메뉴 건너뛰기




Volumn 22, Issue 5, 2015, Pages 340-346

The role of mTOR in lipid homeostasis and diabetes progression

Author keywords

adipose triglyceride lipase; Egr1; lipid partitioning; mTOR; sterol regulatory element binding protein

Indexed keywords

ACYLGLYCEROL LIPASE; EARLY GROWTH RESPONSE FACTOR 1; FAT DROPLET; FATTY ACID; INITIATION FACTOR 4A; INITIATION FACTOR 4E; INITIATION FACTOR 4F; INITIATION FACTOR 4G; INSULIN; INSULIN RECEPTOR; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MESSENGER RNA; PROTEIN KINASE B; STEROL REGULATORY ELEMENT BINDING PROTEIN 1C; TRIACYLGLYCEROL; TRIACYLGLYCEROL LIPASE; UNCOUPLING PROTEIN 1; MTOR PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 84960412904     PISSN: 1752296X     EISSN: 17522978     Source Type: Journal    
DOI: 10.1097/MED.0000000000000187     Document Type: Review
Times cited : (41)

References (96)
  • 1
    • 79952104568 scopus 로고    scopus 로고
    • MTOR couples cellular nutrient sensing to organismal metabolic homeostasis
    • Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 2011; 22:94-102.
    • (2011) Trends Endocrinol Metab , vol.22 , pp. 94-102
    • Howell, J.J.1    Manning, B.D.2
  • 2
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126:1713-1719.
    • (2013) J Cell Sci , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 3
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15:155-162.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 4
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming DW, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335:1638-1643.
    • (2012) Science , vol.335 , pp. 1638-1643
    • Lamming, D.W.1    Ye, L.2    Katajisto, P.3
  • 5
    • 84910145403 scopus 로고    scopus 로고
    • Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids
    • Zheng X, Liang Y, He Q, et al. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Intl J Mol Sci 2014; 15:20753-20769.
    • (2014) Intl J Mol Sci , vol.15 , pp. 20753-20769
    • Zheng, X.1    Liang, Y.2    He, Q.3
  • 6
    • 84893477830 scopus 로고    scopus 로고
    • Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging
    • Oshiro N, Rapley J, Avruch J. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 2014; 289:2658-2674.
    • (2014) J Biol Chem , vol.289 , pp. 2658-2674
    • Oshiro, N.1    Rapley, J.2    Avruch, J.3
  • 7
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3
  • 8
    • 84880529632 scopus 로고    scopus 로고
    • Rheb and Rags come together at the lysosome to activate mTORC1
    • Groenewoud MJ, Zwartkruis FJ. Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans 2013; 41:951-955.
    • (2013) Biochem Soc Trans , vol.41 , pp. 951-955
    • Groenewoud, M.J.1    Zwartkruis, F.J.2
  • 9
    • 84885187437 scopus 로고    scopus 로고
    • A central role for mTOR in lipid homeostasis
    • Lamming DW, Sabatini DM. A central role for mTOR in lipid homeostasis. Cell Metab 2013; 18:465-469.
    • (2013) Cell Metab , vol.18 , pp. 465-469
    • Lamming, D.W.1    Sabatini, D.M.2
  • 10
    • 84882245596 scopus 로고    scopus 로고
    • Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTORC1 stability
    • Pajvani UB, Qiang L, Kangsamaksin T, et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTORC1 stability. Nat Med 2013; 19:1054-1060.
    • (2013) Nat Med , vol.19 , pp. 1054-1060
    • Pajvani, U.B.1    Qiang, L.2    Kangsamaksin, T.3
  • 11
    • 77951166692 scopus 로고    scopus 로고
    • The mTOR complex 1 suppresses lipolysis, stimulates lipogenesis and promotes fat storage
    • Chakrabarti P, English T, Shi J, et al. The mTOR complex 1 suppresses lipolysis, stimulates lipogenesis and promotes fat storage. Diabetes 2010; 59:775-781.
