메뉴 건너뛰기




Volumn 36, Issue , 2015, Pages 122-136

High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells

Author keywords

Base excision repair (BER); Chromatin remodeling; Double strand break repair (DSBR); HMGA; HMGB; HMGN; Mismatch repair (MMR); Nucleotide excision repair (NER)

Indexed keywords

HIGH MOBILITY GROUP A PROTEIN; HIGH MOBILITY GROUP B PROTEIN; HIGH MOBILITY GROUP N PROTEIN; HIGH MOBILITY GROUP PROTEIN; HISTONE H1; HISTONE H3; MITOCHONDRIAL DNA; PROTEIN P53; XERODERMA PIGMENTOSUM GROUP A PROTEIN; CHROMATIN; DNA;

EID: 84961972153     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.09.015     Document Type: Review
Times cited : (83)

References (239)
  • 1
    • 0018125018 scopus 로고
    • Nucleosome rearrangement in human chromatin during UV-induced DNA-reapir synthesis
    • Smerdon M.J., Lieberman M.W. Nucleosome rearrangement in human chromatin during UV-induced DNA-reapir synthesis. Proc. Natl. Acad. Sci. U. S. A. 1978, 75(9):4238-4241.
    • (1978) Proc. Natl. Acad. Sci. U. S. A. , vol.75 , Issue.9 , pp. 4238-4241
    • Smerdon, M.J.1    Lieberman, M.W.2
  • 2
    • 0026181844 scopus 로고
    • DNA repair and the role of chromatin structure
    • Smerdon M.J. DNA repair and the role of chromatin structure. Curr. Opin. Cell Biol. 1991, 3(3):422-428.
    • (1991) Curr. Opin. Cell Biol. , vol.3 , Issue.3 , pp. 422-428
    • Smerdon, M.J.1
  • 3
    • 84866953868 scopus 로고    scopus 로고
    • The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair
    • Czaja W., Mao P., Smerdon M.J. The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int. J. Mol. Sci. 2012, 13(9):11954-11973.
    • (2012) Int. J. Mol. Sci. , vol.13 , Issue.9 , pp. 11954-11973
    • Czaja, W.1    Mao, P.2    Smerdon, M.J.3
  • 4
    • 84919455929 scopus 로고    scopus 로고
    • Roles of chromatin remodellers in DNA double strand break repair
    • Jeggo P.A., Downs J.A. Roles of chromatin remodellers in DNA double strand break repair. Exp. Cell Res. 2014, 329(1):69-77.
    • (2014) Exp. Cell Res. , vol.329 , Issue.1 , pp. 69-77
    • Jeggo, P.A.1    Downs, J.A.2
  • 5
    • 84904051114 scopus 로고    scopus 로고
    • Chromatin dynamics: interplay between remodeling enzymes and histone modifications
    • Swygert S.G., Peterson C.L. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim. Biophys. Acta 2014, 1839(8):728-736.
    • (2014) Biochim. Biophys. Acta , vol.1839 , Issue.8 , pp. 728-736
    • Swygert, S.G.1    Peterson, C.L.2
  • 6
    • 84925659063 scopus 로고    scopus 로고
    • Reshaping chromatin after DNA damage: the choreography of histone proteins
    • Polo S.E. Reshaping chromatin after DNA damage: the choreography of histone proteins. J. Mol. Biol. 2015, 427(3):626-636.
    • (2015) J. Mol. Biol. , vol.427 , Issue.3 , pp. 626-636
    • Polo, S.E.1
  • 7
    • 0030358586 scopus 로고    scopus 로고
    • High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function
    • Bustin M., Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 1996, 54:35-100.
    • (1996) Prog. Nucleic Acid Res. Mol. Biol. , vol.54 , pp. 35-100
    • Bustin, M.1    Reeves, R.2
  • 8
    • 0035282078 scopus 로고    scopus 로고
    • Revised nomenclature for high mobility group chromosomal proteins
    • Bustin M. Revised nomenclature for high mobility group chromosomal proteins. Trends Biochem. Sci. 2001, 26:151-153.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 151-153
    • Bustin, M.1
  • 9
    • 74549187994 scopus 로고    scopus 로고
    • Nuclear functions of the HMG proteins
    • Reeves R. Nuclear functions of the HMG proteins. Biochim. Biophys. Acta 2010, 1799(1-2):3-14.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 3-14
    • Reeves, R.1
  • 10
    • 74549135129 scopus 로고    scopus 로고
    • Binding and interplay of HMG proteins on chromatin: lessons from live cell imaging
    • Catez F., Hock R. Binding and interplay of HMG proteins on chromatin: lessons from live cell imaging. Biochim. Biophys. Acta 2010, 1799(1-2):15-27.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 15-27
    • Catez, F.1    Hock, R.2
  • 11
    • 74549129403 scopus 로고    scopus 로고
    • HMG modifications and nuclear function
    • Zhang Q., Wang Y. HMG modifications and nuclear function. Biochim. Biophys. Acta 2010, 1799(1-2):28-36.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 28-36
    • Zhang, Q.1    Wang, Y.2
  • 12
    • 74449090463 scopus 로고    scopus 로고
    • HMGA molecular network: from transcriptional regulation to chromatin remodeling
    • Sgarra R., et al. HMGA molecular network: from transcriptional regulation to chromatin remodeling. Biochim. Biophys. Acta 2010, 1799(1-2):37-47.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 37-47
    • Sgarra, R.1
  • 13
    • 76549100402 scopus 로고    scopus 로고
    • The high mobility group A1 gene: transforming inflammatory signals into cancer?
    • Resar L.M. The high mobility group A1 gene: transforming inflammatory signals into cancer?. Cancer Res. 2010, 70(2):436-439.
    • (2010) Cancer Res. , vol.70 , Issue.2 , pp. 436-439
    • Resar, L.M.1
  • 14
    • 85023631515 scopus 로고    scopus 로고
    • HMGA proteins as modulators of chromatin structure during transcriptional activation
    • Ozturk N., et al. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front. Cell Dev. Biol. 2014, 2:p. 5.
    • (2014) Front. Cell Dev. Biol. , vol.2 , pp. p. 5
    • Ozturk, N.1
  • 15
    • 74549142329 scopus 로고    scopus 로고
    • In vivo modulation of HMGA2 expression
    • Ashar H.R., et al. In vivo modulation of HMGA2 expression. Biochim. Biophys. Acta 2010, 1799(1-2):55-61.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 55-61
    • Ashar, H.R.1
  • 16
    • 74549146153 scopus 로고    scopus 로고
    • HMGB proteins and transcriptional regulation
    • Ueda T., Yoshida M. HMGB proteins and transcriptional regulation. Biochim. Biophys. Acta 2010, 1799(1-2):114-118.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 114-118
    • Ueda, T.1    Yoshida, M.2
  • 17
    • 74549226503 scopus 로고    scopus 로고
    • HMGB proteins: interactions with DNA and chromatin
    • Stros M. HMGB proteins: interactions with DNA and chromatin. Biochim. Biophys. Acta 2010, 1799(1-2):101-113.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 101-113
    • Stros, M.1
  • 18
    • 74549175673 scopus 로고    scopus 로고
    • High-mobility group box 1 and cancer
    • Tang D., et al. High-mobility group box 1 and cancer. Biochim. Biophys. Acta 2010, 1799(1-2):131-140.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 131-140
    • Tang, D.1
  • 20
    • 84859364116 scopus 로고    scopus 로고
    • H1 and HMGB1: modulators of chromatin structure
    • Thomas J.O., Stott K. H1 and HMGB1: modulators of chromatin structure. Biochem. Soc. Trans. 2012, 40(2):341-346.
    • (2012) Biochem. Soc. Trans. , vol.40 , Issue.2 , pp. 341-346
    • Thomas, J.O.1    Stott, K.2
  • 21
    • 74449085653 scopus 로고    scopus 로고
    • Regulation of chromatin structure and function by HMGN proteins
    • Postnikov Y., Bustin M. Regulation of chromatin structure and function by HMGN proteins. Biochim. Biophys. Acta 2010, 1799(1-2):62-68.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 62-68
    • Postnikov, Y.1    Bustin, M.2
  • 22
    • 74549214344 scopus 로고    scopus 로고
    • Transcriptional regulation by HMGN proteins
    • Zhu N., Hansen U. Transcriptional regulation by HMGN proteins. Biochim. Biophys. Acta 2010, 1799(1-2):74-79.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 74-79
    • Zhu, N.1    Hansen, U.2
  • 23
    • 74849102179 scopus 로고    scopus 로고
    • Developmental function of HMGN proteins
    • Furusawa T., Cherukuri S. Developmental function of HMGN proteins. Biochim. Biophys. Acta 2010, 1799(1-2):69-73.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 69-73
    • Furusawa, T.1    Cherukuri, S.2
  • 24
    • 21844465656 scopus 로고    scopus 로고
    • Role of high mobility group (HMG) chromatin proteins in DNA repair
    • Reeves R., Adair J.E. Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair (Amst.) 2005, 4(8):926-938.
    • (2005) DNA Repair (Amst.) , vol.4 , Issue.8 , pp. 926-938
    • Reeves, R.1    Adair, J.E.2
  • 25
    • 10644261356 scopus 로고    scopus 로고
    • HMGN proteins play roles in DNA repair and gene expression in mammalian cells
    • West K.L. HMGN proteins play roles in DNA repair and gene expression in mammalian cells. Biochem. Soc. Trans. 2004, 32(Pt 6):918-919.
    • (2004) Biochem. Soc. Trans. , vol.32 , pp. 918-919
    • West, K.L.1
  • 26
    • 74449086311 scopus 로고    scopus 로고
    • Signalling to chromatin through post-translational modifications of HMGN
    • Pogna E.A., Clayton A.L., Mahadevan L.C. Signalling to chromatin through post-translational modifications of HMGN. Biochim. Biophys. Acta 2010, 1799(1-2):93-100.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 93-100
    • Pogna, E.A.1    Clayton, A.L.2    Mahadevan, L.C.3
  • 27
    • 74449083813 scopus 로고    scopus 로고
    • HMGNs, DNA repair and cancer
    • Gerlitz G. HMGNs, DNA repair and cancer. Biochim. Biophys. Acta 2010, 1799(1-2):80-85.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 80-85
    • Gerlitz, G.1
  • 28
    • 74449093801 scopus 로고    scopus 로고
    • HMGN5/NSBP1: a new member of the HMGN protein family that affects chromatin structure and function
    • Rochman M., Malicet C., Bustin M. HMGN5/NSBP1: a new member of the HMGN protein family that affects chromatin structure and function. Biochim. Biophys. Acta 2010, 1799(1-2):86-92.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 86-92
    • Rochman, M.1    Malicet, C.2    Bustin, M.3
  • 29
    • 84922351997 scopus 로고    scopus 로고
    • Evolution of high mobility group nucleosome-binding proteins and its implications for vertebrate chromatin specialization
    • Gonzalez-Romero R., Eirin-Lopez J.M., Ausio J. Evolution of high mobility group nucleosome-binding proteins and its implications for vertebrate chromatin specialization. Mol. Biol. Evol. 2015, 32(1):121-131.
