[85] Chen, X., et al. Autophagy induced by calcium phosphate precipitates targets damaged endosomes. J. Biol. Chem. 289:16 (2014), 11162–11174.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.16
, pp. 11162-11174
-
-
Chen, X.1
-
86
-
-
0020328493
-
Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy
-
[86] Loyter, A., et al. Mechanisms of DNA entry into mammalian cells. II. Phagocytosis of calcium phosphate DNA co-precipitate visualized by electron microscopy. Exp. Cell Res. 139:1 (1982), 223–234.
-
(1982)
Exp. Cell Res.
, vol.139
, Issue.1
, pp. 223-234
-
-
Loyter, A.1
-
87
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
[87] Maejima, I., et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32:17 (2013), 2336–2347.
-
(2013)
EMBO J.
, vol.32
, Issue.17
, pp. 2336-2347
-
-
Maejima, I.1
-
88
-
-
84876117810
-
C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways
-
[88] Plato, A., Willment, J.A., Brown, G.D., C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int. Rev. Immunol. 32:2 (2013), 134–156.
-
(2013)
Int. Rev. Immunol.
, vol.32
, Issue.2
, pp. 134-156
-
-
Plato, A.1
Willment, J.A.2
Brown, G.D.3
-
89
-
-
84880276658
-
Glycobiology of cell death: when glycans and lectins govern cell fate
-
[89] Lichtenstein, R.G., Rabinovich, G.A., Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 20:8 (2013), 976–986.
-
(2013)
Cell Death Differ.
, vol.20
, Issue.8
, pp. 976-986
-
-
Lichtenstein, R.G.1
Rabinovich, G.A.2
-
90
-
-
84936871761
-
Recent insights into structures and functions of C-type lectins in the immune system
-
[90] Drickamer, K., Taylor, M.E., Recent insights into structures and functions of C-type lectins in the immune system. Curr. Opin. Struct. Biol. 34 (2015), 26–34.
-
(2015)
Curr. Opin. Struct. Biol.
, vol.34
, pp. 26-34
-
-
Drickamer, K.1
Taylor, M.E.2
-
91
-
-
84938818192
-
CR3 and dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk–JNK–AP-1 pathway
-
e1004985
-
[91] Huang, J.H., et al. CR3 and dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk–JNK–AP-1 pathway. PLoS Pathog., 11(7), 2015, e1004985.
-
(2015)
PLoS Pathog.
, vol.11
, Issue.7
-
-
Huang, J.H.1
-
92
-
-
27144521657
-
Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production
-
[92] Underhill, D.M., et al. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:7 (2005), 2543–2550.
-
(2005)
Blood
, vol.106
, Issue.7
, pp. 2543-2550
-
-
Underhill, D.M.1
-
93
-
-
84867268375
-
Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens
-
[93] Ma, J., et al. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J. Biol. Chem. 287:41 (2012), 34149–34156.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.41
, pp. 34149-34156
-
-
Ma, J.1
-
94
-
-
84945156965
-
SHIP-1 couples to the dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to Candida albicans
-
[94] Blanco-Menéndez, N., et al. SHIP-1 couples to the dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to Candida albicans. J. Immunol. 95:9 (2015), 4466–4478.
-
(2015)
J. Immunol.
, vol.95
, Issue.9
, pp. 4466-4478
-
-
Blanco-Menéndez, N.1
-
95
-
-
84922295311
-
Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages
-
[95] Tam, J.M., et al. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 210:11 (2014), 1844–1854.
-
(2014)
J. Infect. Dis.
, vol.210
, Issue.11
, pp. 1844-1854
-
-
Tam, J.M.1
-
96
-
-
84880668491
-
Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling
-
[96] Kyrmizi, I., et al. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 91:3 (2013), 1287–1299.
-
(2013)
J. Immunol.
, vol.91
, Issue.3
, pp. 1287-1299
-
-
Kyrmizi, I.1
-
97
-
-
84896723873
-
Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production
-
[97] Ma, J., et al. Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J. Immunol. 192:4 (2014), 1356–1360.
-
(2014)
J. Immunol.
, vol.192
, Issue.4
, pp. 1356-1360
-
-
Ma, J.1
-
98
-
-
84902141285
-
Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages
-
[98] Öhman, T., et al. Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages. J. Immunol. 192:12 (2014), 5952–5962.
-
(2014)
J. Immunol.
, vol.192
, Issue.12
, pp. 5952-5962
-
-
Öhman, T.1
-
99
-
-
84883114523
-
Overexpression of Atg5 in mice activates autophagy and extends lifespan
-
[99] Pyo, J.O., et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun., 4, 2013, 2300.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2300
-
-
Pyo, J.O.1
-
100
-
-
0035494493
-
Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation
-
[100] Vieira, O.V., et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155:1 (2001), 19–25.
-
(2001)
J. Cell Biol.
, vol.155
, Issue.1
, pp. 19-25
-
-
Vieira, O.V.1
-
101
-
-
84870861513
-
Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes
-
[101] Henault, J., et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37:6 (2012), 986–997.
-
(2012)
Immunity
, vol.37
, Issue.6
, pp. 986-997
-
-
Henault, J.1
-
102
-
-
80054825045
-
Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
-
[102] Martinez, J., et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. U. S. A. 108:42 (2011), 17396–17401.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, Issue.42
, pp. 17396-17401
-
-
Martinez, J.1
-
103
-
-
0031897801
-
Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements
-
[103] Barnden, M.J., et al. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76:1 (1998), 34–40.