    • (2010) Diabetes , vol.59 , pp. 775-781
    • Chakrabarti, P.1    English, T.2    Shi, J.3
  • 12
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-183.
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Duvel, K.1    Yecies, J.L.2    Menon, S.3
  • 13
    • 77649264504 scopus 로고    scopus 로고
    • Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
    • Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A 2010; 107:3441-3446.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 3441-3446
    • Li, S.1    Brown, M.S.2    Goldstein, J.L.3
  • 14
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-Dependent cell growth
    • Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-Dependent cell growth. Cell Metab 2008; 8:224-236.
    • (2008) Cell Metab , vol.8 , pp. 224-236
    • Porstmann, T.1    Santos, C.R.2    Griffiths, B.3
  • 15
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-Dependent and independent pathways
    • Yecies JL, Zhang HH, Menon S, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-Dependent and independent pathways. Cell Metab 2011; 14:21-32.
    • (2011) Cell Metab , vol.14 , pp. 21-32
    • Yecies, J.L.1    Zhang, H.H.2    Menon, S.3
  • 16
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146:408-420.
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1    Sengupta, S.S.2    Harris, T.E.3
  • 17
    • 79953177846 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
    • Kenerson HL, Yeh MM, Yeung RS. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS One 2011; 6:e18075.
    • (2011) PLoS One , vol.6 , pp. e18075
    • Kenerson, H.L.1    Yeh, M.M.2    Yeung, R.S.3
  • 18
    • 79955779584 scopus 로고    scopus 로고
    • MTOR links oncogenic signaling to tumor cell metabolism
    • Yecies JL, Manning BD. mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med (Berl) 2011; 89:221-228.
    • (2011) J Mol Med (Berl) , vol.89 , pp. 221-228
    • Yecies, J.L.1    Manning, B.D.2
  • 19
    • 84922374677 scopus 로고    scopus 로고
    • Livers with constitutive mTORC1 activity resist steatosis independent of feedback suppression of Akt
    • Kenerson HL, Subramanian S, McIntyre R, et al. Livers with constitutive mTORC1 activity resist steatosis independent of feedback suppression of Akt. PLoS One 2015; 10:e0117000.
    • (2015) PLoS One , vol.10 , pp. e0117000
    • Kenerson, H.L.1    Subramanian, S.2    McIntyre, R.3
  • 20
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara A, Cornu M, Cybulski N, et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012; 15:725-738.
    • (2012) Cell Metab , vol.15 , pp. 725-738
    • Hagiwara, A.1    Cornu, M.2    Cybulski, N.3
  • 22
    • 10344262633 scopus 로고    scopus 로고
    • Identification cloning expression and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities
    • Jenkins CM, Mancuso DJ, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004; 279:48968-48975.
    • (2004) J Biol Chem , vol.279 , pp. 48968-48975
    • Jenkins, C.M.1    Mancuso, D.J.2    Yan, W.3
  • 23
    • 8744297386 scopus 로고    scopus 로고
    • Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: Ectopic expression of desnutrin increases triglyceride hydrolysis
    • Villena JA, Roy S, Sarkadi-Nagy E, et al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279:47066-47075.
    • (2004) J Biol Chem , vol.279 , pp. 47066-47075
    • Villena, J.A.1    Roy, S.2    Sarkadi-Nagy, E.3
  • 24
    • 8844226709 scopus 로고    scopus 로고
    • Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
    • Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306:1383-1386.
    • (2004) Science , vol.306 , pp. 1383-1386
    • Zimmermann, R.1    Strauss, J.G.2    Haemmerle, G.3
  • 25
    • 84858020291 scopus 로고    scopus 로고
    • FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling
    • Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15:279-291.
    • (2012) Cell Metab , vol.15 , pp. 279-291
    • Zechner, R.1    Zimmermann, R.2    Eichmann, T.O.3
  • 26
    • 33646144117 scopus 로고    scopus 로고
    • ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells
    • Smirnova E, Goldberg EB, Makarova KS, et al. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 2006; 7:106-113.