    • (2015) Mol. Biol. Evol. , vol.32 , Issue.1 , pp. 121-131
    • Gonzalez-Romero, R.1    Eirin-Lopez, J.M.2    Ausio, J.3
  • 30
    • 42349106095 scopus 로고    scopus 로고
    • Delineation of the protein module that anchors HMGN proteins to nucleosomes in the chromatin of living cells
    • Ueda T., et al. Delineation of the protein module that anchors HMGN proteins to nucleosomes in the chromatin of living cells. Mol. Cell Biol. 2008, 28(9):2872-2883.
    • (2008) Mol. Cell Biol. , vol.28 , Issue.9 , pp. 2872-2883
    • Ueda, T.1
  • 31
    • 0035399963 scopus 로고    scopus 로고
    • Chromatin unfolding and activation by HMGN(*) chromosomal proteins
    • Bustin M. Chromatin unfolding and activation by HMGN(*) chromosomal proteins. Trends Biochem. Sci. 2001, 26(7):431-437.
    • (2001) Trends Biochem. Sci. , vol.26 , Issue.7 , pp. 431-437
    • Bustin, M.1
  • 32
    • 0030610561 scopus 로고    scopus 로고
    • Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14
    • Ding H.F., Bustin M., Hansen U. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14. Mol. Cell Biol. 1997, 17(10):5843-5855.
    • (1997) Mol. Cell Biol. , vol.17 , Issue.10 , pp. 5843-5855
    • Ding, H.F.1    Bustin, M.2    Hansen, U.3
  • 33
    • 33744505921 scopus 로고    scopus 로고
    • Distinct domains in high mobility group N variants modulate specific chromatin modifications
    • Ueda T., Postnikov Y.V., Bustin M. Distinct domains in high mobility group N variants modulate specific chromatin modifications. J. Biol. Chem. 2006, 281(15):10182-10187.
    • (2006) J. Biol. Chem. , vol.281 , Issue.15 , pp. 10182-10187
    • Ueda, T.1    Postnikov, Y.V.2    Bustin, M.3
  • 34
    • 0034611785 scopus 로고    scopus 로고
    • High mobility of proteins in the mammalian cell nucleus
    • Phair R.D., Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature 2000, 404(6778):604-609.
    • (2000) Nature , vol.404 , Issue.6778 , pp. 604-609
    • Phair, R.D.1    Misteli, T.2
  • 35
    • 3042760021 scopus 로고    scopus 로고
    • Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins
    • Phair R.D., et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell Biol. 2004, 24(14):6393-6402.
    • (2004) Mol. Cell Biol. , vol.24 , Issue.14 , pp. 6393-6402
    • Phair, R.D.1
  • 36
    • 2942596544 scopus 로고    scopus 로고
    • Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin
    • Catez F., et al. Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol. Cell Biol. 2004, 24(10):4321-4328.
    • (2004) Mol. Cell Biol. , vol.24 , Issue.10 , pp. 4321-4328
    • Catez, F.1
  • 37
    • 0036668636 scopus 로고    scopus 로고
    • Competition between histone H1 and HMGN proteins for chromatin binding sites
    • Catez F., et al. Competition between histone H1 and HMGN proteins for chromatin binding sites. EMBO Rep. 2002, 3(8):760-766.
    • (2002) EMBO Rep. , vol.3 , Issue.8 , pp. 760-766
    • Catez, F.1
  • 38
    • 70350454934 scopus 로고    scopus 로고
    • The nucleosome-binding protein HMGN2 modulates global genome repair
    • Subramanian M., et al. The nucleosome-binding protein HMGN2 modulates global genome repair. FEBS J. 2009, 276(22):6646-6657.
    • (2009) FEBS J. , vol.276 , Issue.22 , pp. 6646-6657
    • Subramanian, M.1
  • 39
    • 27144452299 scopus 로고    scopus 로고
    • Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3
    • Lim J.H., et al. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J. 2005, 24(17):3038-3048.
    • (2005) EMBO J. , vol.24 , Issue.17 , pp. 3038-3048
    • Lim, J.H.1
  • 40
    • 33845591156 scopus 로고    scopus 로고
    • Chromosomal protein HMGN1 modulates the phosphorylation of serine 1 in histone H2A
    • Postnikov Y.V., et al. Chromosomal protein HMGN1 modulates the phosphorylation of serine 1 in histone H2A. Biochemistry 2006, 45(50):15092-15099.
    • (2006) Biochemistry , vol.45 , Issue.50 , pp. 15092-15099
    • Postnikov, Y.V.1
  • 41
    • 66449110070 scopus 로고    scopus 로고
    • HMGN proteins act in opposition to ATP-dependent chromatin remodeling factors to restrict nucleosome mobility
    • Rattner B.P., Yusufzai T., Kadonaga J.T. HMGN proteins act in opposition to ATP-dependent chromatin remodeling factors to restrict nucleosome mobility. Mol. Cell 2009, 34(5):620-626.
    • (2009) Mol. Cell , vol.34 , Issue.5 , pp. 620-626
    • Rattner, B.P.1    Yusufzai, T.2    Kadonaga, J.T.3
  • 42
    • 23044505690 scopus 로고    scopus 로고
    • Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1
    • Birger Y., et al. Increased tumorigenicity and sensitivity to ionizing radiation upon loss of chromosomal protein HMGN1. Cancer Res. 2005, 65(15):6711-6718.
    • (2005) Cancer Res. , vol.65 , Issue.15 , pp. 6711-6718
    • Birger, Y.1
  • 43
    • 0037389942 scopus 로고    scopus 로고
    • Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin
    • Birger Y., et al. Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin. EMBO J. 2003, 22(7):1665-1675.
    • (2003) EMBO J. , vol.22 , Issue.7 , pp. 1665-1675
    • Birger, Y.1
  • 44
    • 0018827843 scopus 로고
    • A screening method for isolating DNA repair-deficient mutants of CHO cells
    • Thompson L.H., et al. A screening method for isolating DNA repair-deficient mutants of CHO cells. Somatic Cell Genet. 1980, 6(3):391-405.
    • (1980) Somatic Cell Genet. , vol.6 , Issue.3 , pp. 391-405
    • Thompson, L.H.1
  • 46
    • 38049178545 scopus 로고    scopus 로고
    • Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
    • Fousteri M., Mullenders L.H. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 2008, 18(1):73-84.
    • (2008) Cell Res. , vol.18 , Issue.1 , pp. 73-84
    • Fousteri, M.1    Mullenders, L.H.2
  • 47
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: two decades of progress and surprises
    • Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9(12):958-970.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , Issue.12 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 48
    • 79960363432 scopus 로고    scopus 로고
    • DNA damage response and transcription
    • Lagerwerf S., et al. DNA damage response and transcription. DNA Repair (Amst.) 2011, 10(7):743-750.
    • (2011) DNA Repair (Amst.) , vol.10 , Issue.7 , pp. 743-750
    • Lagerwerf, S.1
  • 49
    • 38049164275 scopus 로고    scopus 로고
    • Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology
    • Shuck S.C., Short E.A., Turchi J.J. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res. 2008, 18(1):64-72.
    • (2008) Cell Res. , vol.18 , Issue.1 , pp. 64-72
    • Shuck, S.C.1    Short, E.A.2    Turchi, J.J.3
  • 50
    • 45449093552 scopus 로고    scopus 로고
    • The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging
    • Stevnsner T., et al. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech. Ageing Dev. 2008, 129(7-8):441-448.
    • (2008) Mech. Ageing Dev. , vol.129 , Issue.7-8 , pp. 441-448
    • Stevnsner, T.1
  • 51
    • 0028106162 scopus 로고
    • Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template
    • Donahue B.A., et al. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. U. S. A. 1994, 91(18):8502-8506.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , Issue.18 , pp. 8502-8506
    • Donahue, B.A.1
  • 52
    • 0032738023 scopus 로고    scopus 로고
    • Effect of DNA lesions on transcription elongation
    • Tornaletti S., Hanawalt P.C. Effect of DNA lesions on transcription elongation. Biochimie 1999, 81(1-2):139-146.
    • (1999) Biochimie , vol.81 , Issue.1-2 , pp. 139-146
    • Tornaletti, S.1    Hanawalt, P.C.2
  • 53
    • 33747194740 scopus 로고    scopus 로고
    • Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
    • Fousteri M., et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23(4):471-482.
    • (2006) Mol. Cell , vol.23 , Issue.4 , pp. 471-482
    • Fousteri, M.1
  • 54
    • 29244462329 scopus 로고    scopus 로고
    • Effects of HMGN1 on chromatin structure and SWI/SNF-mediated chromatin remodeling
    • Hill D.A., Peterson C.L., Imbalzano A.N. Effects of HMGN1 on chromatin structure and SWI/SNF-mediated chromatin remodeling. J. Biol. Chem. 2005, 280(50):41777-41783.
    • (2005) J. Biol. Chem. , vol.280 , Issue.50 , pp. 41777-41783
    • Hill, D.A.1    Peterson, C.L.2    Imbalzano, A.N.3
  • 55
    • 38049125555 scopus 로고    scopus 로고
    • The endless tale of non-homologous end-joining
    • Weterings E., Chen D.J. The endless tale of non-homologous end-joining. Cell Res. 2008, 18(1):114-124.
    • (2008) Cell Res. , vol.18 , Issue.1 , pp. 114-124
    • Weterings, E.1    Chen, D.J.2
  • 56
    • 17644409069 scopus 로고    scopus 로고
    • ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex
    • Lee J.H., Paull T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005, 308(5721):551-554.
    • (2005) Science , vol.308 , Issue.5721 , pp. 551-554
    • Lee, J.H.1    Paull, T.T.2
  • 57
    • 1842431822 scopus 로고    scopus 로고
    • Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex
    • Lee J.H., Paull T.T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 2004, 304(5667):93-96.
    • (2004) Science , vol.304 , Issue.5667 , pp. 93-96
    • Lee, J.H.1    Paull, T.T.2
  • 58
    • 25144469291 scopus 로고    scopus 로고
    • The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM
    • Paull T.T., Lee J.H. The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle 2005, 4(6):737-740.
    • (2005) Cell Cycle , vol.4 , Issue.6 , pp. 737-740
    • Paull, T.T.1    Lee, J.H.2
  • 59
    • 33745823159 scopus 로고    scopus 로고
    • The ATM-mediated DNA-damage response: taking shape
    • Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 2006, 31(7):402-410.