-
(1998)
Immunol. Cell Biol.
, vol.76
, Issue.1
, pp. 34-40
-
-
Barnden, M.J.1
-
104
-
-
84926686351
-
Three decades of research on O-GlcNAcylation—a major nutrient sensor that regulates signaling, transcription and cellular metabolism
-
[104] Hart, G.W., Three decades of research on O-GlcNAcylation—a major nutrient sensor that regulates signaling, transcription and cellular metabolism. Front. Endocrinol. (Lausanne), 5, 2014, 183.
-
(2014)
Front. Endocrinol. (Lausanne)
, vol.5
, pp. 183
-
-
Hart, G.W.1
-
105
-
-
58649095123
-
Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose
-
[105] Hu, Y., et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J. Biol. Chem. 284:1 (2009), 547–555.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.1
, pp. 547-555
-
-
Hu, Y.1
-
106
-
-
47749149232
-
O-GlcNAc regulates FoxO activation in response to glucose
-
[106] Housley, M.P., et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283:24 (2008), 16283–16292.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.24
, pp. 16283-16292
-
-
Housley, M.P.1
-
107
-
-
84900540044
-
Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis
-
[107] Aguilar, H., et al. Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am. J. Phys. Cell Physiol. 306:9 (2014), C794–C804.
-
(2014)
Am. J. Phys. Cell Physiol.
, vol.306
, Issue.9
, pp. C794-C804
-
-
Aguilar, H.1
-
108
-
-
25444501339
-
Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis
-
[108] Slawson, C., et al. Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280:38 (2005), 32944–32956.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.38
, pp. 32944-32956
-
-
Slawson, C.1
-
109
-
-
80054818714
-
Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated
-
[109] Zhang, S., et al. Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286:43 (2011), 37483–37495.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.43
, pp. 37483-37495
-
-
Zhang, S.1
-
110
-
-
70350482930
-
O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death
-
[110] Ngoh, G.A., et al. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am. J. Physiol. Heart Circ. Physiol. 297:5 (2009), H1711–H1719.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.297
, Issue.5
, pp. H1711-H1719
-
-
Ngoh, G.A.1
-
111
-
-
84878470417
-
O-GlcNAcylation of alphaB-crystallin regulates its stress-induced translocation and cytoprotection
-
[111] Krishnamoorthy, V., Donofrio, A.J., Martin, J.L., O-GlcNAcylation of alphaB-crystallin regulates its stress-induced translocation and cytoprotection. Mol. Cell. Biochem. 379:1–2 (2013), 59–68.
-
(2013)
Mol. Cell. Biochem.
, vol.379
, Issue.1-2
, pp. 59-68
-
-
Krishnamoorthy, V.1
Donofrio, A.J.2
Martin, J.L.3
-
112
-
-
78649894035
-
O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner
-
[112] Kazemi, Z., et al. O-linked beta-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3beta-dependent manner. J. Biol. Chem. 285:50 (2010), 39096–39107.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.50
, pp. 39096-39107
-
-
Kazemi, Z.1
-
113
-
-
84925284243
-
O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
-
[113] Guo, B., et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:12 (2014), 1215–1226.
-
(2014)
Nat. Cell Biol.
, vol.16
, Issue.12
, pp. 1215-1226
-
-
Guo, B.1
-
114
-
-
77952171341
-
Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity
-
[114] Love, D.C., et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl. Acad. Sci. U. S. A. 107:16 (2010), 7413–7418.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, Issue.16
, pp. 7413-7418
-
-
Love, D.C.1
-
115
-
-
84875210462
-
Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
-
[115] Marsh, S.A., et al. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92:11 (2013), 648–656.
-
(2013)
Life Sci.
, vol.92
, Issue.11
, pp. 648-656
-
-
Marsh, S.A.1
-
116
-
-
84937739068
-
O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster
-
[116] Park, S., et al. O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster. Cell. Mol. Life Sci. 72:16 (2015), 3173–3183.
-
(2015)
Cell. Mol. Life Sci.
, vol.72
, Issue.16
, pp. 3173-3183
-
-
Park, S.1
-
117
-
-
84867908726
-
O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases
-
[117] Wang, P., et al. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc. Natl. Acad. Sci. U. S. A. 109:43 (2012), 17669–17674.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, Issue.43
, pp. 17669-17674
-
-
Wang, P.1
-
118
-
-
84864878724
-
Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy
-
[118] van der Vos, K.E., et al. Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nat. Cell Biol. 14:8 (2012), 829–837.
-
(2012)
Nat. Cell Biol.
, vol.14
, Issue.8
, pp. 829-837
-
-
van der Vos, K.E.1
-
119
-
-
77954225200
-
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
-
[119] Zhao, Y., et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12:7 (2010), 665–675.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.7
, pp. 665-675
-
-
Zhao, Y.1
-
120
-
-
71549132691
-
O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress
-
[120] Ho, S.R., et al. O-GlcNAcylation enhances FOXO4 transcriptional regulation in response to stress. FEBS Lett. 584:1 (2010), 49–54.
-
(2010)
FEBS Lett.
