-
1
-
-
0032497504
-
Parkinson's disease. First of two parts
-
Lang AE, Lozano AM,. Parkinson's disease. First of two parts. N Engl J Med 1998; 339: 1044-1053.
-
(1998)
N Engl J Med
, vol.339
, pp. 1044-1053
-
-
Lang, A.E.1
Lozano, A.M.2
-
2
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605-608.
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
-
3
-
-
77954104112
-
Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update
-
Nuytemans K, Theuns J, Cruts M, et al. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum Mutat 2010; 31: 763-780.
-
(2010)
Hum Mutat
, vol.31
, pp. 763-780
-
-
Nuytemans, K.1
Theuns, J.2
Cruts, M.3
-
4
-
-
0033933048
-
Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase
-
Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25: 302-305.
-
(2000)
Nat Genet
, vol.25
, pp. 302-305
-
-
Shimura, H.1
Hattori, N.2
Kubo, S.3
-
5
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183: 795-803.
-
(2008)
J Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
-
6
-
-
80052389174
-
Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells
-
Kim KY, Stevens MV, Akter MH, et al. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 2011; 121: 3701-3712.
-
(2011)
J Clin Invest
, vol.121
, pp. 3701-3712
-
-
Kim, K.Y.1
Stevens, M.V.2
Akter, M.H.3
-
7
-
-
84885576570
-
The ubiquitin ligase parkin mediates resistance to intracellular pathogens
-
Manzanillo PS, Ayres JS, Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013; 501: 512-516.
-
(2013)
Nature
, vol.501
, pp. 512-516
-
-
Manzanillo, P.S.1
Ayres, J.S.2
Watson, R.O.3
-
8
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y, Dorn GW,. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013; 340: 471-475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
9
-
-
0037738525
-
Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation
-
Ren Y, Zhao JH, Feng J,. Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 2003; 23: 3316-3324.
-
(2003)
J Neurosci
, vol.23
, pp. 3316-3324
-
-
Ren, Y.1
Zhao, J.H.2
Feng, J.3
-
10
-
-
20444451210
-
Parkin stabilizes microtubules through strong binding mediated by three independent domains
-
Yang F, Jiang Q, Zhao J, et al. parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 2005; 280: 17154-17162.
-
(2005)
J Biol Chem
, vol.280
, pp. 17154-17162
-
-
Yang, F.1
Jiang, Q.2
Zhao, J.3
-
11
-
-
26644464601
-
Selective vulnerability of dopaminergic neurons to microtubule depolymerization
-
Ren Y, Liu W, Jiang H, et al. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 2005; 280: 34105-34112.
-
(2005)
J Biol Chem
, vol.280
, pp. 34105-34112
-
-
Ren, Y.1
Liu, W.2
Jiang, H.3
-
12
-
-
63649093151
-
Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation
-
Ren Y, Jiang H, Yang F, et al. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem 2009; 284: 4009-4017.
-
(2009)
J Biol Chem
, vol.284
, pp. 4009-4017
-
-
Ren, Y.1
Jiang, H.2
Yang, F.3
-
13
-
-
58849089960
-
Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum
-
Matsuda W, Furuta T, Nakamura KC, et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 2009; 29: 444-453.
-
(2009)
J Neurosci
, vol.29
, pp. 444-453
-
-
Matsuda, W.1
Furuta, T.2
Nakamura, K.C.3
-
14
-
-
84874435362
-
The energy cost of action potential propagation in dopamine neurons: Clues to susceptibility in Parkinson's disease
-
Pissadaki EK, Bolam JP,. The energy cost of action potential propagation in dopamine neurons: Clues to susceptibility in Parkinson's disease. Front Comput Neurosci 2013; 7: 13.
-
(2013)
Front Comput Neurosci
, vol.7
, pp. 13
-
-
Pissadaki, E.K.1
Bolam, J.P.2
-
15
-
-
84867745060
-
Living on the edge with too many mouths to feed: Why dopamine neurons die
-
Bolam JP, Pissadaki EK,. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov Disord 2012; 27: 1478-1483.
-
(2012)
Mov Disord
, vol.27
, pp. 1478-1483
-
-
Bolam, J.P.1
Pissadaki, E.K.2
-
16
-
-
0035310420
-
A neuropathological study of the disturbance of the nigro-amygdaloid connections in brains from patients with dementia with Lewy bodies
-
Iseki E, Kato M, Marui W, et al. A neuropathological study of the disturbance of the nigro-amygdaloid connections in brains from patients with dementia with Lewy bodies. J Neurol Sci 2001; 185: 129-134.
-
(2001)
J Neurol Sci
, vol.185
, pp. 129-134
-
-
Iseki, E.1
Kato, M.2
Marui, W.3
-
17
-
-
0037012844
-
Axonal self-destruction and neurodegeneration
-
Raff MC, Whitmore AV, Finn JT,. Axonal self-destruction and neurodegeneration. Science 2002; 296: 868-871.
-
(2002)
Science
, vol.296
, pp. 868-871
-
-
Raff, M.C.1
Whitmore, A.V.2
Finn, J.T.3
-
18
-
-
77953666105
-
Genetic animal models of Parkinson's disease
-
Dawson TM, Ko HS, Dawson VL,. Genetic animal models of Parkinson's disease. Neuron 2010; 66: 646-661.