    • (2006) Trends Biochem. Sci. , vol.31 , Issue.7 , pp. 402-410
    • Shiloh, Y.1
  • 60
    • 52449114574 scopus 로고    scopus 로고
    • Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer
    • Lavin M.F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 2008, 9(10):759-769.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , Issue.10 , pp. 759-769
    • Lavin, M.F.1
  • 61
    • 16644380896 scopus 로고    scopus 로고
    • Early events in the DNA damage response
    • Ward I., Chen J. Early events in the DNA damage response. Curr. Top. Dev. Biol. 2004, 63:1-35.
    • (2004) Curr. Top. Dev. Biol. , vol.63 , pp. 1-35
    • Ward, I.1    Chen, J.2
  • 62
    • 36749022214 scopus 로고    scopus 로고
    • The DNA damage response: ten years after
    • Harper J.W., Elledge S.J. The DNA damage response: ten years after. Mol. Cell 2007, 28(5):739-745.
    • (2007) Mol. Cell , vol.28 , Issue.5 , pp. 739-745
    • Harper, J.W.1    Elledge, S.J.2
  • 63
    • 33644905252 scopus 로고    scopus 로고
    • Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks
    • Kruhlak M.J., et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 2006, 172(6):823-834.
    • (2006) J. Cell Biol. , vol.172 , Issue.6 , pp. 823-834
    • Kruhlak, M.J.1
  • 64
    • 33748367886 scopus 로고    scopus 로고
    • Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction
    • Park J.H., et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J. 2006, 25(17):3986-3997.
    • (2006) EMBO J. , vol.25 , Issue.17 , pp. 3986-3997
    • Park, J.H.1
  • 65
    • 34848852196 scopus 로고    scopus 로고
    • Chromatin dynamics during DSB repair
    • Falk M., et al. Chromatin dynamics during DSB repair. Biochim. Biophys. Acta 2007, 1773(10):1534-1545.
    • (2007) Biochim. Biophys. Acta , vol.1773 , Issue.10 , pp. 1534-1545
    • Falk, M.1
  • 66
    • 36249031962 scopus 로고    scopus 로고
    • RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly
    • Huen M.S., et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007, 131(5):901-914.
    • (2007) Cell , vol.131 , Issue.5 , pp. 901-914
    • Huen, M.S.1
  • 67
    • 36248966246 scopus 로고    scopus 로고
    • RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins
    • Mailand N., et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007, 131(5):887-900.
    • (2007) Cell , vol.131 , Issue.5 , pp. 887-900
    • Mailand, N.1
  • 68
    • 65549113750 scopus 로고    scopus 로고
    • CBP/p300-mediated acetylation of histone H3 on lysine 56
    • Das C., et al. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009, 459(7243):113-117.
    • (2009) Nature , vol.459 , Issue.7243 , pp. 113-117
    • Das, C.1
  • 69
    • 33746601439 scopus 로고    scopus 로고
    • Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway
    • Ziv Y., et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 2006, 8(8):870-876.
    • (2006) Nat. Cell Biol. , vol.8 , Issue.8 , pp. 870-876
    • Ziv, Y.1
  • 70
    • 34250820438 scopus 로고    scopus 로고
    • Chromatin dynamics and the preservation of genetic information
    • Downs J.A., Nussenzweig M.C., Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature 2007, 447(7147):951-958.
    • (2007) Nature , vol.447 , Issue.7147 , pp. 951-958
    • Downs, J.A.1    Nussenzweig, M.C.2    Nussenzweig, A.3
  • 71
    • 58149328408 scopus 로고    scopus 로고
    • Activation of ATM depends on chromatin interactions occurring before induction of DNA damage
    • Kim Y.C., et al. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nat. Cell Biol. 2009, 11(1):92-96.
    • (2009) Nat. Cell Biol. , vol.11 , Issue.1 , pp. 92-96
    • Kim, Y.C.1
  • 72
    • 50649108365 scopus 로고    scopus 로고
    • Base excision repair and its role in maintaining genome stability
    • Baute J., Depicker A. Base excision repair and its role in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol. 2008, 43(4):239-276.
    • (2008) Crit. Rev. Biochem. Mol. Biol. , vol.43 , Issue.4 , pp. 239-276
    • Baute, J.1    Depicker, A.2
  • 73
    • 78149469632 scopus 로고    scopus 로고
    • Base excision repair and design of small molecule inhibitors of human DNA polymerase beta
    • Wilson S.H., et al. Base excision repair and design of small molecule inhibitors of human DNA polymerase beta. Cell Mol. Life Sci. 2010, 67(21):3633-3647.
    • (2010) Cell Mol. Life Sci. , vol.67 , Issue.21 , pp. 3633-3647
    • Wilson, S.H.1
  • 74
    • 84855870433 scopus 로고    scopus 로고
    • Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase beta
    • Asagoshi K., et al. Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase beta. Nucleic Acids Res. 2012, 40(2):670-681.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.2 , pp. 670-681
    • Asagoshi, K.1
  • 75
    • 0034720734 scopus 로고    scopus 로고
    • Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1
    • Dantzer F., et al. Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 2000, 39(25):7559-7569.
    • (2000) Biochemistry , vol.39 , Issue.25 , pp. 7559-7569
    • Dantzer, F.1
  • 76
    • 14844338678 scopus 로고    scopus 로고
    • Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity
    • Sukhanova M.V., et al. Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res. 2005, 33(4):1222-1229.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.4 , pp. 1222-1229
    • Sukhanova, M.V.1
  • 77
    • 70349869342 scopus 로고    scopus 로고
    • DNA polymerase beta and PARP activities in base excision repair in living cells
    • Masaoka A., et al. DNA polymerase beta and PARP activities in base excision repair in living cells. DNA Repair (Amst.) 2009, 8(11):1290-1299.
    • (2009) DNA Repair (Amst.) , vol.8 , Issue.11 , pp. 1290-1299
    • Masaoka, A.1
  • 78
    • 0029957245 scopus 로고    scopus 로고
    • XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro
    • Caldecott K.W., et al. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 1996, 24(22):4387-4394.
    • (1996) Nucleic Acids Res. , vol.24 , Issue.22 , pp. 4387-4394
    • Caldecott, K.W.1
  • 79
    • 0030941295 scopus 로고    scopus 로고
    • XRCC1 protein interacts with one of two distinct forms of DNA ligase III
    • Nash R.A., et al. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 1997, 36(17):5207-5211.
    • (1997) Biochemistry , vol.36 , Issue.17 , pp. 5207-5211
    • Nash, R.A.1
  • 80
    • 2142694340 scopus 로고    scopus 로고
    • Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling
    • Hong S.J., Dawson T.M., Dawson V.L. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci. 2004, 25(5):259-264.
    • (2004) Trends Pharmacol. Sci. , vol.25 , Issue.5 , pp. 259-264
    • Hong, S.J.1    Dawson, T.M.2    Dawson, V.L.3
  • 81
    • 0033198919 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions
    • D'Amours D., et al. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 1999, 342(Pt 2):249-268.
    • (1999) Biochem. J. , vol.342 , pp. 249-268
    • D'Amours, D.1
  • 82
    • 77954274504 scopus 로고    scopus 로고
    • The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets
    • Krishnakumar R., Kraus W.L. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell 2010, 39(1):8-24.
    • (2010) Mol. Cell , vol.39 , Issue.1 , pp. 8-24
    • Krishnakumar, R.1    Kraus, W.L.2
  • 83
    • 84865019977 scopus 로고    scopus 로고
    • HMGN1 protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts
    • Masaoka A., et al. HMGN1 protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts. J. Biol. Chem. 2012, 287(33):27648-27658.
    • (2012) J. Biol. Chem. , vol.287 , Issue.33 , pp. 27648-27658
    • Masaoka, A.1
  • 84
    • 0025196283 scopus 로고
    • The A. T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure
    • Reeves R., Nissen M.S. The A. T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem. 1990, 265(15):8573-8582.
    • (1990) J. Biol. Chem. , vol.265 , Issue.15 , pp. 8573-8582
    • Reeves, R.1    Nissen, M.S.2
  • 85
    • 0035904395 scopus 로고    scopus 로고
    • Molecular biology of HMGA proteins: hubs of nuclear function
    • Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 2001, 277(1-2):63-81.
    • (2001) Gene , vol.277 , Issue.1-2 , pp. 63-81
    • Reeves, R.1
  • 86
    • 0024565434 scopus 로고
    • Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y
    • Johnson K.R., Lehn D.A., Reeves R. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol. Cell Biol. 1989, 9(5):2114-2123.
    • (1989) Mol. Cell Biol. , vol.9 , Issue.5 , pp. 2114-2123
    • Johnson, K.R.1    Lehn, D.A.2    Reeves, R.3
  • 87
    • 0027165839 scopus 로고
    • Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene
    • Friedmann M., et al. Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Res. 1993, 21(18):4259-4267.
    • (1993) Nucleic Acids Res. , vol.21 , Issue.18 , pp. 4259-4267
    • Friedmann, M.1
  • 88
    • 0030059342 scopus 로고    scopus 로고
    • Genomic characterization of human HMGIC, a member of the accessory transcription factor family found at translocation breakpoints in lipomas
    • Ashar H.R., et al. Genomic characterization of human HMGIC, a member of the accessory transcription factor family found at translocation breakpoints in lipomas. Genomics 1996, 31(2):207-214.
    • (1996) Genomics , vol.31 , Issue.2 , pp. 207-214
    • Ashar, H.R.1
  • 89
    • 19544370370 scopus 로고    scopus 로고
    • Extensive expression studies revealed a complex alternative splicing pattern of the HMGA2 gene
    • Hauke S., et al. Extensive expression studies revealed a complex alternative splicing pattern of the HMGA2 gene. Biochim. Biophys. Acta 2005, 1729(1):24-31.
    • (2005) Biochim. Biophys. Acta , vol.1729 , Issue.1 , pp. 24-31
    • Hauke, S.1
  • 90
    • 0035962921 scopus 로고    scopus 로고
    • HMGI/Y proteins: flexible regulators of transcription and chromatin structure
    • Reeves R., Beckerbauer L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim. Biophys. Acta 2001, 1519(1-2):13-29.
    • (2001) Biochim. Biophys. Acta , vol.1519 , Issue.1-2 , pp. 13-29
    • Reeves, R.1    Beckerbauer, L.2
  • 91
    • 0042388088 scopus 로고    scopus 로고
    • HMGA proteins: flexibility finds a nuclear niche?
    • Reeves R. HMGA proteins: flexibility finds a nuclear niche?. Biochem. Cell Biol. 2003, 81(3):185-195.
    • (2003) Biochem. Cell Biol. , vol.81 , Issue.3 , pp. 185-195
    • Reeves, R.1
  • 92
    • 0032088139 scopus 로고    scopus 로고
    • HMGI family proteins: architectural transcription factors in mammalian development and cancer
    • Zhou X., Chada K. HMGI family proteins: architectural transcription factors in mammalian development and cancer. Keio J. Med. 1998, 47(2):73-77.
