-
1
-
-
79952104568
-
MTOR couples cellular nutrient sensing to organismal metabolic homeostasis
-
Howell JJ, Manning BD. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 2011; 22:94-102.
-
(2011)
Trends Endocrinol Metab
, vol.22
, pp. 94-102
-
-
Howell, J.J.1
Manning, B.D.2
-
2
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126:1713-1719.
-
(2013)
J Cell Sci
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
3
-
-
84894523716
-
Making new contacts: The mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15:155-162.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
4
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming DW, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335:1638-1643.
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
Ye, L.2
Katajisto, P.3
-
5
-
-
84910145403
-
Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids
-
Zheng X, Liang Y, He Q, et al. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Intl J Mol Sci 2014; 15:20753-20769.
-
(2014)
Intl J Mol Sci
, vol.15
, pp. 20753-20769
-
-
Zheng, X.1
Liang, Y.2
He, Q.3
-
6
-
-
84893477830
-
Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging
-
Oshiro N, Rapley J, Avruch J. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 2014; 289:2658-2674.
-
(2014)
J Biol Chem
, vol.289
, pp. 2658-2674
-
-
Oshiro, N.1
Rapley, J.2
Avruch, J.3
-
7
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
-
8
-
-
84880529632
-
Rheb and Rags come together at the lysosome to activate mTORC1
-
Groenewoud MJ, Zwartkruis FJ. Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans 2013; 41:951-955.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 951-955
-
-
Groenewoud, M.J.1
Zwartkruis, F.J.2
-
9
-
-
84885187437
-
A central role for mTOR in lipid homeostasis
-
Lamming DW, Sabatini DM. A central role for mTOR in lipid homeostasis. Cell Metab 2013; 18:465-469.
-
(2013)
Cell Metab
, vol.18
, pp. 465-469
-
-
Lamming, D.W.1
Sabatini, D.M.2
-
10
-
-
84882245596
-
Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTORC1 stability
-
Pajvani UB, Qiang L, Kangsamaksin T, et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTORC1 stability. Nat Med 2013; 19:1054-1060.
-
(2013)
Nat Med
, vol.19
, pp. 1054-1060
-
-
Pajvani, U.B.1
Qiang, L.2
Kangsamaksin, T.3
-
11
-
-
77951166692
-
The mTOR complex 1 suppresses lipolysis, stimulates lipogenesis and promotes fat storage
-
Chakrabarti P, English T, Shi J, et al. The mTOR complex 1 suppresses lipolysis, stimulates lipogenesis and promotes fat storage. Diabetes 2010; 59:775-781.
-
(2010)
Diabetes
, vol.59
, pp. 775-781
-
-
Chakrabarti, P.1
English, T.2
Shi, J.3
-
12
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-183.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
-
13
-
-
77649264504
-
Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
-
Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A 2010; 107:3441-3446.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 3441-3446
-
-
Li, S.1
Brown, M.S.2
Goldstein, J.L.3
-
14
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-Dependent cell growth
-
Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-Dependent cell growth. Cell Metab 2008; 8:224-236.
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
-
15
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-Dependent and independent pathways
-
Yecies JL, Zhang HH, Menon S, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-Dependent and independent pathways. Cell Metab 2011; 14:21-32.
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
Zhang, H.H.2
Menon, S.3
-
16
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146:408-420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
-
17
-
-
79953177846
-
Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
-
Kenerson HL, Yeh MM, Yeung RS. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS One 2011; 6:e18075.
-
(2011)
PLoS One
, vol.6
, pp. e18075
-
-
Kenerson, H.L.1
Yeh, M.M.2
Yeung, R.S.3
-
18
-
-
79955779584
-
MTOR links oncogenic signaling to tumor cell metabolism
-
Yecies JL, Manning BD. mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med (Berl) 2011; 89:221-228.
-
(2011)
J Mol Med (Berl)
, vol.89
, pp. 221-228
-
-
Yecies, J.L.1
Manning, B.D.2
-
19
-
-
84922374677
-
Livers with constitutive mTORC1 activity resist steatosis independent of feedback suppression of Akt
-
Kenerson HL, Subramanian S, McIntyre R, et al. Livers with constitutive mTORC1 activity resist steatosis independent of feedback suppression of Akt. PLoS One 2015; 10:e0117000.