    • (2006) EMBO Rep , vol.7 , pp. 106-113
    • Smirnova, E.1    Goldberg, E.B.2    Makarova, K.S.3
  • 27
    • 33646462136 scopus 로고    scopus 로고
    • Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase
    • Haemmerle G, Lass A, Zimmermann R, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312:734-737.
    • (2006) Science , vol.312 , pp. 734-737
    • Haemmerle, G.1    Lass, A.2    Zimmermann, R.3
  • 28
    • 67650522935 scopus 로고    scopus 로고
    • Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes
    • Bezaire V, Mairal A, Ribet C, et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 2009; 284:18282-18291.
    • (2009) J Biol Chem , vol.284 , pp. 18282-18291
    • Bezaire, V.1    Mairal, A.2    Ribet, C.3
  • 29
    • 57349118544 scopus 로고    scopus 로고
    • Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes
    • Miyoshi H, Perfield JW 2nd, Obin MS, et al. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 2008; 105:1430-1436.
    • (2008) J Cell Biochem , vol.105 , pp. 1430-1436
    • Miyoshi, H.1    Perfield, J.W.2    Obin, M.S.3
  • 30
    • 33644764922 scopus 로고    scopus 로고
    • Adipose triglyceride lipase: Function, regulation by insulin, and comparison with adiponutrin
    • Kershaw EE, Hamm JK, Verhagen LA, et al. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006; 55:148-157.
    • (2006) Diabetes , vol.55 , pp. 148-157
    • Kershaw, E.E.1    Hamm, J.K.2    Verhagen, L.A.3
  • 31
    • 26944489689 scopus 로고    scopus 로고
    • Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
    • Gronke S, Mildner A, Fellert S, et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 2005; 1:323-330.
    • (2005) Cell Metab , vol.1 , pp. 323-330
    • Gronke, S.1    Mildner, A.2    Fellert, S.3
  • 32
    • 33644853354 scopus 로고    scopus 로고
    • Obese yeast: Triglyceride lipolysis is functionally conserved from mammals to yeast
    • Kurat CF, Natter K, Petschnigg J, et al. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 2006; 281:491-500.
    • (2006) J Biol Chem , vol.281 , pp. 491-500
    • Kurat, C.F.1    Natter, K.2    Petschnigg, J.3
  • 33
    • 84883548896 scopus 로고    scopus 로고
    • Insulin inhibits lipolysis in adipocytes via the evolutionary conserved mTORC1-Egr1-ATGL-mediated pathway
    • Chakrabarti P, Kim JY, Singh M, et al. Insulin inhibits lipolysis in adipocytes via the evolutionary conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol 2013; 33:3659-3666.
    • (2013) Mol Cell Biol , vol.33 , pp. 3659-3666
    • Chakrabarti, P.1    Kim, J.Y.2    Singh, M.3
  • 34
    • 84940191593 scopus 로고    scopus 로고
    • 4E-BPs control fat storage by regulating the expression of Egr1 and ATGL
    • Singh M, Shin YK, Yang X, et al. 4E-BPs control fat storage by regulating the expression of Egr1 and ATGL. J Biol Chem 2015; 290:17331-17338.
    • (2015) J Biol Chem , vol.290 , pp. 17331-17338
    • Singh, M.1    Shin, Y.K.2    Yang, X.3
  • 35
    • 80555135917 scopus 로고    scopus 로고
    • Regulation of primary response genes
    • Fowler T, Sen R, Roy AL. Regulation of primary response genes. Mol Cell 2011; 44:348-360.
    • (2011) Mol Cell , vol.44 , pp. 348-360
    • Fowler, T.1    Sen, R.2    Roy, A.L.3
  • 36
    • 80052868490 scopus 로고    scopus 로고
    • Early growth response 1-A transcription factor in the crossfire of signal transduction cascades
    • Pagel JI, Deindl E. Early growth response 1-A transcription factor in the crossfire of signal transduction cascades. Indian J Biochem Biophys 2011; 48:226-235.