    • (1998) Keio J. Med. , vol.47 , Issue.2 , pp. 73-77
    • Zhou, X.1    Chada, K.2
  • 93
    • 57149133671 scopus 로고    scopus 로고
    • HMGA2, microRNAs, and stem cell aging
    • Hammond S.M., Sharpless N.E. HMGA2, microRNAs, and stem cell aging. Cell 2008, 135(6):1013-1016.
    • (2008) Cell , vol.135 , Issue.6 , pp. 1013-1016
    • Hammond, S.M.1    Sharpless, N.E.2
  • 94
    • 84873555534 scopus 로고    scopus 로고
    • High-order chromatin structure and the epigenome in SAHFs
    • Chandra T., Narita M. High-order chromatin structure and the epigenome in SAHFs. Nucleus 2013, 4(1):23-28.
    • (2013) Nucleus , vol.4 , Issue.1 , pp. 23-28
    • Chandra, T.1    Narita, M.2
  • 95
    • 33746752125 scopus 로고    scopus 로고
    • A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation
    • Narita M., et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 2006, 126(3):503-514.
    • (2006) Cell , vol.126 , Issue.3 , pp. 503-514
    • Narita, M.1
  • 96
    • 34247570512 scopus 로고    scopus 로고
    • Oncogenic HMGA2: short or small?
    • Young A.R., Narita M. Oncogenic HMGA2: short or small?. Genes Dev. 2007, 21(9):1005-1009.
    • (2007) Genes Dev. , vol.21 , Issue.9 , pp. 1005-1009
    • Young, A.R.1    Narita, M.2
  • 98
    • 68749092973 scopus 로고    scopus 로고
    • From bending DNA to diabetes: the curious case of HMGA1
    • Semple R.K. From bending DNA to diabetes: the curious case of HMGA1. J. Biol. 2009, 8(7):64.
    • (2009) J. Biol. , vol.8 , Issue.7 , pp. 64
    • Semple, R.K.1
  • 99
    • 84907274301 scopus 로고    scopus 로고
    • Recent advances in the molecular genetics of type 2 diabetes mellitus
    • Brunetti A., Chiefari E., Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus. World J. Diabetes 2014, 5(2):128-140.
    • (2014) World J. Diabetes , vol.5 , Issue.2 , pp. 128-140
    • Brunetti, A.1    Chiefari, E.2    Foti, D.3
  • 100
    • 84892557704 scopus 로고    scopus 로고
    • Evidence that an HMGA1 gene variant associates with type 2 diabetes, body mass index, and high-density lipoprotein cholesterol in a Hispanic-American population
    • Pullinger C.R., et al. Evidence that an HMGA1 gene variant associates with type 2 diabetes, body mass index, and high-density lipoprotein cholesterol in a Hispanic-American population. Metab. Syndr. Relat. Disord. 2014, 12(1):25-30.
    • (2014) Metab. Syndr. Relat. Disord. , vol.12 , Issue.1 , pp. 25-30
    • Pullinger, C.R.1
  • 101
    • 0034069653 scopus 로고    scopus 로고
    • In vivo modulation of Hmgic reduces obesity
    • Anand A., Chada K. In vivo modulation of Hmgic reduces obesity. Nat. Genet. 2000, 24(4):377-380.
    • (2000) Nat. Genet. , vol.24 , Issue.4 , pp. 377-380
    • Anand, A.1    Chada, K.2
  • 102
    • 84892371029 scopus 로고    scopus 로고
    • Permanent activation of HMGA2 in lipomas mimics its temporal physiological activation linked to the gain of adipose tissue
    • Thies H.W., et al. Permanent activation of HMGA2 in lipomas mimics its temporal physiological activation linked to the gain of adipose tissue. Obesity (Silver Spring) 2014, 22(1):141-150.
    • (2014) Obesity (Silver Spring) , vol.22 , Issue.1 , pp. 141-150
    • Thies, H.W.1
  • 103
    • 34848851109 scopus 로고    scopus 로고
    • HMGA1a: sequence-specific RNA-binding factor causing sporadic Alzheimer's disease-linked exon skipping of presenilin-2 pre-mRNA
    • Manabe T., et al. HMGA1a: sequence-specific RNA-binding factor causing sporadic Alzheimer's disease-linked exon skipping of presenilin-2 pre-mRNA. Genes Cells 2007, 12(10):1179-1191.
    • (2007) Genes Cells , vol.12 , Issue.10 , pp. 1179-1191
    • Manabe, T.1
  • 104
    • 0037636434 scopus 로고    scopus 로고
    • Induced HMGA1a expression causes aberrant splicing of Presenilin-2 pre-mRNA in sporadic Alzheimer's disease
    • Manabe T., et al. Induced HMGA1a expression causes aberrant splicing of Presenilin-2 pre-mRNA in sporadic Alzheimer's disease. Cell Death Differ. 2003, 10(6):698-708.
    • (2003) Cell Death Differ. , vol.10 , Issue.6 , pp. 698-708
    • Manabe, T.1
  • 105
    • 77952292585 scopus 로고    scopus 로고
    • The expression of HMGA1a is increased in lymphoblastoid cell lines from schizophrenia patients
    • Morikawa T., et al. The expression of HMGA1a is increased in lymphoblastoid cell lines from schizophrenia patients. Neurochem. Int. 2010, 56(6-7):736-739.
    • (2010) Neurochem. Int. , vol.56 , Issue.6-7 , pp. 736-739
    • Morikawa, T.1
  • 106
    • 77950658335 scopus 로고    scopus 로고
    • HMGA1a trapping of U1 snRNP at an authentic 5' splice site induces aberrant exon skipping in sporadic Alzheimer's disease
    • Ohe K., Mayeda A. HMGA1a trapping of U1 snRNP at an authentic 5' splice site induces aberrant exon skipping in sporadic Alzheimer's disease. Mol. Cell Biol. 2010, 30(9):2220-2228.
    • (2010) Mol. Cell Biol. , vol.30 , Issue.9 , pp. 2220-2228
    • Ohe, K.1    Mayeda, A.2
  • 107
    • 0029617947 scopus 로고
    • Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome
    • Thanos D., Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 1995, 83(7):1091-1100.
    • (1995) Cell , vol.83 , Issue.7 , pp. 1091-1100
    • Thanos, D.1    Maniatis, T.2
  • 108
    • 0028958590 scopus 로고
    • Changes in superhelicity are introduced into closed circular DNA by binding of high mobility group protein I/Y
    • Nissen M.S., Reeves R. Changes in superhelicity are introduced into closed circular DNA by binding of high mobility group protein I/Y. J. Biol. Chem. 1995, 270(9):4355-4360.
    • (1995) J. Biol. Chem. , vol.270 , Issue.9 , pp. 4355-4360
    • Nissen, M.S.1    Reeves, R.2
  • 109
    • 0029619641 scopus 로고
    • Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y)
    • Falvo J.V., Thanos D., Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 1995, 83(7):1101-1111.
    • (1995) Cell , vol.83 , Issue.7 , pp. 1101-1111
    • Falvo, J.V.1    Thanos, D.2    Maniatis, T.3
  • 110
    • 0032889432 scopus 로고    scopus 로고
    • Binding of HMG-I(Y) elicits structural changes in a silencer of the human beta-globin gene
    • Chase M.B., et al. Binding of HMG-I(Y) elicits structural changes in a silencer of the human beta-globin gene. Am. J. Hematol. 1999, 60(1):27-35.
    • (1999) Am. J. Hematol. , vol.60 , Issue.1 , pp. 27-35
    • Chase, M.B.1
  • 111
    • 77749304818 scopus 로고    scopus 로고
    • DNA bending by the mammalian high-mobility group protein AT hook 2
    • Chen B., Young J., Leng F. DNA bending by the mammalian high-mobility group protein AT hook 2. Biochemistry 2010, 49(8):1590-1595.
    • (2010) Biochemistry , vol.49 , Issue.8 , pp. 1590-1595
    • Chen, B.1    Young, J.2    Leng, F.3
  • 112
    • 38849089984 scopus 로고    scopus 로고
    • The HMGA proteins: a myriad of functions (Review)
    • Cleynen I., Van de Ven W.J. The HMGA proteins: a myriad of functions (Review). Int. J. Oncol. 2008, 32(2):289-305.
    • (2008) Int. J. Oncol. , vol.32 , Issue.2 , pp. 289-305
    • Cleynen, I.1    Van de Ven, W.J.2
  • 113
    • 84978154068 scopus 로고    scopus 로고
    • Hmga1/Hmga2 double knock-out mice display a "superpygmy" phenotype
    • Federico A., et al. Hmga1/Hmga2 double knock-out mice display a "superpygmy" phenotype. Biol. Open 2014, 3(5):372-378.
    • (2014) Biol. Open , vol.3 , Issue.5 , pp. 372-378
    • Federico, A.1
  • 114
    • 33645052445 scopus 로고    scopus 로고
    • Haploinsufficiency of the Hmga1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice
    • Fedele M., et al. Haploinsufficiency of the Hmga1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Res. 2006, 66(5):2536-2543.
    • (2006) Cancer Res. , vol.66 , Issue.5 , pp. 2536-2543
    • Fedele, M.1
  • 115
    • 79952231642 scopus 로고    scopus 로고
    • Functional variants of the HMGA1 gene and type 2 diabetes mellitus
    • Chiefari E., et al. Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA 2011, 305(9):903-912.
    • (2011) JAMA , vol.305 , Issue.9 , pp. 903-912
    • Chiefari, E.1
  • 116
    • 22544482628 scopus 로고    scopus 로고
    • Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice
    • Foti D., et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat. Med. 2005, 11(7):765-773.
    • (2005) Nat. Med. , vol.11 , Issue.7 , pp. 765-773
    • Foti, D.1
  • 117
    • 0037118578 scopus 로고    scopus 로고
    • HMGA1 and HMGA2 protein expression in mouse spermatogenesis
    • Chieffi P., et al. HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene 2002, 21(22):3644-3650.
    • (2002) Oncogene , vol.21 , Issue.22 , pp. 3644-3650
    • Chieffi, P.1
  • 118
    • 0024009983 scopus 로고
    • A conformational study of the sequence specific binding of HMG-I (Y) with the bovine interleukin-2 cDNA
    • Lehn D.A., et al. A conformational study of the sequence specific binding of HMG-I (Y) with the bovine interleukin-2 cDNA. Biochem. Int. 1988, 16(5):963-971.
    • (1988) Biochem. Int. , vol.16 , Issue.5 , pp. 963-971
    • Lehn, D.A.1
  • 119
    • 0030764158 scopus 로고    scopus 로고
    • The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif
    • Huth J.R., et al. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat. Struct. Biol. 1997, 4(8):657-665.
    • (1997) Nat. Struct. Biol. , vol.4 , Issue.8 , pp. 657-665
    • Huth, J.R.1
  • 120
    • 0035022941 scopus 로고    scopus 로고
    • Intrinsically disordered protein, J. Mol
    • Dunker A.K., et al. Intrinsically disordered protein, J. Mol. J. Mol. Graph. Model. 2001, 19(1):26-59.