-
(2015)
PLoS One
, vol.10
, pp. e0117000
-
-
Kenerson, H.L.1
Subramanian, S.2
McIntyre, R.3
-
20
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara A, Cornu M, Cybulski N, et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012; 15:725-738.
-
(2012)
Cell Metab
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
Cornu, M.2
Cybulski, N.3
-
22
-
-
10344262633
-
Identification cloning expression and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities
-
Jenkins CM, Mancuso DJ, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004; 279:48968-48975.
-
(2004)
J Biol Chem
, vol.279
, pp. 48968-48975
-
-
Jenkins, C.M.1
Mancuso, D.J.2
Yan, W.3
-
23
-
-
8744297386
-
Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: Ectopic expression of desnutrin increases triglyceride hydrolysis
-
Villena JA, Roy S, Sarkadi-Nagy E, et al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279:47066-47075.
-
(2004)
J Biol Chem
, vol.279
, pp. 47066-47075
-
-
Villena, J.A.1
Roy, S.2
Sarkadi-Nagy, E.3
-
24
-
-
8844226709
-
Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase
-
Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306:1383-1386.
-
(2004)
Science
, vol.306
, pp. 1383-1386
-
-
Zimmermann, R.1
Strauss, J.G.2
Haemmerle, G.3
-
25
-
-
84858020291
-
FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling
-
Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15:279-291.
-
(2012)
Cell Metab
, vol.15
, pp. 279-291
-
-
Zechner, R.1
Zimmermann, R.2
Eichmann, T.O.3
-
26
-
-
33646144117
-
ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells
-
Smirnova E, Goldberg EB, Makarova KS, et al. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 2006; 7:106-113.
-
(2006)
EMBO Rep
, vol.7
, pp. 106-113
-
-
Smirnova, E.1
Goldberg, E.B.2
Makarova, K.S.3
-
27
-
-
33646462136
-
Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase
-
Haemmerle G, Lass A, Zimmermann R, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312:734-737.
-
(2006)
Science
, vol.312
, pp. 734-737
-
-
Haemmerle, G.1
Lass, A.2
Zimmermann, R.3
-
28
-
-
67650522935
-
Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes
-
Bezaire V, Mairal A, Ribet C, et al. Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 2009; 284:18282-18291.
-
(2009)
J Biol Chem
, vol.284
, pp. 18282-18291
-
-
Bezaire, V.1
Mairal, A.2
Ribet, C.3
-
29
-
-
57349118544
-
Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes
-
Miyoshi H, Perfield JW 2nd, Obin MS, et al. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 2008; 105:1430-1436.
-
(2008)
J Cell Biochem
, vol.105
, pp. 1430-1436
-
-
Miyoshi, H.1
Perfield, J.W.2
Obin, M.S.3
-
30
-
-
33644764922
-
Adipose triglyceride lipase: Function, regulation by insulin, and comparison with adiponutrin
-
Kershaw EE, Hamm JK, Verhagen LA, et al. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006; 55:148-157.
-
(2006)
Diabetes
, vol.55
, pp. 148-157
-
-
Kershaw, E.E.1
Hamm, J.K.2
Verhagen, L.A.3
-
31
-
-
26944489689
-
Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
-
Gronke S, Mildner A, Fellert S, et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 2005; 1:323-330.
-
(2005)
Cell Metab
, vol.1
, pp. 323-330
-
-
Gronke, S.1
Mildner, A.2
Fellert, S.3
-
32
-
-
33644853354
-
Obese yeast: Triglyceride lipolysis is functionally conserved from mammals to yeast
-
Kurat CF, Natter K, Petschnigg J, et al. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 2006; 281:491-500.
-
(2006)
J Biol Chem
, vol.281
, pp. 491-500
-
-
Kurat, C.F.1
Natter, K.2
Petschnigg, J.3
-
33
-
-
84883548896
-
Insulin inhibits lipolysis in adipocytes via the evolutionary conserved mTORC1-Egr1-ATGL-mediated pathway
-
Chakrabarti P, Kim JY, Singh M, et al. Insulin inhibits lipolysis in adipocytes via the evolutionary conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol 2013; 33:3659-3666.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 3659-3666
-
-
Chakrabarti, P.1
Kim, J.Y.2
Singh, M.3
-
34
-
-
84940191593
-
4E-BPs control fat storage by regulating the expression of Egr1 and ATGL
-
Singh M, Shin YK, Yang X, et al. 4E-BPs control fat storage by regulating the expression of Egr1 and ATGL. J Biol Chem 2015; 290:17331-17338.
