-
1
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
1 Takahashi, K., Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006), 663–676.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
2
-
-
84959566309
-
A decade of transcription factor-mediated reprogramming to pluripotency
-
2 Takahashi, K., Yamanaka, S., A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell. Biol. 17 (2016), 183–193.
-
(2016)
Nat. Rev. Mol. Cell. Biol.
, vol.17
, pp. 183-193
-
-
Takahashi, K.1
Yamanaka, S.2
-
3
-
-
84890565890
-
Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells
-
3 Phanthong, P., et al. Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology 14 (2013), 591–602.
-
(2013)
Biogerontology
, vol.14
, pp. 591-602
-
-
Phanthong, P.1
-
4
-
-
84871939334
-
Aging and reprogramming: a two-way street
-
4 Mahmoudi, S., Brunet, A., Aging and reprogramming: a two-way street. Curr. Opin. Cell Biol. 24 (2012), 744–756.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 744-756
-
-
Mahmoudi, S.1
Brunet, A.2
-
5
-
-
77958082207
-
Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette
-
5 Somers, A., et al. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28 (2010), 1728–1740.
-
(2010)
Stem Cells
, vol.28
, pp. 1728-1740
-
-
Somers, A.1
-
6
-
-
84878864199
-
The hallmarks of aging
-
6 Lopez-Otin, C., et al. The hallmarks of aging. Cell 153 (2013), 1194–1217.
-
(2013)
Cell
, vol.153
, pp. 1194-1217
-
-
Lopez-Otin, C.1
-
7
-
-
80455144472
-
Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state
-
7 Lapasset, L., et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25 (2011), 2248–2253.
-
(2011)
Genes Dev.
, vol.25
, pp. 2248-2253
-
-
Lapasset, L.1
-
8
-
-
84938750948
-
NF-κB activation impairs somatic cell reprogramming in ageing
-
8 Soria-Valles, C., et al. NF-κB activation impairs somatic cell reprogramming in ageing. Nat. Cell. Biol. 17 (2015), 1004–1013.
-
(2015)
Nat. Cell. Biol.
, vol.17
, pp. 1004-1013
-
-
Soria-Valles, C.1
-
9
-
-
84892492848
-
The aging signature: a hallmark of induced pluripotent stem cells?
-
9 Rohani, L., et al. The aging signature: a hallmark of induced pluripotent stem cells?. Aging Cell 13 (2014), 2–7.
-
(2014)
Aging Cell
, vol.13
, pp. 2-7
-
-
Rohani, L.1
-
10
-
-
84893431595
-
Progeria: a paradigm for translational medicine
-
10 Gordon, L.B., et al. Progeria: a paradigm for translational medicine. Cell 156 (2014), 400–407.
-
(2014)
Cell
, vol.156
, pp. 400-407
-
-
Gordon, L.B.1
-
11
-
-
46849106102
-
Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging
-
11 Varela, I., et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat. Med. 14 (2008), 767–772.
-
(2008)
Nat. Med.
, vol.14
, pp. 767-772
-
-
Varela, I.1
-
12
-
-
80054886882
-
Splicing-directed therapy in a new mouse model of human accelerated aging
-
12 Osorio, F.G., et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl. Med., 3, 2011, 106ra107.
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 106ra107
-
-
Osorio, F.G.1
-
13
-
-
84884741365
-
Back to the future: how human induced pluripotent stem cells will transform regenerative medicine
-
13 Svendsen, C.N., Back to the future: how human induced pluripotent stem cells will transform regenerative medicine. Hum. Mol. Genet. 22 (2013), R32–R38.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. R32-R38
-
-
Svendsen, C.N.1
-
15
-
-
84890109489
-
Human iPSC-based modeling of late-onset disease via progerin-induced aging
-
15 Miller, J.D., et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13 (2013), 691–705.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 691-705