, vol.584
, Issue.1
, pp. 49-54
-
-
Ho, S.R.1
-
121
-
-
84898613353
-
Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK)
-
[121] Bullen, J.W., et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289:15 (2014), 10592–10606.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.15
, pp. 10592-10606
-
-
Bullen, J.W.1
-
122
-
-
64149111641
-
A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose
-
[122] Housley, M.P., et al. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284:8 (2009), 5148–5157.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.8
, pp. 5148-5157
-
-
Housley, M.P.1
-
123
-
-
84880060656
-
Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism
-
[123] Wang, N., et al. Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. J. Biol. Chem. 288:25 (2013), 18146–18161.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.25
, pp. 18146-18161
-
-
Wang, N.1
-
124
-
-
0034806213
-
SNAP-29 is a promiscuous syntaxin-binding SNARE
-
[124] Hohenstein, A.C., Roche, P.A., SNAP-29 is a promiscuous syntaxin-binding SNARE. Biochem. Biophys. Res. Commun. 285:2 (2001), 167–171.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.285
, Issue.2
, pp. 167-171
-
-
Hohenstein, A.C.1
Roche, P.A.2
-
125
-
-
84924898037
-
Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis
-
[125] Keembiyehetty, C., et al. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J. Biol. Chem. 290:11 (2015), 7097–7113.
-
(2015)
J. Biol. Chem.
, vol.290
, Issue.11
, pp. 7097-7113
-
-
Keembiyehetty, C.1
-
126
-
-
84860872762
-
O-GlcNAcase is essential for embryonic development and maintenance of genomic stability
-
[126] Yang, Y.R., et al. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 11:3 (2012), 439–448.
-
(2012)
Aging Cell
, vol.11
, Issue.3
, pp. 439-448
-
-
Yang, Y.R.1
-
127
-
-
0842347416
-
Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability
-
[127] O'Donnell, N., et al. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24:4 (2004), 1680–1690.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.4
, pp. 1680-1690
-
-
O'Donnell, N.1
-
128
-
-
0034705030
-
The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny
-
[128] Shafi, R., et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. U. S. A. 97:11 (2000), 5735–5739.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, Issue.11
, pp. 5735-5739
-
-
Shafi, R.1
-
129
-
-
41149165746
-
Cardioprotection by N-acetylglucosamine linkage to cellular proteins
-
[129] Jones, S.P., et al. Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117:9 (2008), 1172–1182.
-
(2008)
Circulation
, vol.117
, Issue.9
, pp. 1172-1182
-
-
Jones, S.P.1
-
130
-
-
84959481890
-
The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation
-
[130] Yamano, K., Matsuda, N., Tanaka, K., The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17:3 (2016), 300–316.
-
(2016)
EMBO Rep.
, vol.17
, Issue.3
, pp. 300-316
-
-
Yamano, K.1
Matsuda, N.2
Tanaka, K.3
-
131
-
-
84555179609
-
Extracellular matrix degradation and remodeling in development and disease
-
(p. pii: a005058)
-
[131] Lu, P., et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 3(12), 2011 (p. pii: a005058).
-
(2011)
Cold Spring Harb. Perspect. Biol.
, vol.3
, Issue.12
-
-
Lu, P.1
-
132
-
-
84879905523
-
Decorin causes autophagy in endothelial cells via Peg3
-
[132] Buraschi, S., et al. Decorin causes autophagy in endothelial cells via Peg3. Proc. Natl. Acad. Sci. U. S. A. 110:28 (2013), E2582–E2591.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.28
, pp. E2582-E2591
-
-
Buraschi, S.1
-
133
-
-
84894342780
-
Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells
-
[133] Goyal, A., et al. Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol. 34 (2014), 46–54.
-
(2014)
Matrix Biol.
, vol.34
, pp. 46-54
-
-
Goyal, A.1
-
134
-
-
84947795871
-
Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy
-
[134] Gubbiotti, M.A., et al. Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol. 48 (2015), 14–25.
-
(2015)
Matrix Biol.
, vol.48
, pp. 14-25
-
-
Gubbiotti, M.A.1
-
135
-
-
84894479646
-
Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin
-
[135] Neill, T., et al. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitostatin. J. Biol. Chem. 289:8 (2014), 4952–4968.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.8
, pp. 4952-4968
-
-
Neill, T.1
-
136
-
-
84905842674
-
A cleavage-potentiated fragment of tear lacritin is bactericidal
-
[136] McKown, R.L., et al. A cleavage-potentiated fragment of tear lacritin is bactericidal. J. Biol. Chem. 289:32 (2014), 22172–22182.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.32
, pp. 22172-22182
-
-
McKown, R.L.1
-
137
-
-
84947870176
-
Perlecan inhibits autophagy to maintain muscle homeostasis in mouse soleus muscle
-
[137] Ning, L., et al. Perlecan inhibits autophagy to maintain muscle homeostasis in mouse soleus muscle. Matrix Biol. 48 (2015), 26–35.
-
(2015)
Matrix Biol.
, vol.48
, pp. 26-35
-
-
Ning, L.1
-
138
-
-
77449091329
-
Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and beta-catenin levels
-
[138] Nguyen, T.M., et al. Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and beta-catenin levels. J. Cell. Mol. Med. 13:9B (2009), 3687–3698.