    • (2001) J. Mol. Graph. Model. , vol.19 , Issue.1 , pp. 26-59
    • Dunker, A.K.1
  • 121
    • 0036282608 scopus 로고    scopus 로고
    • Chromatin (dis)organization and cancer: BUR-binding proteins as biomarkers for cancer
    • Galande S. Chromatin (dis)organization and cancer: BUR-binding proteins as biomarkers for cancer. Curr. Cancer Drug Targets 2002, 2(2):157-190.
    • (2002) Curr. Cancer Drug Targets , vol.2 , Issue.2 , pp. 157-190
    • Galande, S.1
  • 122
    • 0028125005 scopus 로고
    • The influence of DNA and nucleosome structure on integration events directed by HIV integrase
    • Pruss D., et al. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J. Biol. Chem. 1994, 269(40):25031-25041.
    • (1994) J. Biol. Chem. , vol.269 , Issue.40 , pp. 25031-25041
    • Pruss, D.1
  • 123
    • 0029915384 scopus 로고    scopus 로고
    • Substrate structure influences binding of the non-histone protein HMG-I(Y) to free nucleosomal DNA
    • Reeves R., Wolffe A.P. Substrate structure influences binding of the non-histone protein HMG-I(Y) to free nucleosomal DNA. Biochemistry 1996, 35(15):5063-5074.
    • (1996) Biochemistry , vol.35 , Issue.15 , pp. 5063-5074
    • Reeves, R.1    Wolffe, A.P.2
  • 124
    • 25444533582 scopus 로고    scopus 로고
    • Inhibition of nucleotide excision repair by high mobility group protein HMGA1
    • Adair J.E., et al. Inhibition of nucleotide excision repair by high mobility group protein HMGA1. J. Biol. Chem. 2005, 280(37):32184-32192.
    • (2005) J. Biol. Chem. , vol.280 , Issue.37 , pp. 32184-32192
    • Adair, J.E.1
  • 125
    • 0030835937 scopus 로고    scopus 로고
    • Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA
    • Hill D.A., Reeves R. Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res. 1997, 25(17):3523-3531.
    • (1997) Nucleic Acids Res. , vol.25 , Issue.17 , pp. 3523-3531
    • Hill, D.A.1    Reeves, R.2
  • 126
    • 0033562334 scopus 로고    scopus 로고
    • Directional binding of HMG-I(Y) on four-way junction DNA and the molecular basis for competitive binding with HMG-1 and histone H1
    • Hill D.A., Pedulla M.L., Reeves R. Directional binding of HMG-I(Y) on four-way junction DNA and the molecular basis for competitive binding with HMG-1 and histone H1. Nucleic Acids Res. 1999, 27(10):2135-2144.
    • (1999) Nucleic Acids Res. , vol.27 , Issue.10 , pp. 2135-2144
    • Hill, D.A.1    Pedulla, M.L.2    Reeves, R.3
  • 127
    • 0036606419 scopus 로고    scopus 로고
    • Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases
    • Subramanian D., Griffith J.D. Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res. 2002, 30(11):2427-2434.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.11 , pp. 2427-2434
    • Subramanian, D.1    Griffith, J.D.2
  • 128
    • 0026026024 scopus 로고
    • Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity
    • Reeves R., Langan T.A., Nissen M.S. Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity. Proc. Natl. Acad. Sci. U. S. A. 1991, 88(5):1671-1675.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , Issue.5 , pp. 1671-1675
    • Reeves, R.1    Langan, T.A.2    Nissen, M.S.3
  • 129
    • 0025724096 scopus 로고
    • Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein
    • Nissen M.S., Langan T.A., Reeves R. Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein. J. Biol. Chem. 1991, 266(30):19945-19952.
    • (1991) J. Biol. Chem. , vol.266 , Issue.30 , pp. 19945-19952
    • Nissen, M.S.1    Langan, T.A.2    Reeves, R.3
  • 130
    • 0035838991 scopus 로고    scopus 로고
    • Coordination of a transcriptional switch by HMGI(Y) acetylation
    • Munshi N., et al. Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 2001, 293(5532):1133-1136.
    • (2001) Science , vol.293 , Issue.5532 , pp. 1133-1136
    • Munshi, N.1
  • 131
    • 0032186185 scopus 로고    scopus 로고
    • Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome
    • Munshi N., et al. Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol. Cell 1998, 2(4):457-467.
    • (1998) Mol. Cell , vol.2 , Issue.4 , pp. 457-467
    • Munshi, N.1
  • 132
    • 15744362782 scopus 로고    scopus 로고
    • Dynamic and differential in vivo modifications of the isoform HMGA1a and HMGA1b chromatin proteins
    • Edberg D.D., et al. Dynamic and differential in vivo modifications of the isoform HMGA1a and HMGA1b chromatin proteins. J. Biol. Chem. 2005, 280(10):8961-8973.
    • (2005) J. Biol. Chem. , vol.280 , Issue.10 , pp. 8961-8973
    • Edberg, D.D.1
  • 133
    • 4444277135 scopus 로고    scopus 로고
    • In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential
    • Edberg D.D., et al. In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential. Biochemistry 2004, 43(36):11500-11515.
    • (2004) Biochemistry , vol.43 , Issue.36 , pp. 11500-11515
    • Edberg, D.D.1
  • 134
    • 25144459091 scopus 로고    scopus 로고
    • Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a
    • Miranda T.B., et al. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a. Biochem. Biophys. Res. Commun. 2005, 336(3):831-835.
    • (2005) Biochem. Biophys. Res. Commun. , vol.336 , Issue.3 , pp. 831-835
    • Miranda, T.B.1
  • 135
    • 38049037736 scopus 로고    scopus 로고
    • Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity
    • Zhang Q., Wang Y. Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity. J. Proteome Res. 2007, 6(12):4711-4719.
    • (2007) J. Proteome Res. , vol.6 , Issue.12 , pp. 4711-4719
    • Zhang, Q.1    Wang, Y.2
  • 136
    • 34548130666 scopus 로고    scopus 로고
    • A quantitative study on the in vitro and in vivo acetylation of high mobility group A1 proteins
    • Zhang Q., et al. A quantitative study on the in vitro and in vivo acetylation of high mobility group A1 proteins. J. Am. Soc. Mass Spectrom. 2007, 18(9):1569-1578.
    • (2007) J. Am. Soc. Mass Spectrom. , vol.18 , Issue.9 , pp. 1569-1578
    • Zhang, Q.1
  • 137
    • 34250851755 scopus 로고    scopus 로고
    • Mass spectrometric analysis of high-mobility group proteins and their post-translational modifications in normal and cancerous human breast tissues
    • Zou Y., Wang Y. Mass spectrometric analysis of high-mobility group proteins and their post-translational modifications in normal and cancerous human breast tissues. J. Proteome Res. 2007, 6(6):2304-2314.
    • (2007) J. Proteome Res. , vol.6 , Issue.6 , pp. 2304-2314
    • Zou, Y.1    Wang, Y.2
  • 138
    • 34347355449 scopus 로고    scopus 로고
    • A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMTs: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation
    • Zou Y., et al. A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMTs: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation. Biochemistry 2007, 46(26):7896-7906.
    • (2007) Biochemistry , vol.46 , Issue.26 , pp. 7896-7906
    • Zou, Y.1
  • 139
    • 79955473684 scopus 로고    scopus 로고
    • Operating on chromatin, a colorful language where context matters
    • Gardner K.E., Allis C.D., Strahl B.D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 2011, 409(1):36-46.
    • (2011) J. Mol. Biol. , vol.409 , Issue.1 , pp. 36-46
    • Gardner, K.E.1    Allis, C.D.2    Strahl, B.D.3
  • 140
    • 0035164289 scopus 로고    scopus 로고
    • Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells
    • Reeves R., Edberg D.D., Li Y. Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol. Cell Biol. 2001, 21(2):575-594.
    • (2001) Mol. Cell Biol. , vol.21 , Issue.2 , pp. 575-594
    • Reeves, R.1    Edberg, D.D.2    Li, Y.3
  • 141
    • 1242340498 scopus 로고    scopus 로고
    • High-mobility group A1a protein regulates Ras/ERK signaling in MCF-7 human breast cancer cells
    • Treff N.R., et al. High-mobility group A1a protein regulates Ras/ERK signaling in MCF-7 human breast cancer cells. Oncogene 2004, 23(3):777-785.
    • (2004) Oncogene , vol.23 , Issue.3 , pp. 777-785
    • Treff, N.R.1
  • 142
    • 34547781223 scopus 로고    scopus 로고
    • Gene-specific nucleotide excision repair is impaired in human cells expressing elevated levels of high mobility group A1 nonhistone proteins
    • Maloney S.C., et al. Gene-specific nucleotide excision repair is impaired in human cells expressing elevated levels of high mobility group A1 nonhistone proteins. DNA Repair (Amst.) 2007, 6(9):1371-1379.
    • (2007) DNA Repair (Amst.) , vol.6 , Issue.9 , pp. 1371-1379
    • Maloney, S.C.1
  • 143
    • 34447115716 scopus 로고    scopus 로고
    • High-mobility group A1 proteins inhibit expression of nucleotide excision repair factor xeroderma pigmentosum group A
    • Adair J.E., et al. High-mobility group A1 proteins inhibit expression of nucleotide excision repair factor xeroderma pigmentosum group A. Cancer Res. 2007, 67(13):6044-6052.
    • (2007) Cancer Res. , vol.67 , Issue.13 , pp. 6044-6052
    • Adair, J.E.1
  • 144
    • 0345531054 scopus 로고    scopus 로고
    • High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity
    • Borrmann L., et al. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. 2003, 31(23):6841-6851.
    • (2003) Nucleic Acids Res. , vol.31 , Issue.23 , pp. 6841-6851
    • Borrmann, L.1
  • 145
    • 0021143604 scopus 로고
    • Molecular cloning of a human DNA repair gene
    • Westerveld A., et al. Molecular cloning of a human DNA repair gene. Nature 1984, 310(5976):425-429.
    • (1984) Nature , vol.310 , Issue.5976 , pp. 425-429
    • Westerveld, A.1
  • 146
    • 84964313241 scopus 로고    scopus 로고
    • High mobility group A1 protein expression reduces the sensitivity of colon and thyroid cancer cells to antineoplastic drugs
    • D'Angelo D., et al. High mobility group A1 protein expression reduces the sensitivity of colon and thyroid cancer cells to antineoplastic drugs. BMC Cancer 2014, 14:851.
    • (2014) BMC Cancer , vol.14 , pp. 851
    • D'Angelo, D.1
  • 147
    • 33845603216 scopus 로고    scopus 로고
    • Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function
    • Dement G.A., Maloney S.C., Reeves R. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function. Exp. Cell Res. 2007, 313(1):77-87.