-
-
Miller, J.D.1
-
16
-
-
84942162882
-
When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease
-
16 Vera, E., Studer, L., When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development 142 (2015), 3085–3089.
-
(2015)
Development
, vol.142
, pp. 3085-3089
-
-
Vera, E.1
Studer, L.2
-
17
-
-
81155125086
-
Stem cell depletion in Hutchinson–Gilford progeria syndrome
-
17 Rosengardten, Y., et al. Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10 (2011), 1011–1020.
-
(2011)
Aging Cell
, vol.10
, pp. 1011-1020
-
-
Rosengardten, Y.1
-
18
-
-
84951962754
-
Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects
-
18 Mertens, J., et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17 (2015), 705–718.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 705-718
-
-
Mertens, J.1
-
19
-
-
84877887047
-
Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses
-
19 Fanjul-Fernandez, M., et al. Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J. Biol. Chem. 288 (2013), 14647–14656.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 14647-14656
-
-
Fanjul-Fernandez, M.1
-
20
-
-
84898428343
-
Telomerase protects Werner syndrome lineage-specific stem cells from premature aging
-
20 Cheung, H.H., et al. Telomerase protects Werner syndrome lineage-specific stem cells from premature aging. Stem Cell Rep. 2 (2014), 534–546.
-
(2014)
Stem Cell Rep.
, vol.2
, pp. 534-546
-
-
Cheung, H.H.1
-
21
-
-
84911457990
-
Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture
-
21 Shimamoto, A., et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS One, 9, 2014, e112900.
-
(2014)
PLoS One
, vol.9
, pp. e112900
-
-
Shimamoto, A.1
-
22
-
-
34247169028
-
Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype–phenotype relationship
-
22 Kraemer, K.H., et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype–phenotype relationship. Neuroscience 145 (2007), 1388–1396.
-
(2007)
Neuroscience
, vol.145
, pp. 1388-1396
-
-
Kraemer, K.H.1
-
23
-
-
84904642416
-
Understanding nucleotide excision repair and its roles in cancer and ageing
-
23 Marteijn, J.A., et al. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell. Biol. 15 (2014), 465–481.
-
(2014)
Nat. Rev. Mol. Cell. Biol.
, vol.15
, pp. 465-481
-
-
Marteijn, J.A.1
-
24
-
-
84865070766
-
Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome
-
24 Andrade, L.N., et al. Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome. Hum. Mol. Genet. 21 (2012), 3825–3834.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 3825-3834
-
-
Andrade, L.N.1
-
25
-
-
84961399144
-
Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony
-
25 Vessoni, A.T., et al. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Hum. Mol. Genet. 25 (2016), 1271–1280.
-
(2016)
Hum. Mol. Genet.
, vol.25
, pp. 1271-1280
-
-
Vessoni, A.T.1
-
26
-
-
84938749709
-
DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease
-
26 Dupuy, A., Sarasin, A., DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease. Mutat. Res. 776 (2015), 2–8.
-
(2015)
Mutat. Res.
, vol.776
, pp. 2-8
-
-
Dupuy, A.1
Sarasin, A.2
-
27
-
-
84961196905
-
Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs
-
27 Fu, L., et al. Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell 7 (2016), 210–221.
-
(2016)
Protein Cell
, vol.7
, pp. 210-221
-
-
Fu, L.1
-
28
-
-
84873745182
-
Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype
-
28 Nayler, S., et al. Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype. Stem Cells Transl. Med. 1 (2012), 523–535.
-
(2012)
Stem Cells Transl. Med.
, vol.1
, pp. 523-535
-
-
Nayler, S.1
-
29
-
-
84903649929
-
Ataxia telangiectasia derived iPS cells show preserved x-ray sensitivity and decreased chromosomal instability
-
29 Fukawatase, Y., et al. Ataxia telangiectasia derived iPS cells show preserved x-ray sensitivity and decreased chromosomal instability. Sci. Rep., 4, 2014, 5421.
-
(2014)
Sci. Rep.