    • (2011) Indian J Biochem Biophys , vol.48 , pp. 226-235
    • Pagel, J.I.1    Deindl, E.2
  • 37
    • 0036888651 scopus 로고    scopus 로고
    • Regulation of life and death by the zinc finger transcription factor Egr-1
    • Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002; 193:287-292.
    • (2002) J Cell Physiol , vol.193 , pp. 287-292
    • Thiel, G.1    Cibelli, G.2
  • 38
    • 77952943076 scopus 로고    scopus 로고
    • Egr-1-A Ca(2+)-regulated transcription factor
    • Thiel G, Mayer SI, Muller I, et al. Egr-1-A Ca(2+)-regulated transcription factor. Cell Calcium 2010; 47:397-403.
    • (2010) Cell Calcium , vol.47 , pp. 397-403
    • Thiel, G.1    Mayer, S.I.2    Muller, I.3
  • 39
    • 0034115421 scopus 로고    scopus 로고
    • Identification of two polymorphisms in the early growth response protein-1 gene: Possible association with lipid variables
    • Brand E, Herrmann SM, Nicaud V, et al. Identification of two polymorphisms in the early growth response protein-1 gene: possible association with lipid variables. J Mol Med (Berl) 2000; 78:81-86.
    • (2000) J Mol Med (Berl) , vol.78 , pp. 81-86
    • Brand, E.1    Herrmann, S.M.2    Nicaud, V.3
  • 40
    • 67349265144 scopus 로고    scopus 로고
    • The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation
    • Boyle KB, Hadaschik D, Virtue S, et al. The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ 2009; 16:782-789.
    • (2009) Cell Death Differ , vol.16 , pp. 782-789
    • Boyle, K.B.1    Hadaschik, D.2    Virtue, S.3
  • 41
    • 84862739891 scopus 로고    scopus 로고
    • Critical role of Egr transcription factors in regulating insulin biosynthesis, blood glucose homeostasis, and islet size
    • Muller I, Rossler OG, Wittig C, et al. Critical role of Egr transcription factors in regulating insulin biosynthesis, blood glucose homeostasis, and islet size. Endocrinology 2012; 153:3040-3053.
    • (2012) Endocrinology , vol.153 , pp. 3040-3053
    • Muller, I.1    Rossler, O.G.2    Wittig, C.3
  • 42
    • 79954595062 scopus 로고    scopus 로고
    • An early response transcription factor, egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism
    • Shen N, Yu X, Pan FY, et al. An early response transcription factor, egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism. J Biol Chem 2011; 286:14508-14515.
    • (2011) J Biol Chem , vol.286 , pp. 14508-14515
    • Shen, N.1    Yu, X.2    Pan, F.Y.3
  • 43
    • 80051931336 scopus 로고    scopus 로고
    • Early growth response 1 (egr1) regulates cholesterol biosynthetic gene expression
    • Gokey NG, Lopez-Anido C, Gillian-Daniel AL, et al. Early growth response 1 (egr1) regulates cholesterol biosynthetic gene expression. J Biol Chem 2011; 286:29501-29510.
    • (2011) J Biol Chem , vol.286 , pp. 29501-29510
    • Gokey, N.G.1    Lopez-Anido, C.2    Gillian-Daniel, A.L.3
  • 44
    • 0035312747 scopus 로고    scopus 로고
    • Regulation of translation initiation by FRAP/mTOR
    • Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15:807-826.
    • (2001) Genes Dev , vol.15 , pp. 807-826
    • Gingras, A.C.1    Raught, B.2    Sonenberg, N.3
  • 45
    • 84901419238 scopus 로고    scopus 로고
    • Fat specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of Egr1 on transcription of adipose triglyceride lipase
    • Singh M, Kaur R, Lee MJ, et al. Fat specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of Egr1 on transcription of adipose triglyceride lipase. J Biol Chem 2014; 289:14481-14487.