-
(2009)
J. Cell. Mol. Med.
, vol.13
, Issue.9B
, pp. 3687-3698
-
-
Nguyen, T.M.1
-
139
-
-
84907209949
-
Endostar, a modified recombinant human endostatin, suppresses angiogenesis through inhibition of Wnt/β-catenin signaling pathway
-
e107463
-
[139] Xu, X., et al. Endostar, a modified recombinant human endostatin, suppresses angiogenesis through inhibition of Wnt/β-catenin signaling pathway. PLoS ONE, 9(9), 2014, e107463.
-
(2014)
PLoS ONE
, vol.9
, Issue.9
-
-
Xu, X.1
-
140
-
-
84902177225
-
Endorepellin evokes autophagy in endothelial cells
-
[140] Poluzzi, C., et al. Endorepellin evokes autophagy in endothelial cells. J. Biol. Chem. 289:23 (2014), 16114–16128.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.23
, pp. 16114-16128
-
-
Poluzzi, C.1
-
141
-
-
34249658435
-
Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
-
[141] Nguyen, T.M., et al. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 109:11 (2007), 4793–4802.
-
(2007)
Blood
, vol.109
, Issue.11
, pp. 4793-4802
-
-
Nguyen, T.M.1
-
142
-
-
81855205301
-
Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A
-
[142] Carmignac, V., et al. Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum. Mol. Genet. 20:24 (2011), 4891–4902.
-
(2011)
Hum. Mol. Genet.
, vol.20
, Issue.24
, pp. 4891-4902
-
-
Carmignac, V.1
-
143
-
-
84876771337
-
Thrombospondin-1 receptor mediates autophagy of RAS-expressing cancer cells and triggers tumour growth inhibition
-
[143] Kalas, W., et al. Thrombospondin-1 receptor mediates autophagy of RAS-expressing cancer cells and triggers tumour growth inhibition. Anticancer Res. 33:4 (2013), 1429–1438.
-
(2013)
Anticancer Res.
, vol.33
, Issue.4
, pp. 1429-1438
-
-
Kalas, W.1
-
144
-
-
67650242385
-
Cyclin D3 mediates synthesis of a hyaluronan matrix that is adhesive for monocytes in mesangial cells stimulated to divide in hyperglycemic medium
-
[144] Ren, J., Hascall, V.C., Wang, A., Cyclin D3 mediates synthesis of a hyaluronan matrix that is adhesive for monocytes in mesangial cells stimulated to divide in hyperglycemic medium. J. Biol. Chem. 284:24 (2009), 16621–16632.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.24
, pp. 16621-16632
-
-
Ren, J.1
Hascall, V.C.2
Wang, A.3
-
145
-
-
84885698888
-
Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan
-
e78131
-
[145] Saha, P., et al. Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan. PLoS ONE, 8(10), 2013, e78131.
-
(2013)
PLoS ONE
, vol.8
, Issue.10
-
-
Saha, P.1
-
146
-
-
84904966129
-
Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency
-
[146] Saha, P., Ghosh, I., Datta, K., Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency. PLoS One, 9(7), 2014, e103208.
-
(2014)
PLoS One
, vol.9
, Issue.7
, pp. e103208
-
-
Saha, P.1
Ghosh, I.2
Datta, K.3
-
147
-
-
84897425443
-
Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division
-
[147] Wang, A., et al. Heparin prevents intracellular hyaluronan synthesis and autophagy responses in hyperglycemic dividing mesangial cells and activates synthesis of an extensive extracellular monocyte-adhesive hyaluronan matrix after completing cell division. J. Biol. Chem. 289:13 (2014), 9418–9429.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.13
, pp. 9418-9429
-
-
Wang, A.1
-
148
-
-
84908350153
-
Revisiting the matricellular concept
-
[148] Murphy-Ullrich, J.E., Sage, E.H., Revisiting the matricellular concept. Matrix Biol. 37 (2014), 1–14.
-
(2014)
Matrix Biol.
, vol.37
, pp. 1-14
-
-
Murphy-Ullrich, J.E.1
Sage, E.H.2
-
149
-
-
84901390292
-
The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling
-
[149] Lord, M.S., et al. The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling. Matrix Biol. 35 (2014), 112–122.
-
(2014)
Matrix Biol.
, vol.35
, pp. 112-122
-
-
Lord, M.S.1
-
150
-
-
0027199292
-
Differential expression of thrombospondin 1, 2, and 3 during murine development
-
[150] Iruela-Arispe, M.L., et al. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev. Dyn. 197:1 (1993), 40–56.
-
(1993)
Dev. Dyn.
, vol.197
, Issue.1
, pp. 40-56
-
-
Iruela-Arispe, M.L.1
-
151
-
-
84897053519
-
Small leucine-rich proteoglycans exhibit unique spatiotemporal expression profiles during cardiac valve development
-
[151] Dupuis, L.E., Kern, C.B., Small leucine-rich proteoglycans exhibit unique spatiotemporal expression profiles during cardiac valve development. Dev. Dyn. 243:4 (2014), 601–611.
-
(2014)
Dev. Dyn.
, vol.243
, Issue.4
, pp. 601-611
-
-
Dupuis, L.E.1
Kern, C.B.2
-
152
-
-
11844298904
-
The role of thrombospondins 1 and 2 in the regulation of cell–matrix interactions, collagen fibril formation, and the response to injury
-
[152] Bornstein, P., Agah, A., Kyriakides, T.R., The role of thrombospondins 1 and 2 in the regulation of cell–matrix interactions, collagen fibril formation, and the response to injury. Int. J. Biochem. Cell Biol. 36:6 (2004), 1115–1125.