, vol.4
, pp. 5421
-
-
Fukawatase, Y.1
-
30
-
-
84878545143
-
SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs
-
30 Lee, P., et al. SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nat. Commun., 4, 2013, 1824.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1824
-
-
Lee, P.1
-
31
-
-
84868613789
-
Molecular pathogenesis and clinical management of Fanconi anemia
-
31 Kee, Y., D'Andrea, A.D., Molecular pathogenesis and clinical management of Fanconi anemia. J. Clin. Invest. 122 (2012), 3799–3806.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 3799-3806
-
-
Kee, Y.1
D'Andrea, A.D.2
-
32
-
-
67650095306
-
Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells
-
32 Raya, A., et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460 (2009), 53–59.
-
(2009)
Nature
, vol.460
, pp. 53-59
-
-
Raya, A.1
-
33
-
-
84861912972
-
Overcoming reprogramming resistance of Fanconi anemia cells
-
33 Muller, L.U., et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119 (2012), 5449–5457.
-
(2012)
Blood
, vol.119
, pp. 5449-5457
-
-
Muller, L.U.1
-
34
-
-
84876566569
-
Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors
-
34 Yung, S.K., et al. Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors. Stem Cells 31 (2013), 1022–1029.
-
(2013)
Stem Cells
, vol.31
, pp. 1022-1029
-
-
Yung, S.K.1
-
35
-
-
84929939436
-
Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors
-
35 Suzuki, N.M., et al. Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl. Med. 4 (2015), 333–338.
-
(2015)
Stem Cells Transl. Med.
, vol.4
, pp. 333-338
-
-
Suzuki, N.M.1
-
36
-
-
77949424341
-
Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients
-
36 Agarwal, S., et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464 (2010), 292–296.
-
(2010)
Nature
, vol.464
, pp. 292-296
-
-
Agarwal, S.1
-
37
-
-
79959282291
-
Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells
-
37 Batista, L.F., et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474 (2011), 399–402.
-
(2011)
Nature
, vol.474
, pp. 399-402
-
-
Batista, L.F.1
-
38
-
-
84908338160
-
Lamins: the structure and protein complexes
-
38 Gruenbaum, Y., Medalia, O., Lamins: the structure and protein complexes. Curr. Opin. Cell Biol. 32 (2015), 7–12.
-
(2015)
Curr. Opin. Cell Biol.
, vol.32
, pp. 7-12
-
-
Gruenbaum, Y.1
Medalia, O.2
-
39
-
-
84901585709
-
Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective
-
39 Cau, P., et al. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin. Cell Dev. Biol. 29 (2014), 125–147.
-
(2014)
Semin. Cell Dev. Biol.
, vol.29
, pp. 125-147
-
-
Cau, P.1
-
40
-
-
0037673950
-
Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome
-
40 Eriksson, M., et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423 (2003), 293–298.
-
(2003)
Nature
, vol.423
, pp. 293-298
-
-
Eriksson, M.1
-
41
-
-
10744229294
-
Lamin a truncation in Hutchinson–Gilford progeria
-
41 De Sandre-Giovannoli, A., et al. Lamin a truncation in Hutchinson–Gilford progeria. Science, 300, 2003, 2055.
-
(2003)
Science
, vol.300
, pp. 2055
-
-
De Sandre-Giovannoli, A.1
-
42
-
-
84864317150
-
Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA
-
42 Nissan, X., et al. Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep. 2 (2012), 1–9.
-
(2012)
Cell Rep.
, vol.2
, pp. 1-9
-
-
Nissan, X.1
-
43
-
-
79954626173
-
Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome
-
43 Liu, G.H., et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472 (2011), 221–225.
-
(2011)
Nature
, vol.472
, pp. 221-225
-
-
Liu, G.H.1
-
44
-
-
78650995671
-
A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects
-
44 Zhang, J., et al. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8 (2011), 31–45.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 31-45
-
-
Zhang, J.1
-
45
-
-
80052100421
-
Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C
-
45 Ho, J.C., et al. Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3 (2011), 380–390.
-
(2011)
Aging (Albany NY)
, vol.3
, pp. 380-390
-
-
Ho, J.C.1
-
46
-
-
84877642990
-
An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells
-
46 Xiong, Z.M., et al. An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells. Aging (Albany NY) 5 (2013), 288–303.
-
(2013)
Aging (Albany NY)
, vol.5
, pp. 288-303
-
-
Xiong, Z.M.1
-
47
-
-
79955833841
-
Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome
-
47 Puente, X.S., et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am. J. Hum. Genet. 88 (2011), 650–656.
-
(2011)
Am. J. Hum. Genet.