    • (2014) J Biol Chem , vol.289 , pp. 14481-14487
    • Singh, M.1    Kaur, R.2    Lee, M.J.3
  • 46
    • 33746564095 scopus 로고    scopus 로고
    • Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity
    • Luong N, Davies CR, Wessells RJ, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006; 4:133-142.
    • (2006) Cell Metab , vol.4 , pp. 133-142
    • Luong, N.1    Davies, C.R.2    Wessells, R.J.3
  • 47
    • 78049425280 scopus 로고    scopus 로고
    • High-fat-Diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila
    • Birse RT, Choi J, Reardon K, et al. High-fat-Diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 2010; 12:533-544.
    • (2010) Cell Metab , vol.12 , pp. 533-544
    • Birse, R.T.1    Choi, J.2    Reardon, K.3
  • 48
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332:1317-1322.
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1    Kang, S.A.2    Rameseder, J.3
  • 49
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332:1322-1326.
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1    Yoon, S.O.2    Poulogiannis, G.3
  • 50
    • 0141960274 scopus 로고    scopus 로고
    • Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action
    • Deng Y, Bhattacharya S, Swamy OR, et al. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem 2003; 278:39311-39322.
    • (2003) J Biol Chem , vol.278 , pp. 39311-39322
    • Deng, Y.1    Bhattacharya, S.2    Swamy, O.R.3
  • 51
    • 84902257417 scopus 로고    scopus 로고
    • Grb10 promotes lipolysis and thermogenesis by phosphorylation-Dependent feedback inhibition of mTORC1
    • Liu M, Bai J, He S, et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-Dependent feedback inhibition of mTORC1. Cell Metab 2014; 19:967-980.
    • (2014) Cell Metab , vol.19 , pp. 967-980
    • Liu, M.1    Bai, J.2    He, S.3
  • 52
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1    Kaushik, S.2    Wang, Y.3
  • 53
    • 84925324049 scopus 로고    scopus 로고
    • Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
    • Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015; 32:678-692.
    • (2015) Dev Cell , vol.32 , pp. 678-692
    • Rambold, A.S.1    Cohen, S.2    Lippincott-Schwartz, J.3
  • 55
    • 77952893054 scopus 로고    scopus 로고
    • S6K1 plays a critical role in early adipocyte differentiation
    • Carnevalli LS, Masuda K, Frigerio F, et al. S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 2010; 18:763-774.
    • (2010) Dev Cell , vol.18 , pp. 763-774
    • Carnevalli, L.S.1    Masuda, K.2    Frigerio, F.3
  • 56
    • 54849431380 scopus 로고    scopus 로고
    • Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
    • Polak P, Cybulski N, Feige JN, et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008; 8:399-410.
    • (2008) Cell Metab , vol.8 , pp. 399-410
    • Polak, P.1    Cybulski, N.2    Feige, J.N.3
  • 57
    • 67650523945 scopus 로고    scopus 로고
    • Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
    • Zhang HH, Huang J, Duvel K, et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 2009; 4:e6189.
    • (2009) PLoS One , vol.4 , pp. e6189
    • Zhang, H.H.1    Huang, J.2    Duvel, K.3
  • 58
    • 0028885873 scopus 로고
    • Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells
    • Yeh WC, Bierer BE, McKnight SL. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci U S A 1995; 92:11086-11090.
    • (1995) Proc Natl Acad Sci U S A , vol.92 , pp. 11086-11090
    • Yeh, W.C.1    Bierer, B.E.2    McKnight, S.L.3
  • 59
    • 7044234995 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-Activated receptorgamma activity by mammalian target of rapamycin and amino acids in adipogenesis
    • Kim JE, Chen J. Regulation of peroxisome proliferator-Activated receptorgamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004; 53:2748-2756.
    • (2004) Diabetes , vol.53 , pp. 2748-2756
    • Kim, J.E.1    Chen, J.2
  • 60
    • 84880906852 scopus 로고    scopus 로고
    • Mechanistic target of rapamycin controls homeostasis of adipogenesis
    • Yoon MS, Zhang C, Sun Y, et al. Mechanistic target of rapamycin controls homeostasis of adipogenesis. J Lipid Res 2013; 54:2166-2173.