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, Issue.6
, pp. 1115-1125
-
-
Bornstein, P.1
Agah, A.2
Kyriakides, T.R.3
-
153
-
-
47749104114
-
Decorin regulates endothelial cell motility on collagen I through activation of insulin-like growth factor I receptor and modulation of alpha2beta1 integrin activity
-
[153] Fiedler, L.R., et al. Decorin regulates endothelial cell motility on collagen I through activation of insulin-like growth factor I receptor and modulation of alpha2beta1 integrin activity. J. Biol. Chem. 283:25 (2008), 17406–17415.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.25
, pp. 17406-17415
-
-
Fiedler, L.R.1
-
154
-
-
0034653421
-
Secreted cathepsin L generates endostatin from collagen XVIII
-
[154] Felbor, U., et al. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19:6 (2000), 1187–1194.
-
(2000)
EMBO J.
, vol.19
, Issue.6
, pp. 1187-1194
-
-
Felbor, U.1
-
155
-
-
55249104973
-
Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis
-
[155] Cailhier, J.F., et al. Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis. J. Biol. Chem. 283:40 (2008), 27220–27229.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.40
, pp. 27220-27229
-
-
Cailhier, J.F.1
-
156
-
-
0030606329
-
Purification and characterization of perlecan fragment in urine of end-stage renal failure patients
-
[156] Oda, O., et al. Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin. Chim. Acta 255:2 (1996), 119–132.
-
(1996)
Clin. Chim. Acta
, vol.255
, Issue.2
, pp. 119-132
-
-
Oda, O.1
-
157
-
-
14844299756
-
BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan
-
[157] Gonzalez, E.M., et al. BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem. 280:8 (2005), 7080–7087.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.8
, pp. 7080-7087
-
-
Gonzalez, E.M.1
-
158
-
-
70349667325
-
Ischemia–reperfusion injury activates early extracellular matrix processing and expression of endostatin in the heart with differential effects of temperature
-
[158] Lauten, A., et al. Ischemia–reperfusion injury activates early extracellular matrix processing and expression of endostatin in the heart with differential effects of temperature. Basic Res. Cardiol. 104:5 (2009), 559–569.
-
(2009)
Basic Res. Cardiol.
, vol.104
, Issue.5
, pp. 559-569
-
-
Lauten, A.1
-
159
-
-
84871560447
-
Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1alpha and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation
-
[159] Goyal, A., et al. Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1alpha and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation. J. Biol. Chem. 287:52 (2012), 43543–43556.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.52
, pp. 43543-43556
-
-
Goyal, A.1
-
160
-
-
84957801865
-
Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers
-
[160] Poluzzi, C., Iozzo, R.V., Schaefer, L., Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv. Drug Deliv. Rev. 97 (2016), 156–173.
-
(2016)
Adv. Drug Deliv. Rev.
, vol.97
, pp. 156-173
-
-
Poluzzi, C.1
Iozzo, R.V.2
Schaefer, L.3
-
161
-
-
0025262156
-
Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis
-
[161] Mann, D.M., et al. Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis. J. Biol. Chem. 265:9 (1990), 5317–5323.
-
(1990)
J. Biol. Chem.
, vol.265
, Issue.9
, pp. 5317-5323
-
-
Mann, D.M.1
-
162
-
-
84870327019
-
DNA-binding motif and target genes of the imprinted transcription factor PEG3
-
[162] Thiaville, M.M., et al. DNA-binding motif and target genes of the imprinted transcription factor PEG3. Gene 512:2 (2013), 314–320.
-
(2013)
Gene
, vol.512
, Issue.2
, pp. 314-320
-
-
Thiaville, M.M.1
-
163
-
-
79955812386
-
Mitostatin is down-regulated in human prostate cancer and suppresses the invasive phenotype of prostate cancer cells
-
e19771
-
[163] Fassan, M., et al. Mitostatin is down-regulated in human prostate cancer and suppresses the invasive phenotype of prostate cancer cells. PLoS ONE, 6(5), 2011, e19771.
-
(2011)
PLoS ONE
, vol.6
, Issue.5
-
-
Fassan, M.1
-
164
-
-
58249112899
-
MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer
-
[164] Vecchione, A., et al. MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer. Oncogene 28:2 (2009), 257–269.
-
(2009)
Oncogene
, vol.28
, Issue.2
, pp. 257-269
-
-
Vecchione, A.1
-
165
-
-
84950301764
-
Lacritin salvages human corneal epithelial cells from lipopolysaccharide induced cell death
-
[165] Vantaku, V.R., et al. Lacritin salvages human corneal epithelial cells from lipopolysaccharide induced cell death. Sci. Rep., 5, 2015, 18362.
-
(2015)
Sci. Rep.
, vol.5
, pp. 18362
-
-
Vantaku, V.R.1
-
166
-
-
84908565995
-
Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles
-
[166] Wang, W., et al. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. J. Mater. Chem. B Mater. Biol. Med. 2:46 (2014), 8131–8141.