-
(2015)
J Biol Chem
, vol.290
, pp. 17331-17338
-
-
Singh, M.1
Shin, Y.K.2
Yang, X.3
-
35
-
-
80555135917
-
Regulation of primary response genes
-
Fowler T, Sen R, Roy AL. Regulation of primary response genes. Mol Cell 2011; 44:348-360.
-
(2011)
Mol Cell
, vol.44
, pp. 348-360
-
-
Fowler, T.1
Sen, R.2
Roy, A.L.3
-
36
-
-
80052868490
-
Early growth response 1-A transcription factor in the crossfire of signal transduction cascades
-
Pagel JI, Deindl E. Early growth response 1-A transcription factor in the crossfire of signal transduction cascades. Indian J Biochem Biophys 2011; 48:226-235.
-
(2011)
Indian J Biochem Biophys
, vol.48
, pp. 226-235
-
-
Pagel, J.I.1
Deindl, E.2
-
37
-
-
0036888651
-
Regulation of life and death by the zinc finger transcription factor Egr-1
-
Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 2002; 193:287-292.
-
(2002)
J Cell Physiol
, vol.193
, pp. 287-292
-
-
Thiel, G.1
Cibelli, G.2
-
38
-
-
77952943076
-
Egr-1-A Ca(2+)-regulated transcription factor
-
Thiel G, Mayer SI, Muller I, et al. Egr-1-A Ca(2+)-regulated transcription factor. Cell Calcium 2010; 47:397-403.
-
(2010)
Cell Calcium
, vol.47
, pp. 397-403
-
-
Thiel, G.1
Mayer, S.I.2
Muller, I.3
-
39
-
-
0034115421
-
Identification of two polymorphisms in the early growth response protein-1 gene: Possible association with lipid variables
-
Brand E, Herrmann SM, Nicaud V, et al. Identification of two polymorphisms in the early growth response protein-1 gene: possible association with lipid variables. J Mol Med (Berl) 2000; 78:81-86.
-
(2000)
J Mol Med (Berl)
, vol.78
, pp. 81-86
-
-
Brand, E.1
Herrmann, S.M.2
Nicaud, V.3
-
40
-
-
67349265144
-
The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation
-
Boyle KB, Hadaschik D, Virtue S, et al. The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ 2009; 16:782-789.
-
(2009)
Cell Death Differ
, vol.16
, pp. 782-789
-
-
Boyle, K.B.1
Hadaschik, D.2
Virtue, S.3
-
41
-
-
84862739891
-
Critical role of Egr transcription factors in regulating insulin biosynthesis, blood glucose homeostasis, and islet size
-
Muller I, Rossler OG, Wittig C, et al. Critical role of Egr transcription factors in regulating insulin biosynthesis, blood glucose homeostasis, and islet size. Endocrinology 2012; 153:3040-3053.
-
(2012)
Endocrinology
, vol.153
, pp. 3040-3053
-
-
Muller, I.1
Rossler, O.G.2
Wittig, C.3
-
42
-
-
79954595062
-
An early response transcription factor, egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism
-
Shen N, Yu X, Pan FY, et al. An early response transcription factor, egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism. J Biol Chem 2011; 286:14508-14515.
-
(2011)
J Biol Chem
, vol.286
, pp. 14508-14515
-
-
Shen, N.1
Yu, X.2
Pan, F.Y.3
-
43
-
-
80051931336
-
Early growth response 1 (egr1) regulates cholesterol biosynthetic gene expression
-
Gokey NG, Lopez-Anido C, Gillian-Daniel AL, et al. Early growth response 1 (egr1) regulates cholesterol biosynthetic gene expression. J Biol Chem 2011; 286:29501-29510.