, vol.88
, pp. 650-656
-
-
Puente, X.S.1
-
48
-
-
80054936412
-
Nestor–Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations
-
48 Cabanillas, R., et al. Nestor–Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am. J. Med. Genet. A 155A (2011), 2617–2625.
-
(2011)
Am. J. Med. Genet. A
, vol.155A
, pp. 2617-2625
-
-
Cabanillas, R.1
-
49
-
-
84940426318
-
Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS
-
49 Jovicic, A., et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18 (2015), 1226–1229.
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 1226-1229
-
-
Jovicic, A.1
-
50
-
-
84940925534
-
GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport
-
50 Freibaum, B.D., et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525 (2015), 129–133.
-
(2015)
Nature
, vol.525
, pp. 129-133
-
-
Freibaum, B.D.1
-
51
-
-
50549089957
-
Disease-specific induced pluripotent stem cells
-
51 Park, I.H., et al. Disease-specific induced pluripotent stem cells. Cell 134 (2008), 877–886.
-
(2008)
Cell
, vol.134
, pp. 877-886
-
-
Park, I.H.1
-
52
-
-
61349100729
-
Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors
-
52 Soldner, F., et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136 (2009), 964–977.
-
(2009)
Cell
, vol.136
, pp. 964-977
-
-
Soldner, F.1
-
53
-
-
79952172335
-
LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress
-
53 Nguyen, H.N., et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8 (2011), 267–280.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 267-280
-
-
Nguyen, H.N.1
-
54
-
-
84860510280
-
Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease
-
54 Sanchez-Danes, A., et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Mol. Med. 4 (2012), 380–395.
-
(2012)
EMBO Mol. Med.
, vol.4
, pp. 380-395
-
-
Sanchez-Danes, A.1
-
55
-
-
84887506882
-
LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction
-
55 Sanders, L.H., et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol. Dis. 62 (2014), 381–386.
-
(2014)
Neurobiol. Dis.
, vol.62
, pp. 381-386
-
-
Sanders, L.H.1
-
56
-
-
84869877601
-
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2
-
56 Liu, G.H., et al. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491 (2012), 603–607.
-
(2012)
Nature
, vol.491
, pp. 603-607
-
-
Liu, G.H.1
-
57
-
-
84989857779
-
Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells
-
57 Oliveira, L.M., et al. Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis., 6, 2015, e1994.
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1994
-
-
Oliveira, L.M.1
-
58
-
-
84888070126
-
Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons
-
58 Chung, C.Y., et al. Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342 (2013), 983–987.
-
(2013)
Science
, vol.342
, pp. 983-987
-
-
Chung, C.Y.1
-
59
-
-
79955786943
-
Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells
-
59 Seibler, P., et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31 (2011), 5970–5976.
-
(2011)
J. Neurosci.
, vol.31
, pp. 5970-5976
-
-
Seibler, P.1
-
60
-
-
84867031150
-
Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue
-
60 Imaizumi, Y., et al. Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain, 5, 2012, 35.
-
(2012)
Mol. Brain
, vol.5
, pp. 35
-
-
Imaizumi, Y.1
-
61
-
-
84919430270
-
Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons
-
61 Ren, Y., et al. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33 (2015), 68–78.
-
(2015)
Stem Cells
, vol.33
, pp. 68-78
-
-
Ren, Y.1
-
62
-
-
84863393846
-
Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells
-
62 Jiang, H., et al. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat. Commun., 3, 2012, 668.
-
(2012)
Nat. Commun.