-
(2014)
J. Mater. Chem. B Mater. Biol. Med.
, vol.2
, Issue.46
, pp. 8131-8141
-
-
Wang, W.1
-
167
-
-
84939968330
-
Proteoglycan form and function: a comprehensive nomenclature of proteoglycans
-
[167] Iozzo, R.V., L., S., Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42 (2015), 11–55.
-
(2015)
Matrix Biol.
, vol.42
, pp. 11-55
-
-
Iozzo, R.V.1
L., S.2
-
168
-
-
33748121374
-
Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin
-
[168] Ma, P., et al. Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174:7 (2006), 1097–1106.
-
(2006)
J. Cell Biol.
, vol.174
, Issue.7
, pp. 1097-1106
-
-
Ma, P.1
-
169
-
-
84876934292
-
Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved Core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity
-
[169] Zhang, Y., et al. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved Core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J. Biol. Chem. 288:17 (2013), 12090–12101.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.17
, pp. 12090-12101
-
-
Zhang, Y.1
-
170
-
-
67549110195
-
A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
-
(Epub 2009 Jul 20., 2009. 5(5): p. 649–62) Jul
-
[170] Mercer, C.A., Kaliappan, A., D.P.B., A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:5 (Jul 2009), 649–662 (Epub 2009 Jul 20., 2009. 5(5): p. 649–62).
-
(2009)
Autophagy
, vol.5
, Issue.5
, pp. 649-662
-
-
Mercer, C.A.1
Kaliappan, A.2
D.P.B.3
-
171
-
-
0038267444
-
CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis
-
[171] Lamy, L., et al. CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. J. Biol. Chem. 278:26 (2003), 23915–23921.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.26
, pp. 23915-23921
-
-
Lamy, L.1
-
172
-
-
84901020367
-
Mammalian protein glycosylation—structure versus function
-
[172] Defaus, S., et al. Mammalian protein glycosylation—structure versus function. Analyst, 139(12), 2014, 2944.
-
(2014)
Analyst
, vol.139
, Issue.12
, pp. 2944
-
-
Defaus, S.1
-
173
-
-
0035794220
-
C-mannosylation and O-fucosylation of the thrombospondin type 1 module
-
[173] Hofsteenge, J., et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J. Biol. Chem. 276:9 (2000), 6485–6498.
-
(2000)
J. Biol. Chem.
, vol.276
, Issue.9
, pp. 6485-6498
-
-
Hofsteenge, J.1
-
174
-
-
79955386559
-
Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1
-
[174] Kaur, S., et al. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J. Biol. Chem. 286:17 (2011), 14991–15002.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.17
, pp. 14991-15002
-
-
Kaur, S.1
-
175
-
-
84908347357
-
Current understanding of the thrombospondin-1 interactome
-
[175] Resovi, A., et al. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 37 (2014), 83–91.
-
(2014)
Matrix Biol.
, vol.37
, pp. 83-91
-
-
Resovi, A.1
-
176
-
-
84901301539
-
CD47-independent effects mediated by the TSP-derived 4N1K peptide
-
e98358
-
[176] Leclair, P., Lim, C.J., CD47-independent effects mediated by the TSP-derived 4N1K peptide. PLoS One, 9(5), 2014, e98358.
-
(2014)
PLoS One
, vol.9
, Issue.5
-
-
Leclair, P.1
Lim, C.J.2
-
177
-
-
84869408875
-
CD47 deficiency confers cell and tissue radioprotection by activation of autophagy
-
[177] Soto-Pantoja, D.R., et al. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy 8:11 (2012), 1628–1642.
-
(2012)
Autophagy
, vol.8
, Issue.11
, pp. 1628-1642
-
-
Soto-Pantoja, D.R.1
-
178
-
-
84872735865
-
Blockade of CD47 increases survival of mice exposed to lethal total body irradiation
-
[178] Soto-Pantoja, D.R., et al. Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci. Rep., 3, 2013, 1038.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1038
-
-
Soto-Pantoja, D.R.1
-
179
-
-
84877710796
-
Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells
-
[179] Willis, C.D., et al. Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells. FEBS J. 280:10 (2013), 2271–2284.
-
(2013)
FEBS J.
, vol.280
, Issue.10
, pp. 2271-2284
-
-
Willis, C.D.1
-
180
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
[180] Pattingre, S., et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:6 (2005), 927–939.
-
(2005)
Cell
, vol.122
, Issue.6
, pp. 927-939
-
-
Pattingre, S.1
-
181
-
-
84872799206
-
The VMP1–Beclin 1 interaction regulates autophagy induction
-
[181] Molejon, M.I., et al. The VMP1–Beclin 1 interaction regulates autophagy induction. Sci. Rep., 3, 2013, 1055.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1055
-
-
Molejon, M.I.1
-
182
-
-
84880202019
-
Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk
-
[182] Petherick, K.J., et al. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 32:13 (2013), 1903–1916.
-
(2013)
EMBO J.
, vol.32
, Issue.13
, pp. 1903-1916
-
-
Petherick, K.J.1
-
183
-
-
84867435785
-
Extracellular matrix regulation of metabolism and implications for tumorigenesis
-
[183] Grassian, A.R., Coloff, J.L., Brugge, J.S., Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb. Symp. Quant. Biol. 76 (2011), 313–324.