    • (2007) Exp. Cell Res. , vol.313 , Issue.1 , pp. 77-87
    • Dement, G.A.1    Maloney, S.C.2    Reeves, R.3
  • 148
    • 20444422247 scopus 로고    scopus 로고
    • Dynamic mitochondrial localization of nuclear transcription factor HMGA1
    • Dement G.A., et al. Dynamic mitochondrial localization of nuclear transcription factor HMGA1. Exp. Cell Res. 2005, 307(2):388-401.
    • (2005) Exp. Cell Res. , vol.307 , Issue.2 , pp. 388-401
    • Dement, G.A.1
  • 149
    • 70350435837 scopus 로고    scopus 로고
    • HMGA1 levels influence mitochondrial function and mitochondrial DNA repair efficiency
    • Mao L., et al. HMGA1 levels influence mitochondrial function and mitochondrial DNA repair efficiency. Mol. Cell Biol. 2009, 29(20):5426-5440.
    • (2009) Mol. Cell Biol. , vol.29 , Issue.20 , pp. 5426-5440
    • Mao, L.1
  • 150
    • 0000825475 scopus 로고
    • The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria
    • Clayton D.A., Doda J.N., Friedberg E.C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. U. S. A. 1974, 71(7):2777-2781.
    • (1974) Proc. Natl. Acad. Sci. U. S. A. , vol.71 , Issue.7 , pp. 2777-2781
    • Clayton, D.A.1    Doda, J.N.2    Friedberg, E.C.3
  • 151
    • 0035238101 scopus 로고    scopus 로고
    • Base excision repair of mitochondrial DNA damage in mammalian cells
    • LeDoux S.P., Wilson G.L. Base excision repair of mitochondrial DNA damage in mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 2001, 68:273-284.
    • (2001) Prog. Nucleic Acid Res. Mol. Biol. , vol.68 , pp. 273-284
    • LeDoux, S.P.1    Wilson, G.L.2
  • 152
    • 79952426030 scopus 로고    scopus 로고
    • Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair
    • Simsek D., et al. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair. Nature 2011, 471(7337):245-248.
    • (2011) Nature , vol.471 , Issue.7337 , pp. 245-248
    • Simsek, D.1
  • 153
    • 67949109572 scopus 로고    scopus 로고
    • HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy
    • Summer H., et al. HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res. 2009, 37(13):4371-4384.
    • (2009) Nucleic Acids Res. , vol.37 , Issue.13 , pp. 4371-4384
    • Summer, H.1
  • 154
    • 0037377764 scopus 로고    scopus 로고
    • Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma
    • Baldassarre G., et al. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol. Cell Biol. 2003, 23(7):2225-2238.
    • (2003) Mol. Cell Biol. , vol.23 , Issue.7 , pp. 2225-2238
    • Baldassarre, G.1
  • 155
    • 79960065049 scopus 로고    scopus 로고
    • HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents
    • Palmieri D., et al. HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 2011, 30(27):3024-3035.
    • (2011) Oncogene , vol.30 , Issue.27 , pp. 3024-3035
    • Palmieri, D.1
  • 156
    • 55549146787 scopus 로고    scopus 로고
    • HMGA1 protein is a novel target of the ATM kinase
    • Pentimalli F., et al. HMGA1 protein is a novel target of the ATM kinase. Eur. J. Cancer 2008, 44(17):2668-2679.
    • (2008) Eur. J. Cancer , vol.44 , Issue.17 , pp. 2668-2679
    • Pentimalli, F.1
  • 157
    • 67650999817 scopus 로고    scopus 로고
    • Suppression of nonhomologous end joining repair by overexpression of HMGA2
    • Li A.Y., et al. Suppression of nonhomologous end joining repair by overexpression of HMGA2. Cancer Res. 2009, 69(14):5699-5706.
    • (2009) Cancer Res. , vol.69 , Issue.14 , pp. 5699-5706
    • Li, A.Y.1
  • 158
    • 76749105672 scopus 로고    scopus 로고
    • Comment re: HMGA2 is a negative regulator of DNA-PK pathway
    • author reply 1742
    • Bullerdiek J., Rommel B. Comment re: HMGA2 is a negative regulator of DNA-PK pathway. Cancer Res. 2010, 70(4):1742. author reply 1742.
    • (2010) Cancer Res. , vol.70 , Issue.4 , pp. 1742
    • Bullerdiek, J.1    Rommel, B.2
  • 159
    • 0034879924 scopus 로고    scopus 로고
    • Terminal deoxynucleotidyltransferase directly interacts with a novel nuclear protein that is homologous to p65
    • Yamashita N., et al. Terminal deoxynucleotidyltransferase directly interacts with a novel nuclear protein that is homologous to p65. Genes Cells 2001, 6(7):641-652.
    • (2001) Genes Cells , vol.6 , Issue.7 , pp. 641-652
    • Yamashita, N.1
  • 160
    • 0042704717 scopus 로고    scopus 로고
    • Loss of Hmga1 gene function affects embryonic stem cell lympho-hematopoietic differentiation
    • Battista S., et al. Loss of Hmga1 gene function affects embryonic stem cell lympho-hematopoietic differentiation. FASEB J. 2003, 17(11):1496-1498.
    • (2003) FASEB J. , vol.17 , Issue.11 , pp. 1496-1498
    • Battista, S.1
  • 161
    • 22144484804 scopus 로고    scopus 로고
    • High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2)
    • Battista S., et al. High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2). Biochem. J. 2005, 389(Pt 1):91-97.
    • (2005) Biochem. J. , vol.389 , pp. 91-97
    • Battista, S.1
  • 162
    • 3242892354 scopus 로고    scopus 로고
    • The bounty of RAGs: recombination signal complexes and reaction outcomes
    • Swanson P.C. The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev. 2004, 200:90-114.
    • (2004) Immunol. Rev. , vol.200 , pp. 90-114
    • Swanson, P.C.1
  • 163
    • 0033192556 scopus 로고    scopus 로고
    • HMGI(Y) and HMGI-C dysregulation: a common occurrence in human tumors
    • Tallini G., Dal Cin P. HMGI(Y) and HMGI-C dysregulation: a common occurrence in human tumors. Adv. Anat. Pathol. 1999, 6(5):237-246.
    • (1999) Adv. Anat. Pathol. , vol.6 , Issue.5 , pp. 237-246
    • Tallini, G.1    Dal Cin, P.2
  • 164
    • 0033772880 scopus 로고    scopus 로고
    • FR900482 class of anti-tumor drugs cross-links oncoprotein HMG I/Y to DNA in vivo
    • Beckerbauer L., et al. FR900482 class of anti-tumor drugs cross-links oncoprotein HMG I/Y to DNA in vivo. Chem. Biol. 2000, 7(10):805-812.
    • (2000) Chem. Biol. , vol.7 , Issue.10 , pp. 805-812
    • Beckerbauer, L.1
  • 165
    • 0034296472 scopus 로고    scopus 로고
    • High mobility group I/Y: multifunctional chromosomal proteins causally involved in tumor progression and malignant transformation (review)
    • Wisniewski J.R., Schwanbeck R. High mobility group I/Y: multifunctional chromosomal proteins causally involved in tumor progression and malignant transformation (review). Int. J. Mol. Med. 2000, 6(4):409-419.
    • (2000) Int. J. Mol. Med. , vol.6 , Issue.4 , pp. 409-419
    • Wisniewski, J.R.1    Schwanbeck, R.2
  • 166
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 167
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell 2000, 100(1):57-70.
    • (2000) Cell , vol.100 , Issue.1 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 168
    • 0026671381 scopus 로고
    • Growth factor-induced delayed early response genes
    • Lanahan A., et al. Growth factor-induced delayed early response genes. Mol. Cell. Biol. 1992, 12(9):3919-3929.
    • (1992) Mol. Cell. Biol. , vol.12 , Issue.9 , pp. 3919-3929
    • Lanahan, A.1
  • 169
    • 8044225313 scopus 로고    scopus 로고
    • High level expression of the HMGI (Y) gene during embryonic development
    • Chiappetta G., et al. High level expression of the HMGI (Y) gene during embryonic development. Oncogene 1996, 13(11):2439-2446.
    • (1996) Oncogene , vol.13 , Issue.11 , pp. 2439-2446
    • Chiappetta, G.1
  • 170
    • 0024827162 scopus 로고
    • On the presence of the chromosomal proteins HMG I and HMG Y in rat organs
    • Lundberg K., et al. On the presence of the chromosomal proteins HMG I and HMG Y in rat organs. Biochim. Biophys. Acta 1989, 1009(3):277-279.
    • (1989) Biochim. Biophys. Acta , vol.1009 , Issue.3 , pp. 277-279
    • Lundberg, K.1
  • 171
    • 0027414641 scopus 로고
    • Structure of the HMG box motif in the B-domain of HMG1
    • Weir H.M., et al. Structure of the HMG box motif in the B-domain of HMG1. EMBO J. 1993, 12(4):1311-1319.
    • (1993) EMBO J. , vol.12 , Issue.4 , pp. 1311-1319
    • Weir, H.M.1
  • 172
    • 0035281548 scopus 로고    scopus 로고
    • HMG1 and 2, and related 'architectural' DNA-binding proteins
    • Thomas J.O., Travers A.A. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem. Sci. 2001, 26(3):167-174.
    • (2001) Trends Biochem. Sci. , vol.26 , Issue.3 , pp. 167-174
    • Thomas, J.O.1    Travers, A.A.2
  • 173
    • 35748980855 scopus 로고    scopus 로고
    • HMGB binding to DNA: single and double box motifs
    • McCauley M.J., et al. HMGB binding to DNA: single and double box motifs. J. Mol. Biol. 2007, 374(4):993-1004.
    • (2007) J. Mol. Biol. , vol.374 , Issue.4 , pp. 993-1004
    • McCauley, M.J.1
  • 174
    • 84869046644 scopus 로고    scopus 로고
    • Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding
    • Joshi S.R., et al. Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding. Nucleic Acids Res. 2012, 40(20):10161-10171.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.20 , pp. 10161-10171
    • Joshi, S.R.1
  • 175
  • 176
    • 59949102450 scopus 로고    scopus 로고
    • HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids
    • Catena R., et al. HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol. Reprod. 2009, 80(2):358-366.
    • (2009) Biol. Reprod. , vol.80 , Issue.2 , pp. 358-366
    • Catena, R.1
  • 177
    • 0032814140 scopus 로고    scopus 로고
    • Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins
    • Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell Biol. 1999, 19(8):5237-5246.
    • (1999) Mol. Cell Biol. , vol.19 , Issue.8 , pp. 5237-5246
    • Bustin, M.1
  • 178
    • 0033052037 scopus 로고    scopus 로고
    • The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice
    • Calogero S., et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 1999, 22(3):276-280.