-
(2011)
J Biol Chem
, vol.286
, pp. 29501-29510
-
-
Gokey, N.G.1
Lopez-Anido, C.2
Gillian-Daniel, A.L.3
-
44
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15:807-826.
-
(2001)
Genes Dev
, vol.15
, pp. 807-826
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
45
-
-
84901419238
-
Fat specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of Egr1 on transcription of adipose triglyceride lipase
-
Singh M, Kaur R, Lee MJ, et al. Fat specific protein 27 inhibits lipolysis by facilitating the inhibitory effect of Egr1 on transcription of adipose triglyceride lipase. J Biol Chem 2014; 289:14481-14487.
-
(2014)
J Biol Chem
, vol.289
, pp. 14481-14487
-
-
Singh, M.1
Kaur, R.2
Lee, M.J.3
-
46
-
-
33746564095
-
Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity
-
Luong N, Davies CR, Wessells RJ, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006; 4:133-142.
-
(2006)
Cell Metab
, vol.4
, pp. 133-142
-
-
Luong, N.1
Davies, C.R.2
Wessells, R.J.3
-
47
-
-
78049425280
-
High-fat-Diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila
-
Birse RT, Choi J, Reardon K, et al. High-fat-Diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 2010; 12:533-544.
-
(2010)
Cell Metab
, vol.12
, pp. 533-544
-
-
Birse, R.T.1
Choi, J.2
Reardon, K.3
-
48
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332:1317-1322.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
-
49
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332:1322-1326.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
-
50
-
-
0141960274
-
Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action
-
Deng Y, Bhattacharya S, Swamy OR, et al. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem 2003; 278:39311-39322.
-
(2003)
J Biol Chem
, vol.278
, pp. 39311-39322
-
-
Deng, Y.1
Bhattacharya, S.2
Swamy, O.R.3
-
51
-
-
84902257417
-
Grb10 promotes lipolysis and thermogenesis by phosphorylation-Dependent feedback inhibition of mTORC1
-
Liu M, Bai J, He S, et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-Dependent feedback inhibition of mTORC1. Cell Metab 2014; 19:967-980.
-
(2014)
Cell Metab
, vol.19
, pp. 967-980
-
-
Liu, M.1
Bai, J.2
He, S.3
-
52
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
-
53
-
-
84925324049
-
Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015; 32:678-692.
-
(2015)
Dev Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
55
-
-
77952893054
-
S6K1 plays a critical role in early adipocyte differentiation
-
Carnevalli LS, Masuda K, Frigerio F, et al. S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 2010; 18:763-774.
-
(2010)
Dev Cell
, vol.18
, pp. 763-774
-
-
Carnevalli, L.S.1
Masuda, K.2
Frigerio, F.3
-
56
-
-
54849431380
-
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
-
Polak P, Cybulski N, Feige JN, et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008; 8:399-410.
-
(2008)
Cell Metab
, vol.8
, pp. 399-410
-
-
Polak, P.1
Cybulski, N.2
Feige, J.N.3
-
57
-
-
67650523945
-
Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
-
Zhang HH, Huang J, Duvel K, et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 2009; 4:e6189.
-
(2009)
PLoS One
, vol.4
, pp. e6189
-
-
Zhang, H.H.1
Huang, J.2
Duvel, K.3
-
58
-
-
0028885873
-
Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells
-
Yeh WC, Bierer BE, McKnight SL. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci U S A 1995; 92:11086-11090.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 11086-11090
-
-
Yeh, W.C.1
Bierer, B.E.2
McKnight, S.L.3
-
59
-
-
7044234995
-
Regulation of peroxisome proliferator-Activated receptorgamma activity by mammalian target of rapamycin and amino acids in adipogenesis
-
Kim JE, Chen J. Regulation of peroxisome proliferator-Activated receptorgamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004; 53:2748-2756.
-
(2004)
Diabetes
, vol.53
, pp. 2748-2756
-
-
Kim, J.E.1
Chen, J.2
-
60
-
-
84880906852
-
Mechanistic target of rapamycin controls homeostasis of adipogenesis
-
Yoon MS, Zhang C, Sun Y, et al. Mechanistic target of rapamycin controls homeostasis of adipogenesis. J Lipid Res 2013; 54:2166-2173.