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 313-324
-
-
Grassian, A.R.1
Coloff, J.L.2
Brugge, J.S.3
-
184
-
-
80052342419
-
PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment
-
[184] Avivar-Valderas, A., et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol. 31:17 (2011), 3616–3629.
-
(2011)
Mol. Cell. Biol.
, vol.31
, Issue.17
, pp. 3616-3629
-
-
Avivar-Valderas, A.1
-
185
-
-
84885582468
-
Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
-
[185] Avivar-Valderas, A., et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32:41 (2013), 4932–4940.
-
(2013)
Oncogene
, vol.32
, Issue.41
, pp. 4932-4940
-
-
Avivar-Valderas, A.1
-
186
-
-
27644439209
-
Anoikis
-
[186] Gilmore, A.P., Anoikis. Cell Death Differ. 12:Suppl. 2 (2005), 1473–1477.
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1473-1477
-
-
Gilmore, A.P.1
-
187
-
-
41449109334
-
Induction of autophagy during extracellular matrix detachment promotes cell survival
-
[187] Fung, C., et al. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19:3 (2008), 797–806.
-
(2008)
Mol. Biol. Cell
, vol.19
, Issue.3
, pp. 797-806
-
-
Fung, C.1
-
188
-
-
54849436630
-
Diverse cell signaling events modulated by perlecan
-
[188] Whitelock, J.M., Melrose, J., Iozzo, R.V., Diverse cell signaling events modulated by perlecan. Biochemistry 47:43 (2008), 1174–11183.
-
(2008)
Biochemistry
, vol.47
, Issue.43
, pp. 1174-11183
-
-
Whitelock, J.M.1
Melrose, J.2
Iozzo, R.V.3
-
189
-
-
38349091953
-
Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis
-
(Epub 2007 Oct 24., 2007. 134(23): p. 4177–86) Dec
-
[189] Patel, V.N., et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:23 (Dec 2007), 4177–4186 (Epub 2007 Oct 24., 2007. 134(23): p. 4177–86).
-
(2007)
Development
, vol.134
, Issue.23
, pp. 4177-4186
-
-
Patel, V.N.1
-
190
-
-
0345148341
-
Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V
-
[190] Friedrich, M.V., et al. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J. Mol. Biol. 294:1 (1999), 259–270.
-
(1999)
J. Mol. Biol.
, vol.294
, Issue.1
, pp. 259-270
-
-
Friedrich, M.V.1
-
191
-
-
23044444804
-
Heparan sulfate: a complex polymer charged with biological activity
-
[191] Whitelock, J.M., Iozzo, R.V., Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105:7 (2005), 2745–2764.
-
(2005)
Chem. Rev.
, vol.105
, Issue.7
, pp. 2745-2764
-
-
Whitelock, J.M.1
Iozzo, R.V.2
-
192
-
-
84942907310
-
Heparanase enhances tumor growth and chemoresistance by promoting autophagy
-
[192] Shteingauz, A., et al. Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Res. 75:18 (2015), 3946–3957.
-
(2015)
Cancer Res.
, vol.75
, Issue.18
, pp. 3946-3957
-
-
Shteingauz, A.1
-
193
-
-
84941114402
-
Glycobiology of alpha-dystroglycan and muscular dystrophy
-
[193] Endo, T., Glycobiology of alpha-dystroglycan and muscular dystrophy. J. Biochem. 157:1 (2015), 1–12.
-
(2015)
J. Biochem.
, vol.157
, Issue.1
, pp. 1-12
-
-
Endo, T.1
-
194
-
-
78651076693
-
Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice
-
[194] Carmignac, V., Quéré, R., Durbeej, M., Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice. Hum. Mol. Genet. 20:3 (2011), 541–552.
-
(2011)
Hum. Mol. Genet.
, vol.20
, Issue.3
, pp. 541-552
-
-
Carmignac, V.1
Quéré, R.2
Durbeej, M.3
-
195
-
-
0008031036
-
On glycoproteins: II. The polysaccharides of vitreous humor and of umbilical cord
-
[195] Meyer, K., Palmer, J.W., On glycoproteins: II. The polysaccharides of vitreous humor and of umbilical cord. J. Biol. Chem. 114:3 (1936), 689–703.
-
(1936)
J. Biol. Chem.
, vol.114
, Issue.3
, pp. 689-703
-
-
Meyer, K.1
Palmer, J.W.2
-
196
-
-
0001413280
-
The polysaccharide of the vitreous humor
-
[196] Meyer, K., Palmer, J.W., The polysaccharide of the vitreous humor. J. Biol. Chem. 107 (1934), 629–634.
-
(1934)
J. Biol. Chem.
, vol.107
, pp. 629-634
-
-
Meyer, K.1
Palmer, J.W.2
-
197
-
-
84863084736
-
Qualitative and quantitative analysis of hyaluronan oligosaccharides with high performance thin layer chromatography using reagent-free derivatization on amino-modified silica and electrospray ionization-quadrupole time-of-flight mass spectrometry coupling on normal phase
-
[197] Rothenhöfer, M., et al. Qualitative and quantitative analysis of hyaluronan oligosaccharides with high performance thin layer chromatography using reagent-free derivatization on amino-modified silica and electrospray ionization-quadrupole time-of-flight mass spectrometry coupling on normal phase. J. Chromatogr. A 1248 (2012), 169–177.