, vol.3
, pp. 668
-
-
Jiang, H.1
-
63
-
-
79960833952
-
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations
-
63 Soldner, F., et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146 (2011), 318–331.
-
(2011)
Cell
, vol.146
, pp. 318-331
-
-
Soldner, F.1
-
64
-
-
84883431348
-
Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons
-
64 Sundberg, M., et al. Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31 (2013), 1548–1562.
-
(2013)
Stem Cells
, vol.31
, pp. 1548-1562
-
-
Sundberg, M.1
-
65
-
-
84924339474
-
Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease
-
65 Hallett, P.J., et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease. Cell Stem Cell 16 (2015), 269–274.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 269-274
-
-
Hallett, P.J.1
-
66
-
-
80051674431
-
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts
-
66 Caiazzo, M., et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476 (2011), 224–227.
-
(2011)
Nature
, vol.476
, pp. 224-227
-
-
Caiazzo, M.1
-
67
-
-
77954932494
-
Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats
-
67 Cai, J., et al. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cell Dev. 19 (2010), 1017–1023.
-
(2010)
Stem Cell Dev.
, vol.19
, pp. 1017-1023
-
-
Cai, J.1
-
68
-
-
84871922036
-
Deciphering the mechanism underlying late-onset Alzheimer disease
-
68 Krstic, D., Knuesel, I., Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 9 (2013), 25–34.
-
(2013)
Nat. Rev. Neurol.
, vol.9
, pp. 25-34
-
-
Krstic, D.1
Knuesel, I.2
-
69
-
-
84959077713
-
Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells
-
69 Mungenast, A.E., et al. Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Mol. Cell. Neurosci. 73 (2016), 13–31.
-
(2016)
Mol. Cell. Neurosci.
, vol.73
, pp. 13-31
-
-
Mungenast, A.E.1
-
70
-
-
84926222043
-
Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells
-
70 Young, J.E., et al. Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16 (2015), 373–385.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 373-385
-
-
Young, J.E.1
-
71
-
-
84856956771
-
Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells
-
71 Israel, M.A., et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482 (2012), 216–220.
-
(2012)
Nature
, vol.482
, pp. 216-220
-
-
Israel, M.A.1
-
72
-
-
84875916922
-
Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness
-
72 Kondo, T., et al. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12 (2013), 487–496.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 487-496
-
-
Kondo, T.1
-
73
-
-
84902303124
-
The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons
-
73 Muratore, C.R., et al. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 23 (2014), 3523–3536.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 3523-3536
-
-
Muratore, C.R.1
-
74
-
-
84905111905
-
Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease
-
74 Lee, J.K., et al. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease. J. Exp. Med. 211 (2014), 1551–1570.
-
(2014)
J. Exp. Med.
, vol.211
, pp. 1551-1570
-
-
Lee, J.K.1
-
75
-
-
84916882571
-
Induced pluripotent stem cells from familial Alzheimer's disease patients differentiate into mature neurons with amyloidogenic properties
-
75 Mahairaki, V., et al. Induced pluripotent stem cells from familial Alzheimer's disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev. 23 (2014), 2996–3010.
-
(2014)
Stem Cells Dev.
, vol.23
, pp. 2996-3010
-
-
Mahairaki, V.1
-
76
-
-
81255169342
-
Modeling familial Alzheimer's disease with induced pluripotent stem cells
-
76 Yagi, T., et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum. Mol. Genet. 20 (2011), 4530–4539.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 4530-4539
-
-
Yagi, T.1
-
77
-
-
70349093119
-
Senescence impairs successful reprogramming to pluripotent stem cells
-
77 Banito, A., et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23 (2009), 2134–2139.
-
(2009)
Genes Dev.
, vol.23
, pp. 2134-2139
-
-
Banito, A.1
-
78
-
-
79952209101
-
Mitochondrial rejuvenation after induced pluripotency
-
78 Suhr, S.T., et al. Mitochondrial rejuvenation after induced pluripotency. PLoS One, 5, 2010, e14095.
-
(2010)
PLoS One
, vol.5
, pp. e14095
-
-
Suhr, S.T.1
-
79
-
-
69349100455
-
Linking the p53 tumour suppressor pathway to somatic cell reprogramming
-
79 Kawamura, T., et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460 (2009), 1140–1144.
-
(2009)
Nature
, vol.460
, pp. 1140-1144
-
-
Kawamura, T.1
-
80
-
-
58949094552
-
Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells
-
80 Marion, R.M., et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4 (2009), 141–154.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 141-154