-
(2013)
J Lipid Res
, vol.54
, pp. 2166-2173
-
-
Yoon, M.S.1
Zhang, C.2
Sun, Y.3
-
61
-
-
4043082005
-
Regulation of adipocyte differentiation and insulin action with rapamycin
-
Cho HJ, Park J, Lee HW, et al. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 2004; 321:942-948.
-
(2004)
Biochem Biophys Res Commun
, vol.321
, pp. 942-948
-
-
Cho, H.J.1
Park, J.2
Lee, H.W.3
-
63
-
-
4544220704
-
Inhibition of insulin signaling and adipogenesis by rapamycin: Effect on phosphorylation of p70 s6 kinase vs eif4e-bp1
-
Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against ageand diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431:200-205.
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
Frigerio, F.2
Watanabe, M.3
-
65
-
-
42449097289
-
Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes
-
Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9:367-377.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 367-377
-
-
Guilherme, A.1
Virbasius, J.V.2
Puri, V.3
-
66
-
-
34248581989
-
Disordered lipid metabolism and the pathogenesis of insulin resistance
-
Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007; 87:507-520.
-
(2007)
Physiol Rev
, vol.87
, pp. 507-520
-
-
Savage, D.B.1
Petersen, K.F.2
Shulman, G.I.3
-
67
-
-
0031014830
-
Role of fatty acids in the pathogenesis of insulin resistance and NIDDM
-
Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997; 46:3-10.
-
(1997)
Diabetes
, vol.46
, pp. 3-10
-
-
Boden, G.1
-
70
-
-
34250773451
-
Mechanisms of obesity-Associated insulin resistance: Many choices on the menu
-
Qatanani M, Lazar MA. Mechanisms of obesity-Associated insulin resistance: many choices on the menu. Genes Dev 2007; 21:1443-1455.
-
(2007)
Genes Dev
, vol.21
, pp. 1443-1455
-
-
Qatanani, M.1
Lazar, M.A.2
-
71
-
-
0022388940
-
Ambient plasma free fatty acid concentrations in noninsulin-Dependent diabetes mellitus: Evidence for insulin resistance
-
Fraze E, Donner CC, Swislocki AL, et al. Ambient plasma free fatty acid concentrations in noninsulin-Dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 1985; 61:807-811.
-
(1985)
J Clin Endocrinol Metab
, vol.61
, pp. 807-811
-
-
Fraze, E.1
Donner, C.C.2
Swislocki, A.L.3
-
72
-
-
0033961009
-
Insulin regulation of plasma free fatty acid concentrations is abnormal in healthy subjects with muscle insulin resistance
-
Abbasi F, McLaughlin T, Lamendola C, et al. Insulin regulation of plasma free fatty acid concentrations is abnormal in healthy subjects with muscle insulin resistance. Metabolism 2000; 49:151-154.
-
(2000)
Metabolism
, vol.49
, pp. 151-154
-
-
Abbasi, F.1
McLaughlin, T.2
Lamendola, C.3
-
73
-
-
0024603016
-
Impaired insulin-mediated inhibition of lipolysis and glucose transport with aging
-
Reaven GM, Chang H, Hoffman BB. Impaired insulin-mediated inhibition of lipolysis and glucose transport with aging. Horm Metab Res 1989; 21:168-171.
-
(1989)
Horm Metab Res
, vol.21
, pp. 168-171
-
-
Reaven, G.M.1
Chang, H.2
Hoffman, B.B.3
-
74
-
-
84864293537
-
Role of intramyocelluar lipids in human health
-
Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 2012; 23:391-398.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 391-398
-
-
Coen, P.M.1
Goodpaster, B.H.2
-
75
-
-
76049099052
-
Direct control of mitochondrial function by mTOR
-
Ramanathan A, Schreiber SL. Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci U S A 2009; 106:22229-22232.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 22229-22232
-
-
Ramanathan, A.1
Schreiber, S.L.2
-
76
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
Schieke SM, Phillips D, McCoy JP Jr, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281:27643-27652.
-
(2006)
J Biol Chem
, vol.281
, pp. 27643-27652
-
-
Schieke, S.M.1
Phillips, D.2
McCoy, J.P.3
-
77
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450:736-740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
-
78
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, Romanino K, Cloetta D, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008; 8:411-424.