-
(2012)
J. Chromatogr. A
, vol.1248
, pp. 169-177
-
-
Rothenhöfer, M.1
-
198
-
-
67349260101
-
4-methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3
-
[198] Kultti, A., et al. 4-methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell Res. 315:11 (2009), 1914–1923.
-
(2009)
Exp. Cell Res.
, vol.315
, Issue.11
, pp. 1914-1923
-
-
Kultti, A.1
-
199
-
-
84874326675
-
Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3
-
[199] Rilla, K., et al. Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3. J. Biol. Chem. 288:8 (2013), 5973–5983.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.8
, pp. 5973-5983
-
-
Rilla, K.1
-
200
-
-
33746040501
-
Hyaluronan fragments: an information-rich system
-
[200] Stern, R., Asari, A.A., Sugahara, K.N., Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 65:8 (2006), 699–715.
-
(2006)
Eur. J. Cell Biol.
, vol.65
, Issue.8
, pp. 699-715
-
-
Stern, R.1
Asari, A.A.2
Sugahara, K.N.3
-
201
-
-
24744446818
-
Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity
-
[201] Rilla, K., et al. Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J. Biol. Chem. 280:36 (2005), 31890–31897.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.36
, pp. 31890-31897
-
-
Rilla, K.1
-
202
-
-
84892653194
-
Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes
-
[202] Törrönen, K., et al. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem. Cell Biol. 141:1 (2014), 17–31.
-
(2014)
Histochem. Cell Biol.
, vol.141
, Issue.1
, pp. 17-31
-
-
Törrönen, K.1
-
203
-
-
84892439945
-
Effect of a cholesterol-rich lipid environment on the enzymatic activity of reconstituted hyaluronan synthase
-
[203] Ontong, P., et al. Effect of a cholesterol-rich lipid environment on the enzymatic activity of reconstituted hyaluronan synthase. Biochem. Biophys. Res. Commun. 442:2 (2014), 666–671.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.442
, Issue.2
, pp. 666-671
-
-
Ontong, P.1
-
204
-
-
33847197478
-
Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo
-
[204] Pedersen, T.A., et al. Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J. 26:4 (2007), 1081–1093.
-
(2007)
EMBO J.
, vol.26
, Issue.4
, pp. 1081-1093
-
-
Pedersen, T.A.1
-
205
-
-
38349035719
-
Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR)
-
[205] Chowdhury, A.R., Ghosh, I., Datta, K., Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR). Exp. Cell Res. 314:3 (2008), 651–667.
-
(2008)
Exp. Cell Res.
, vol.314
, Issue.3
, pp. 651-667
-
-
Chowdhury, A.R.1
Ghosh, I.2
Datta, K.3
-
206
-
-
0028084472
-
Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins
-
[206] Villers, C., et al. Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins. Biochem. J. 298:Pt 1 (1994), 135–142.
-
(1994)
Biochem. J.
, vol.298
, pp. 135-142
-
-
Villers, C.1
-
207
-
-
0032712592
-
Trafficking of oligomannosides released during N-glycosylation—a clearing mechanism of the rough endoplasmic reticulum
-
[207] Verbert, A., Cacan, R., Trafficking of oligomannosides released during N-glycosylation—a clearing mechanism of the rough endoplasmic reticulum. Biochim. Biophys. Acta 1473:1 (1999), 137–146.
-
(1999)
Biochim. Biophys. Acta
, vol.1473
, Issue.1
, pp. 137-146
-
-
Verbert, A.1
Cacan, R.2
-
208
-
-
84863711034
-
Free N-linked oligosaccharide chains: formation and degradation
-
[208] Suzuki, T., Funakoshi, Y., Free N-linked oligosaccharide chains: formation and degradation. Glycoconj. J. 23:5–6 (2006), 291–302.
-
(2006)
Glycoconj. J.
, vol.23
, Issue.5-6
, pp. 291-302
-
-
Suzuki, T.1
Funakoshi, Y.2
-
209
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
-
[209] Orsi, A., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:10 (2012), 1860–1873.
-
(2012)
Mol. Biol. Cell
, vol.23
, Issue.10
, pp. 1860-1873
-
-
Orsi, A.1
-
210
-
-
33646204392
-
Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size
-
[210] Hosokawa, N., Hara, Y., Mizushima, N., Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580:11 (2006), 2623–2629.
-
(2006)
FEBS Lett.
, vol.580
, Issue.11
, pp. 2623-2629
-
-
Hosokawa, N.1
Hara, Y.2
Mizushima, N.3
-
211
-
-
33751002037
-
Lectin-resistant CHO glycosylation mutants
-
[211] Patnaik, S.K., Stanley, P., Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416 (2006), 159–182.
-
(2006)
Methods Enzymol.
, vol.416
, pp. 159-182
-
-
Patnaik, S.K.1
Stanley, P.2
-
212
-
-
84859447703
-
Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners
-
[212] Yu, S.H., et al. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc. Natl. Acad. Sci. U. S. A. 109:13 (2012), 4834–4839.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, Issue.13
, pp. 4834-4839
-
-
Yu, S.H.1
-
213
-
-
68149098694
-
Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars
-
[213] Bond, M.R., et al. Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat. Protoc. 4:7 (2009), 1044–1063.
-
(2009)
Nat. Protoc.
, vol.4
, Issue.7
, pp. 1044-1063
-
-
Bond, M.R.1
|