    • (1999) Nat. Genet. , vol.22 , Issue.3 , pp. 276-280
    • Calogero, S.1
  • 179
    • 20644449041 scopus 로고    scopus 로고
    • HMGB1: guiding immunity from within
    • Dumitriu I.E., et al. HMGB1: guiding immunity from within. Trends Immunol. 2005, 26(7):381-387.
    • (2005) Trends Immunol. , vol.26 , Issue.7 , pp. 381-387
    • Dumitriu, I.E.1
  • 180
    • 35748967851 scopus 로고    scopus 로고
    • High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity
    • Bianchi M.E., Manfredi A.A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 2007, 220:35-46.
    • (2007) Immunol. Rev. , vol.220 , pp. 35-46
    • Bianchi, M.E.1    Manfredi, A.A.2
  • 181
    • 48149096398 scopus 로고    scopus 로고
    • HMGB1: endogenous danger signaling
    • Klune J.R., et al. HMGB1: endogenous danger signaling. Mol. Med. 2008, 14(7-8):476-484.
    • (2008) Mol. Med. , vol.14 , Issue.7-8 , pp. 476-484
    • Klune, J.R.1
  • 182
    • 84922359627 scopus 로고    scopus 로고
    • High mobility group box protein-1 in wound repair
    • Ranzato E., et al. High mobility group box protein-1 in wound repair. Cells 2012, 1(4):699-710.
    • (2012) Cells , vol.1 , Issue.4 , pp. 699-710
    • Ranzato, E.1
  • 183
    • 0026751181 scopus 로고
    • Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins 1 and 2
    • Hughes E.N., Engelsberg B.N., Billings P.C. Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins 1 and 2. J. Biol. Chem. 1992, 267(19):13520-13527.
    • (1992) J. Biol. Chem. , vol.267 , Issue.19 , pp. 13520-13527
    • Hughes, E.N.1    Engelsberg, B.N.2    Billings, P.C.3
  • 184
    • 0026569275 scopus 로고
    • Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin
    • Pil P.M., Lippard S.J. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 1992, 256(5054):234-237.
    • (1992) Science , vol.256 , Issue.5054 , pp. 234-237
    • Pil, P.M.1    Lippard, S.J.2
  • 185
    • 0029783348 scopus 로고    scopus 로고
    • Repair of cisplatin-DNA adducts by the mammalian excision nuclease
    • Zamble D.B., et al. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 1996, 35(31):10004-10013.
    • (1996) Biochemistry , vol.35 , Issue.31 , pp. 10004-10013
    • Zamble, D.B.1
  • 186
    • 67649218816 scopus 로고    scopus 로고
    • HMGB1: the jack-of-all-trades protein is a master DNA repair mechanic
    • Lange S.S., Vasquez K.M. HMGB1: the jack-of-all-trades protein is a master DNA repair mechanic. Mol. Carcinog. 2009, 48(7):571-580.
    • (2009) Mol. Carcinog. , vol.48 , Issue.7 , pp. 571-580
    • Lange, S.S.1    Vasquez, K.M.2
  • 187
    • 0028117527 scopus 로고
    • HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease
    • Huang J.C., et al. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl. Acad. Sci. U. S. A. 1994, 91(22):10394-10398.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , Issue.22 , pp. 10394-10398
    • Huang, J.C.1
  • 188
    • 0032488607 scopus 로고    scopus 로고
    • Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities
    • Trimmer E.E., et al. Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities. Biochemistry 1998, 37(1):352-362.
    • (1998) Biochemistry , vol.37 , Issue.1 , pp. 352-362
    • Trimmer, E.E.1
  • 190
    • 0033841622 scopus 로고    scopus 로고
    • Molecular mechanisms involved in cisplatin cytotoxicity
    • Jordan P., Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol. Life Sci. 2000, 57(8-9):1229-1235.
    • (2000) Cell Mol. Life Sci. , vol.57 , Issue.8-9 , pp. 1229-1235
    • Jordan, P.1    Carmo-Fonseca, M.2
  • 191
    • 0042377252 scopus 로고    scopus 로고
    • Recognition and repair of DNA-cisplatin adducts
    • Wozniak K., Blasiak J. Recognition and repair of DNA-cisplatin adducts. Acta Biochim. Pol. 2002, 49(3):583-596.
    • (2002) Acta Biochim. Pol. , vol.49 , Issue.3 , pp. 583-596
    • Wozniak, K.1    Blasiak, J.2
  • 192
    • 0036015846 scopus 로고    scopus 로고
    • Recognition of major DNA adducts of enantiomeric cisplatin analogs by HMG box proteins and nucleotide excision repair of these adducts
    • Malina J., et al. Recognition of major DNA adducts of enantiomeric cisplatin analogs by HMG box proteins and nucleotide excision repair of these adducts. Chem. Biol. 2002, 9(5):629-638.
    • (2002) Chem. Biol. , vol.9 , Issue.5 , pp. 629-638
    • Malina, J.1
  • 193
    • 0032537491 scopus 로고    scopus 로고
    • Human replication protein A preferentially binds cisplatin-damaged duplex DNA in vitro
    • Patrick S.M., Turchi J.J. Human replication protein A preferentially binds cisplatin-damaged duplex DNA in vitro. Biochemistry 1998, 37(24):8808-8815.
    • (1998) Biochemistry , vol.37 , Issue.24 , pp. 8808-8815
    • Patrick, S.M.1    Turchi, J.J.2
  • 194
    • 63049132136 scopus 로고    scopus 로고
    • Native HMGB1 protein inhibits repair of cisplatin-damaged nucleosomes in vitro
    • Ugrinova I., et al. Native HMGB1 protein inhibits repair of cisplatin-damaged nucleosomes in vitro. Int. J. Biochem. Cell Biol. 2009, 41(7):1556-1562.
    • (2009) Int. J. Biochem. Cell Biol. , vol.41 , Issue.7 , pp. 1556-1562
    • Ugrinova, I.1
  • 195
    • 67650047868 scopus 로고    scopus 로고
    • Nucleosome binding properties and Co-remodeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins
    • Ugrinova I., Pashev I.G., Pasheva E.A. Nucleosome binding properties and Co-remodeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins. Biochemistry 2009, 48(27):6502-6507.
    • (2009) Biochemistry , vol.48 , Issue.27 , pp. 6502-6507
    • Ugrinova, I.1    Pashev, I.G.2    Pasheva, E.A.3
  • 196
    • 67651123159 scopus 로고    scopus 로고
    • Post-synthetic acetylation of HMGB1 protein modulates its interactions with supercoiled DNA
    • Ugrinova I., Pashev I.G., Pasheva E.A. Post-synthetic acetylation of HMGB1 protein modulates its interactions with supercoiled DNA. Mol. Biol. Rep. 2009, 36(6):1399-1404.
    • (2009) Mol. Biol. Rep. , vol.36 , Issue.6 , pp. 1399-1404
    • Ugrinova, I.1    Pashev, I.G.2    Pasheva, E.A.3
  • 197
    • 67349117312 scopus 로고    scopus 로고
    • Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks
    • Lange S.S., Reddy M.C., Vasquez K.M. Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks. DNA Repair (Amst.) 2009, 8(7):865-872.
    • (2009) DNA Repair (Amst.) , vol.8 , Issue.7 , pp. 865-872
    • Lange, S.S.1    Reddy, M.C.2    Vasquez, K.M.3
  • 198
    • 15544366698 scopus 로고    scopus 로고
    • Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA
    • Reddy M.C., Christensen J., Vasquez K.M. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA. Biochemistry 2005, 44(11):4188-4195.
    • (2005) Biochemistry , vol.44 , Issue.11 , pp. 4188-4195
    • Reddy, M.C.1    Christensen, J.2    Vasquez, K.M.3
  • 199
    • 48749124996 scopus 로고    scopus 로고
    • High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage
    • Lange S.S., Mitchell D.L., Vasquez K.M. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(30):10320-10325.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.30 , pp. 10320-10325
    • Lange, S.S.1    Mitchell, D.L.2    Vasquez, K.M.3
  • 200
    • 34548261232 scopus 로고    scopus 로고
    • HMGB1 is a cofactor in mammalian base excision repair
    • Prasad R., et al. HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell. 2007, 27(5):829-841.
    • (2007) Mol. Cell. , vol.27 , Issue.5 , pp. 829-841
    • Prasad, R.1
  • 201
    • 74549121930 scopus 로고    scopus 로고
    • HMGB1: roles in base excision repair and related function
    • Liu Y., Prasad R., Wilson S.H. HMGB1: roles in base excision repair and related function. Biochim. Biophys. Acta 2010, 1799(1-2):119-130.
    • (2010) Biochim. Biophys. Acta , vol.1799 , Issue.1-2 , pp. 119-130
    • Liu, Y.1    Prasad, R.2    Wilson, S.H.3
  • 202
    • 0031696265 scopus 로고    scopus 로고
    • High mobility group proteins 1 and 2 can function as DNA-binding regulatory components for DNA-dependent protein kinase in vitro
    • Yumoto Y., et al. High mobility group proteins 1 and 2 can function as DNA-binding regulatory components for DNA-dependent protein kinase in vitro. J. Biochem. 1998, 124(3):519-527.
    • (1998) J. Biochem. , vol.124 , Issue.3 , pp. 519-527
    • Yumoto, Y.1
  • 203
    • 0033944776 scopus 로고    scopus 로고
    • HMG1 protein stimulates DNA end joining by promoting association of DNA molecules via their ends
    • Stros M., Cherny D., Jovin T.M. HMG1 protein stimulates DNA end joining by promoting association of DNA molecules via their ends. Eur. J. Biochem. 2000, 267(13):4088-4097.
    • (2000) Eur. J. Biochem. , vol.267 , Issue.13 , pp. 4088-4097
    • Stros, M.1    Cherny, D.2    Jovin, T.M.3
  • 204
    • 0036296936 scopus 로고    scopus 로고
    • Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions
    • Yamanaka S., et al. Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions. Biochem. Biophys. Res. Commun. 2002, 292(1):268-273.
    • (2002) Biochem. Biophys. Res. Commun. , vol.292 , Issue.1 , pp. 268-273
    • Yamanaka, S.1
  • 205
    • 0020534965 scopus 로고
    • Somatic generation of antibody diversity
    • Tonagawa S. Somatic generation of antibody diversity. Nature 1983, 302:575-581.
    • (1983) Nature , vol.302 , pp. 575-581
    • Tonagawa, S.1
  • 206
    • 0030964130 scopus 로고    scopus 로고
    • A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage
    • Hiom K., Gellert M. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 1997, 88(1):65-72.
    • (1997) Cell , vol.88 , Issue.1 , pp. 65-72
    • Hiom, K.1    Gellert, M.2
  • 207
    • 0032084698 scopus 로고    scopus 로고
    • Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination
    • Hiom K., Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell. 1998, 1(7):1011-1019.