-
(2010)
Neuron
, vol.66
, pp. 646-661
-
-
Dawson, T.M.1
Ko, H.S.2
Dawson, V.L.3
-
19
-
-
13844313915
-
Parkin-deficient mice are not a robust model of parkinsonism
-
Perez FA, Palmiter RD,. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 2005; 102: 2174-2179.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 2174-2179
-
-
Perez, F.A.1
Palmiter, R.D.2
-
20
-
-
84863393846
-
Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells
-
Jiang H, Ren Y, Yuen EY, et al. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 2012; 3: 668.
-
(2012)
Nat Commun
, vol.3
, pp. 668
-
-
Jiang, H.1
Ren, Y.2
Yuen, E.Y.3
-
21
-
-
1942470024
-
Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images
-
Meijering E, Jacob M, Sarria JC, et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 2004; 58: 167-176.
-
(2004)
Cytometry A
, vol.58
, pp. 167-176
-
-
Meijering, E.1
Jacob, M.2
Sarria, J.C.3
-
22
-
-
84862776613
-
A role for primary cilia in glutamatergic synaptic integration of adult-born neurons
-
S1
-
Kumamoto N, Gu Y, Wang J, et al. A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 2012; 15: 399-405, S1.
-
(2012)
Nat Neurosci
, vol.15
, pp. 399-405
-
-
Kumamoto, N.1
Gu, Y.2
Wang, J.3
-
23
-
-
0023740954
-
Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease
-
Hirsch E, Graybiel AM, Agid YA,. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 1988; 334: 345-348.
-
(1988)
Nature
, vol.334
, pp. 345-348
-
-
Hirsch, E.1
Graybiel, A.M.2
Agid, Y.A.3
-
24
-
-
0034007822
-
Pathoanatomy of Parkinson's disease
-
Braak H, Braak E,. Pathoanatomy of Parkinson's disease. J Neurol 2000; 247 (suppl 2): II3-10.
-
(2000)
J Neurol
, vol.247
, pp. II3-II10
-
-
Braak, H.1
Braak, E.2
-
26
-
-
84865615516
-
Redefining Parkinson's disease research using induced pluripotent stem cells
-
Pu J, Jiang H, Zhang B, et al. Redefining Parkinson's disease research using induced pluripotent stem cells. Curr Neurol Neurosci Rep 2012; 12: 392-398.
-
(2012)
Curr Neurol Neurosci Rep
, vol.12
, pp. 392-398
-
-
Pu, J.1
Jiang, H.2
Zhang, B.3
-
27
-
-
84886595273
-
Parkinson's disease in a dish - Using stem cells as a molecular tool
-
Pt A
-
Badger JL, Cordero-Llana O, Hartfield EM, et al. Parkinson's disease in a dish-Using stem cells as a molecular tool. Neuropharmacology 2014; 76 Pt A: 88-96.
-
(2014)
Neuropharmacology
, vol.76
, pp. 88-96
-
-
Badger, J.L.1
Cordero-Llana, O.2
Hartfield, E.M.3
-
28
-
-
33750466222
-
Microtubule: A common target for parkin and Parkinson's disease toxins
-
Feng J,. Microtubule: A common target for parkin and Parkinson's disease toxins. Neuroscientist 2006; 12: 469-476.
-
(2006)
Neuroscientist
, vol.12
, pp. 469-476
-
-
Feng, J.1
-
29
-
-
84872729641
-
Parkinson's disease and parkinsonism: Neuropathology
-
Dickson DW,. Parkinson's disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012; 2.
-
(2012)
Cold Spring Harb Perspect Med
, vol.2
-
-
Dickson, D.W.1
-
30
-
-
84891923527
-
A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation
-
Law BM, Spain VA, Leinster VH, et al. A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation. J Biol Chem 2014; 289: 895-908.
-
(2014)
J Biol Chem
, vol.289
, pp. 895-908
-
-
Law, B.M.1
Spain, V.A.2
Leinster, V.H.3
-
31
-
-
84869087924
-
DJ-1 deficiency perturbs microtubule dynamics and impairs striatal neurite outgrowth
-
Sheng C, Heng X, Zhang G, et al. DJ-1 deficiency perturbs microtubule dynamics and impairs striatal neurite outgrowth. Neurobiol Aging 2013; 34: 489-498.
-
(2013)
Neurobiol Aging
, vol.34
, pp. 489-498
-
-
Sheng, C.1
Heng, X.2
Zhang, G.3
-
32
-
-
54449089025
-
Mitochondrial complex i inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat
-
Choi WS, Kruse SE, Palmiter RD, et al. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci USA 2008; 105: 15136-15141.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15136-15141
-
-
Choi, W.S.1
Kruse, S.E.2
Palmiter, R.D.3
-
33
-
-
79952368703
-
Loss of mitochondrial complex i activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model
-
Choi WS, Palmiter RD, Xia Z,. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. J Cell Biol 2011; 192: 873-882.
-
(2011)
J Cell Biol
, vol.192
, pp. 873-882
-
-
Choi, W.S.1
Palmiter, R.D.2
Xia, Z.3
|