    • (2013) J Lipid Res , vol.54 , pp. 2166-2173
    • Yoon, M.S.1    Zhang, C.2    Sun, Y.3
  • 61
    • 4043082005 scopus 로고    scopus 로고
    • Regulation of adipocyte differentiation and insulin action with rapamycin
    • Cho HJ, Park J, Lee HW, et al. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 2004; 321:942-948.
    • (2004) Biochem Biophys Res Commun , vol.321 , pp. 942-948
    • Cho, H.J.1    Park, J.2    Lee, H.W.3
  • 63
    • 4544220704 scopus 로고    scopus 로고
    • Inhibition of insulin signaling and adipogenesis by rapamycin: Effect on phosphorylation of p70 s6 kinase vs eif4e-bp1
    • Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against ageand diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431:200-205.
    • (2004) Nature , vol.431 , pp. 200-205
    • Um, S.H.1    Frigerio, F.2    Watanabe, M.3
  • 65
    • 42449097289 scopus 로고    scopus 로고
    • Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes
    • Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9:367-377.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 367-377
    • Guilherme, A.1    Virbasius, J.V.2    Puri, V.3
  • 66
    • 34248581989 scopus 로고    scopus 로고
    • Disordered lipid metabolism and the pathogenesis of insulin resistance
    • Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007; 87:507-520.
    • (2007) Physiol Rev , vol.87 , pp. 507-520
    • Savage, D.B.1    Petersen, K.F.2    Shulman, G.I.3
  • 67
    • 0031014830 scopus 로고    scopus 로고
    • Role of fatty acids in the pathogenesis of insulin resistance and NIDDM
    • Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997; 46:3-10.
    • (1997) Diabetes , vol.46 , pp. 3-10
    • Boden, G.1
  • 68
    • 45849141304 scopus 로고    scopus 로고
    • Type 2 diabetes: Pathogenesis and treatment
    • Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: pathogenesis and treatment. Lancet 2008; 371:2153-2156.
    • (2008) Lancet , vol.371 , pp. 2153-2156
    • Stumvoll, M.1    Goldstein, B.J.2    Van Haeften, T.W.3
  • 70
    • 34250773451 scopus 로고    scopus 로고
    • Mechanisms of obesity-Associated insulin resistance: Many choices on the menu
    • Qatanani M, Lazar MA. Mechanisms of obesity-Associated insulin resistance: many choices on the menu. Genes Dev 2007; 21:1443-1455.
    • (2007) Genes Dev , vol.21 , pp. 1443-1455
    • Qatanani, M.1    Lazar, M.A.2
  • 71
    • 0022388940 scopus 로고
    • Ambient plasma free fatty acid concentrations in noninsulin-Dependent diabetes mellitus: Evidence for insulin resistance
    • Fraze E, Donner CC, Swislocki AL, et al. Ambient plasma free fatty acid concentrations in noninsulin-Dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 1985; 61:807-811.
    • (1985) J Clin Endocrinol Metab , vol.61 , pp. 807-811
    • Fraze, E.1    Donner, C.C.2    Swislocki, A.L.3
  • 72
    • 0033961009 scopus 로고    scopus 로고
    • Insulin regulation of plasma free fatty acid concentrations is abnormal in healthy subjects with muscle insulin resistance
    • Abbasi F, McLaughlin T, Lamendola C, et al. Insulin regulation of plasma free fatty acid concentrations is abnormal in healthy subjects with muscle insulin resistance. Metabolism 2000; 49:151-154.
    • (2000) Metabolism , vol.49 , pp. 151-154
    • Abbasi, F.1    McLaughlin, T.2    Lamendola, C.3
  • 73
    • 0024603016 scopus 로고
    • Impaired insulin-mediated inhibition of lipolysis and glucose transport with aging
    • Reaven GM, Chang H, Hoffman BB. Impaired insulin-mediated inhibition of lipolysis and glucose transport with aging. Horm Metab Res 1989; 21:168-171.