    • (1998) Mol. Cell. , vol.1 , Issue.7 , pp. 1011-1019
    • Hiom, K.1    Gellert, M.2
  • 208
    • 0037416170 scopus 로고    scopus 로고
    • VDJ recombination: Artemis and its in vivo role in hairpin opening
    • Mansilla-Soto J., Cortes P. VDJ recombination: Artemis and its in vivo role in hairpin opening. J. Exp. Med. 2003, 197(5):543-547.
    • (2003) J. Exp. Med. , vol.197 , Issue.5 , pp. 543-547
    • Mansilla-Soto, J.1    Cortes, P.2
  • 209
    • 0035997348 scopus 로고    scopus 로고
    • V(D)J recombination: RAG proteins, repair factors, and regulation
    • Gellert M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 2002, 71:101-132.
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 101-132
    • Gellert, M.1
  • 210
    • 0030980386 scopus 로고    scopus 로고
    • V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins
    • Sawchuk D.J., et al. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins. J. Exp. Med. 1997, 185(11):2025-2032.
    • (1997) J. Exp. Med. , vol.185 , Issue.11 , pp. 2025-2032
    • Sawchuk, D.J.1
  • 211
    • 0030994385 scopus 로고    scopus 로고
    • Stimulation of V(D)J cleavage by high mobility group proteins
    • van Gent D.C., et al. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 1997, 16(10):2665-2670.
    • (1997) EMBO J. , vol.16 , Issue.10 , pp. 2665-2670
    • van Gent, D.C.1
  • 212
    • 0031770944 scopus 로고    scopus 로고
    • The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step
    • West R.B., Lieber M.R. The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step. Mol. Cell Biol. 1998, 18(11):6408-6415.
    • (1998) Mol. Cell Biol. , vol.18 , Issue.11 , pp. 6408-6415
    • West, R.B.1    Lieber, M.R.2
  • 213
    • 84876381777 scopus 로고    scopus 로고
    • Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA
    • Little A.J., et al. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucleic Acids Res. 2013, 41(5):3289-3301.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.5 , pp. 3289-3301
    • Little, A.J.1
  • 214
    • 0032823310 scopus 로고    scopus 로고
    • The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2
    • Aidinis V., et al. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Mol. Cell Biol. 1999, 19(10):6532-6542.
    • (1999) Mol. Cell Biol. , vol.19 , Issue.10 , pp. 6532-6542
    • Aidinis, V.1
  • 215
    • 84876380952 scopus 로고    scopus 로고
    • RAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes
    • Ciubotaru M., et al. RAG and HMGB1 create a large bend in the 23RSS in the V(D)J recombination synaptic complexes. Nucleic Acids Res. 2013, 41(4):2437-2454.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.4 , pp. 2437-2454
    • Ciubotaru, M.1
  • 216
    • 84941145632 scopus 로고    scopus 로고
    • The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes
    • Ciubotaru M., et al. The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes. Nucleic Acids Res. 2015, 43(2):917-931.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.2 , pp. 917-931
    • Ciubotaru, M.1
  • 217
    • 3142686957 scopus 로고    scopus 로고
    • Ku70/Ku80 and DNA-dependent protein kinase catalytic subunit modulate RAG-mediated cleavage: implications for the enforcement of the 12/23 rule
    • Sawchuk D.J., et al. Ku70/Ku80 and DNA-dependent protein kinase catalytic subunit modulate RAG-mediated cleavage: implications for the enforcement of the 12/23 rule. J. Biol. Chem. 2004, 279(28):29821-29831.
    • (2004) J. Biol. Chem. , vol.279 , Issue.28 , pp. 29821-29831
    • Sawchuk, D.J.1
  • 218
    • 33644626371 scopus 로고    scopus 로고
    • DNA mismatch repair: functions and mechanisms
    • Iyer R.R., et al. DNA mismatch repair: functions and mechanisms. Chem. Rev. 2006, 106(2):302-323.
    • (2006) Chem. Rev. , vol.106 , Issue.2 , pp. 302-323
    • Iyer, R.R.1
  • 219
    • 0037228781 scopus 로고    scopus 로고
    • A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues
    • Krynetski E.Y., et al. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res. 2003, 63(1):100-106.
    • (2003) Cancer Res. , vol.63 , Issue.1 , pp. 100-106
    • Krynetski, E.Y.1
  • 220
    • 2442705192 scopus 로고    scopus 로고
    • Evidence for involvement of HMGB1 protein in human DNA mismatch repair
    • Yuan F., et al. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J. Biol. Chem. 2004, 279(20):20935-20940.
    • (2004) J. Biol. Chem. , vol.279 , Issue.20 , pp. 20935-20940
    • Yuan, F.1
  • 221
    • 24144447320 scopus 로고    scopus 로고
    • Reconstitution of 5'-directed human mismatch repair in a purified system
    • Zhang Y., et al. Reconstitution of 5'-directed human mismatch repair in a purified system. Cell 2005, 122(5):693-705.
    • (2005) Cell , vol.122 , Issue.5 , pp. 693-705
    • Zhang, Y.1
  • 222
    • 84914674860 scopus 로고    scopus 로고
    • Battle against cancer: an everlasting saga of p53
    • Hao Q., Cho W.C. Battle against cancer: an everlasting saga of p53. Int. J. Mol. Sci. 2014, 15(12):22109-22127.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.12 , pp. 22109-22127
    • Hao, Q.1    Cho, W.C.2
  • 223
    • 84893659031 scopus 로고    scopus 로고
    • Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice
    • Gupta A., et al. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat. Res. 2014, 181(1):1-8.
    • (2014) Radiat. Res. , vol.181 , Issue.1 , pp. 1-8
    • Gupta, A.1
  • 224
    • 84925487827 scopus 로고    scopus 로고
    • The role of DNA damage responses in p53 biology
    • Speidel D. The role of DNA damage responses in p53 biology. Arch. Toxicol. 2015, 89(4):501-517.
    • (2015) Arch. Toxicol. , vol.89 , Issue.4 , pp. 501-517
    • Speidel, D.1
  • 225
    • 84946498474 scopus 로고    scopus 로고
    • P53, a translational regulator: contribution to its tumour-suppressor activity
    • Marcel V., Catez F., Diaz J.J. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015.
    • (2015) Oncogene
    • Marcel, V.1    Catez, F.2    Diaz, J.J.3
  • 226
    • 84922394643 scopus 로고    scopus 로고
    • Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ)
    • Menon V., Povirk L. Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell Biochem. 2014, 85:321-336.
    • (2014) Subcell Biochem. , vol.85 , pp. 321-336
    • Menon, V.1    Povirk, L.2
  • 227
    • 0345686480 scopus 로고    scopus 로고
    • Functional characterization of global genomic DNA repair and its implications for cancer
    • Hanawalt P.C., Ford J.M., Lloyd D.R. Functional characterization of global genomic DNA repair and its implications for cancer. Mutat. Res. 2003, 544(2-3):107-114.
    • (2003) Mutat. Res. , vol.544 , Issue.2-3 , pp. 107-114
    • Hanawalt, P.C.1    Ford, J.M.2    Lloyd, D.R.3
  • 228
    • 0041696480 scopus 로고    scopus 로고
    • P53-guardian of a genome's guardian?
    • Rubbi C.P., Milner J. p53-guardian of a genome's guardian?. Cell Cycle 2003, 2(1):20-21.
    • (2003) Cell Cycle , vol.2 , Issue.1 , pp. 20-21
    • Rubbi, C.P.1    Milner, J.2
  • 229
    • 3943107573 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
    • Sancar A., et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004, 73:39-85.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 39-85
    • Sancar, A.1
  • 230
    • 0036510750 scopus 로고    scopus 로고
    • HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter
    • Stros M., et al. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J. Biol. Chem. 2002, 277(9):7157-7164.
    • (2002) J. Biol. Chem. , vol.277 , Issue.9 , pp. 7157-7164
    • Stros, M.1
  • 231
    • 0026669469 scopus 로고
    • P53 function and dysfunction
    • Vogelstein B., Kinzler K.W. p53 function and dysfunction. Cell 1992, 70(4):523-526.
    • (1992) Cell , vol.70 , Issue.4 , pp. 523-526
    • Vogelstein, B.1    Kinzler, K.W.2
  • 232
    • 84922394457 scopus 로고    scopus 로고
    • Structural studies on mechanisms to activate mutant p53
    • Viadiu H., Fronza G., Inga A. Structural studies on mechanisms to activate mutant p53. Subcell Biochem. 2014, 85:119-132.
    • (2014) Subcell Biochem. , vol.85 , pp. 119-132
    • Viadiu, H.1    Fronza, G.2    Inga, A.3
  • 233
    • 0842287638 scopus 로고    scopus 로고
    • DNA damage tumor suppressor genes and genomic instability
    • Motoyama N., Naka K. DNA damage tumor suppressor genes and genomic instability. Curr. Opin. Genet. Dev. 2004, 14(1):11-16.
    • (2004) Curr. Opin. Genet. Dev. , vol.14 , Issue.1 , pp. 11-16
    • Motoyama, N.1    Naka, K.2
  • 234
    • 0032520175 scopus 로고    scopus 로고
    • High mobility group protein-1 (HMG-1) is a unique activator of p53
    • Jayaraman L., et al. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 1998, 12(4):462-472.
    • (1998) Genes Dev. , vol.12 , Issue.4 , pp. 462-472
    • Jayaraman, L.1
  • 235
    • 0035831457 scopus 로고    scopus 로고
    • Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein
    • Imamura T., et al. Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J. Biol. Chem. 2001, 276(10):7534-7540.
    • (2001) J. Biol. Chem. , vol.276 , Issue.10 , pp. 7534-7540
    • Imamura, T.1
  • 236
    • 0036784608 scopus 로고    scopus 로고
    • Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein
    • McKinney K., Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell Biol. 2002, 22(19):6797-6808.
    • (2002) Mol. Cell Biol. , vol.22 , Issue.19 , pp. 6797-6808
    • McKinney, K.1    Prives, C.2
  • 237
    • 84870565733 scopus 로고    scopus 로고
    • HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail
    • Rowell J.P., et al. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure 2012, 20(12):2014-2024.
    • (2012) Structure , vol.20 , Issue.12 , pp. 2014-2024
    • Rowell, J.P.1
  • 238
    • 84862599140 scopus 로고    scopus 로고
    • Direct molecular interactions between HMGB1 and TP53 in colorectal cancer
    • Livesey K.M., et al. Direct molecular interactions between HMGB1 and TP53 in colorectal cancer. Autophagy 2012, 8(5):846-848.
    • (2012) Autophagy , vol.8 , Issue.5 , pp. 846-848
    • Livesey, K.M.1
  • 239
    • 84860163119 scopus 로고    scopus 로고
    • P53/HMGB1 complexes regulate autophagy and apoptosis
    • Livesey K.M., et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 2012, 72(8):1996-2005.
    • (2012) Cancer Res. , vol.72 , Issue.8 , pp. 1996-2005
    • Livesey, K.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.