-
-
Marion, R.M.1
-
81
-
-
69349100179
-
Suppression of induced pluripotent stem cell generation by the p53-p21 pathway
-
81 Hong, H., et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460 (2009), 1132–1135.
-
(2009)
Nature
, vol.460
, pp. 1132-1135
-
-
Hong, H.1
-
82
-
-
69349094006
-
A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity
-
82 Marion, R.M., et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460 (2009), 1149–1153.
-
(2009)
Nature
, vol.460
, pp. 1149-1153
-
-
Marion, R.M.1
-
83
-
-
82755187396
-
The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
-
83 Wang, T., et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9 (2011), 575–587.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 575-587
-
-
Wang, T.1
-
84
-
-
84952918891
-
Valproic acid enhances iPSC induction from human bone marrow-derived cells through the suppression of reprogramming-induced senescence
-
84 Chen, X., et al. Valproic acid enhances iPSC induction from human bone marrow-derived cells through the suppression of reprogramming-induced senescence. J. Cell. Physiol. 231 (2016), 1719–1727.
-
(2016)
J. Cell. Physiol.
, vol.231
, pp. 1719-1727
-
-
Chen, X.1
-
85
-
-
84872806231
-
Genome-wide methylation profiles reveal quantitative views of human aging rates
-
85 Hannum, G., et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49 (2013), 359–367.
-
(2013)
Mol. Cell
, vol.49
, pp. 359-367
-
-
Hannum, G.1
-
86
-
-
84859218238
-
Chromatin-modifying enzymes as modulators of reprogramming
-
86 Onder, T.T., et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483 (2012), 598–602.
-
(2012)
Nature
, vol.483
, pp. 598-602
-
-
Onder, T.T.1
-
87
-
-
84914113138
-
Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells
-
87 Frobel, J., et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep. 3 (2014), 414–422.
-
(2014)
Stem Cell Rep.
, vol.3
, pp. 414-422
-
-
Frobel, J.1
-
88
-
-
84929435164
-
Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging
-
88 Zhang, W., et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348 (2015), 1160–1163.
-
(2015)
Science
, vol.348
, pp. 1160-1163
-
-
Zhang, W.1
-
89
-
-
84868351585
-
Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
-
89 Zhang, J., et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11 (2012), 589–595.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 589-595
-
-
Zhang, J.1
-
90
-
-
80052819789
-
Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells
-
90 Chen, T., et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10 (2011), 908–911.
-
(2011)
Aging Cell
, vol.10
, pp. 908-911
-
-
Chen, T.1
-
91
-
-
84880068090
-
The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
-
91 Sharma, A., et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 288 (2013), 18439–18447.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18439-18447
-
-
Sharma, A.1
-
92
-
-
84946478936
-
Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming
-
92 Ma, T., et al. Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat. Cell. Biol. 17 (2015), 1379–1387.
-
(2015)
Nat. Cell. Biol.
, vol.17
, pp. 1379-1387
-
-
Ma, T.1
-
93
-
-
84867736667
-
Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response
-
93 Osorio, F.G., et al. Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 26 (2012), 2311–2324.
-
(2012)
Genes Dev.
, vol.26
, pp. 2311-2324
-
-
Osorio, F.G.1
-
94
-
-
84894109473
-
Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation
-
94 Ohnishi, K., et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156 (2014), 663–677.
-
(2014)
Cell
, vol.156
, pp. 663-677
-
-
Ohnishi, K.1
-
95
-
-
84885834573
-
Reprogramming in vivo produces teratomas and iPS cells with totipotency features
-
95 Abad, M., et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502 (2013), 340–345.
-
(2013)
Nature
, vol.502
, pp. 340-345
-
-
Abad, M.1
-
96
-
-
84873843566
-
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons
-
96 Rakovic, A., et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J. Biol. Chem. 288 (2013), 2223–2237.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 2223-2237
-
-
Rakovic, A.1
-
97
-
-
84929273586
-
Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines
-
97 Shaltouki, A., et al. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Rep. 4 (2015), 847–859.
-
(2015)
Stem Cell Rep.
, vol.4
, pp. 847-859
-
-
Shaltouki, A.1
|