    • (1989) Horm Metab Res , vol.21 , pp. 168-171
    • Reaven, G.M.1    Chang, H.2    Hoffman, B.B.3
  • 74
    • 84864293537 scopus 로고    scopus 로고
    • Role of intramyocelluar lipids in human health
    • Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 2012; 23:391-398.
    • (2012) Trends Endocrinol Metab , vol.23 , pp. 391-398
    • Coen, P.M.1    Goodpaster, B.H.2
  • 75
    • 76049099052 scopus 로고    scopus 로고
    • Direct control of mitochondrial function by mTOR
    • Ramanathan A, Schreiber SL. Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci U S A 2009; 106:22229-22232.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 22229-22232
    • Ramanathan, A.1    Schreiber, S.L.2
  • 76
    • 33748752151 scopus 로고    scopus 로고
    • The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
    • Schieke SM, Phillips D, McCoy JP Jr, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281:27643-27652.
    • (2006) J Biol Chem , vol.281 , pp. 27643-27652
    • Schieke, S.M.1    Phillips, D.2    McCoy, J.P.3
  • 77
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham JT, Rodgers JT, Arlow DH, et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450:736-740.
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3
  • 78
    • 54849426651 scopus 로고    scopus 로고
    • Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
    • Bentzinger CF, Romanino K, Cloetta D, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008; 8:411-424.
    • (2008) Cell Metab , vol.8 , pp. 411-424
    • Bentzinger, C.F.1    Romanino, K.2    Cloetta, D.3
  • 79
    • 84887415150 scopus 로고    scopus 로고
    • MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-Dependent translational regulation
    • Morita M, Gravel SP, Chenard V, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-Dependent translational regulation. Cell Metab 2013; 18:698-711.
    • (2013) Cell Metab , vol.18 , pp. 698-711
    • Morita, M.1    Gravel, S.P.2    Chenard, V.3
  • 80
    • 84864098852 scopus 로고    scopus 로고
    • Lipolytic products activate peroxisome proliferator-Activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply
    • Mottillo EP, Bloch AE, Leff T, et al. Lipolytic products activate peroxisome proliferator-Activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 2012; 287:25038-25048.
    • (2012) J Biol Chem , vol.287 , pp. 25038-25048
    • Mottillo, E.P.1    Bloch, A.E.2    Leff, T.3
  • 81
    • 80052454265 scopus 로고    scopus 로고
    • ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-Alpha and PGC-1
    • Haemmerle G, Moustafa T, Woelkart G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-Alpha and PGC-1. Nat Med 2011; 17:1076-1085.
    • (2011) Nat Med , vol.17 , pp. 1076-1085
    • Haemmerle, G.1    Moustafa, T.2    Woelkart, G.3
  • 82
    • 78751496304 scopus 로고    scopus 로고
    • Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning
    • Ong KT, Mashek MT, Bu SY, et al. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 2011; 53:116-126.
    • (2011) Hepatology , vol.53 , pp. 116-126
    • Ong, K.T.1    Mashek, M.T.2    Bu, S.Y.3
  • 83
    • 84899573610 scopus 로고    scopus 로고
    • Hepatic ATGL mediates PPARalpha signaling and fatty acid channeling through an L-FABP independent mechanism
    • Ong KT, Mashek MT, Davidson NO, et al. Hepatic ATGL mediates PPARalpha signaling and fatty acid channeling through an L-FABP independent mechanism. J Lipid Res 2014; 55:808-815.
    • (2014) J Lipid Res , vol.55 , pp. 808-815
    • Ong, K.T.1    Mashek, M.T.2    Davidson, N.O.3
  • 84
    • 84921921537 scopus 로고    scopus 로고
    • ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-Alpha signaling
    • Khan SA, Sathyanarayan A, Mashek MT, et al. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-Alpha signaling. Diabetes 2015; 64:418-426.
    • (2015) Diabetes , vol.64 , pp. 418-426
    • Khan, S.A.1    Sathyanarayan, A.2    Mashek, M.T.3
  • 85
    • 84889686585 scopus 로고    scopus 로고
    • Desnutrin/ATGL activates PPARdelta to promote mitochondrial function for insulin secretion in islet beta cells
    • Tang T, Abbott MJ, Ahmadian M, et al. Desnutrin/ATGL activates PPARdelta to promote mitochondrial function for insulin secretion in islet beta cells. Cell Metab 2013; 18:883-895.
    • (2013) Cell Metab , vol.18 , pp. 883-895
    • Tang, T.1    Abbott, M.J.2    Ahmadian, M.3
  • 86
    • 0037007014 scopus 로고    scopus 로고
    • FKBP12-rapamycin-Associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction
    • Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-Associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A 2002; 99:4319-4324.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 4319-4324
    • Desai, B.N.1    Myers, B.R.2    Schreiber, S.L.3
  • 87
    • 35448960851 scopus 로고    scopus 로고
    • Functions and dysfunctions of mitochondrial dynamics
    • Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 8:870-879.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 870-879
    • Detmer, S.A.1    Chan, D.C.2
  • 88
    • 84863011641 scopus 로고    scopus 로고
    • Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
    • Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 2012; 32:309-319.
    • (2012) Mol Cell Biol , vol.32 , pp. 309-319
    • Jheng, H.F.1    Tsai, P.J.2    Guo, S.M.3
  • 89
    • 79960729178 scopus 로고    scopus 로고
    • The regulation of mitochondrial morphology: Intricate mechanisms and dynamic machinery
    • Palmer CS, Osellame LD, Stojanovski D, et al. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 2011; 23:1534-1545.
    • (2011) Cell Signal , vol.23 , pp. 1534-1545
    • Palmer, C.S.1    Osellame, L.D.2    Stojanovski, D.3
  • 90
    • 33745274726 scopus 로고    scopus 로고
    • Mitochondria: Dynamic organelles in disease, aging, and development
    • Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006; 125:1241-1252.
    • (2006) Cell , vol.125 , pp. 1241-1252
    • Chan, D.C.1
  • 91
    • 77955287381 scopus 로고    scopus 로고
    • Physiological functions of mitochondrial fusion
    • Chen H, Chan DC. Physiological functions of mitochondrial fusion. Ann NY Acad Sci 2010; 1201:21-25.
    • (2010) Ann NY Acad Sci , vol.1201 , pp. 21-25
    • Chen, H.1    Chan, D.C.2
  • 92
    • 31644443192 scopus 로고    scopus 로고
    • Ceramides in insulin resistance and lipotoxicity
    • Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006; 45:42-72.
    • (2006) Prog Lipid Res , vol.45 , pp. 42-72
    • Summers, S.A.1
  • 93
    • 80053408094 scopus 로고    scopus 로고
    • Fatty acids, obesity, and insulin resistance: Time for a reevaluation
    • Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 2011; 60:2441-2449.
    • (2011) Diabetes , vol.60 , pp. 2441-2449
    • Karpe, F.1    Dickmann, J.R.2    Frayn, K.N.3
  • 94
    • 14244256097 scopus 로고    scopus 로고
    • Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
    • Khamzina L, Veilleux A, Bergeron S, et al. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 2005; 146:1473-1481.
    • (2005) Endocrinology , vol.146 , pp. 1473-1481
    • Khamzina, L.1    Veilleux, A.2    Bergeron, S.3
  • 95
    • 77954251401 scopus 로고    scopus 로고
    • Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes
    • Ost A, Svensson K, Ruishalme I, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-246.
    • (2010) Mol Med , vol.16 , pp. 235-246
    • Ost, A.1    Svensson, K.2    Ruishalme, I.3
  • 96
    • 0036217052 scopus 로고    scopus 로고
    • Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes
    • Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocrine reviews 2002; 23:201-229.
    • (2002) Endocrine Reviews , vol.23 , pp. 201-229
    • Lewis, G.F.1    Carpentier, A.2    Adeli, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.