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloetta, D.3
-
79
-
-
84887415150
-
MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-Dependent translational regulation
-
Morita M, Gravel SP, Chenard V, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-Dependent translational regulation. Cell Metab 2013; 18:698-711.
-
(2013)
Cell Metab
, vol.18
, pp. 698-711
-
-
Morita, M.1
Gravel, S.P.2
Chenard, V.3
-
80
-
-
84864098852
-
Lipolytic products activate peroxisome proliferator-Activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply
-
Mottillo EP, Bloch AE, Leff T, et al. Lipolytic products activate peroxisome proliferator-Activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 2012; 287:25038-25048.
-
(2012)
J Biol Chem
, vol.287
, pp. 25038-25048
-
-
Mottillo, E.P.1
Bloch, A.E.2
Leff, T.3
-
81
-
-
80052454265
-
ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-Alpha and PGC-1
-
Haemmerle G, Moustafa T, Woelkart G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-Alpha and PGC-1. Nat Med 2011; 17:1076-1085.
-
(2011)
Nat Med
, vol.17
, pp. 1076-1085
-
-
Haemmerle, G.1
Moustafa, T.2
Woelkart, G.3
-
82
-
-
78751496304
-
Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning
-
Ong KT, Mashek MT, Bu SY, et al. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 2011; 53:116-126.
-
(2011)
Hepatology
, vol.53
, pp. 116-126
-
-
Ong, K.T.1
Mashek, M.T.2
Bu, S.Y.3
-
83
-
-
84899573610
-
Hepatic ATGL mediates PPARalpha signaling and fatty acid channeling through an L-FABP independent mechanism
-
Ong KT, Mashek MT, Davidson NO, et al. Hepatic ATGL mediates PPARalpha signaling and fatty acid channeling through an L-FABP independent mechanism. J Lipid Res 2014; 55:808-815.
-
(2014)
J Lipid Res
, vol.55
, pp. 808-815
-
-
Ong, K.T.1
Mashek, M.T.2
Davidson, N.O.3
-
84
-
-
84921921537
-
ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-Alpha signaling
-
Khan SA, Sathyanarayan A, Mashek MT, et al. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-Alpha signaling. Diabetes 2015; 64:418-426.
-
(2015)
Diabetes
, vol.64
, pp. 418-426
-
-
Khan, S.A.1
Sathyanarayan, A.2
Mashek, M.T.3
-
85
-
-
84889686585
-
Desnutrin/ATGL activates PPARdelta to promote mitochondrial function for insulin secretion in islet beta cells
-
Tang T, Abbott MJ, Ahmadian M, et al. Desnutrin/ATGL activates PPARdelta to promote mitochondrial function for insulin secretion in islet beta cells. Cell Metab 2013; 18:883-895.
-
(2013)
Cell Metab
, vol.18
, pp. 883-895
-
-
Tang, T.1
Abbott, M.J.2
Ahmadian, M.3
-
86
-
-
0037007014
-
FKBP12-rapamycin-Associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction
-
Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-Associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A 2002; 99:4319-4324.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 4319-4324
-
-
Desai, B.N.1
Myers, B.R.2
Schreiber, S.L.3
-
87
-
-
35448960851
-
Functions and dysfunctions of mitochondrial dynamics
-
Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 8:870-879.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 870-879
-
-
Detmer, S.A.1
Chan, D.C.2
-
88
-
-
84863011641
-
Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
-
Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 2012; 32:309-319.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 309-319
-
-
Jheng, H.F.1
Tsai, P.J.2
Guo, S.M.3
-
89
-
-
79960729178
-
The regulation of mitochondrial morphology: Intricate mechanisms and dynamic machinery
-
Palmer CS, Osellame LD, Stojanovski D, et al. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 2011; 23:1534-1545.
-
(2011)
Cell Signal
, vol.23
, pp. 1534-1545
-
-
Palmer, C.S.1
Osellame, L.D.2
Stojanovski, D.3
-
90
-
-
33745274726
-
Mitochondria: Dynamic organelles in disease, aging, and development
-
Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006; 125:1241-1252.
-
(2006)
Cell
, vol.125
, pp. 1241-1252
-
-
Chan, D.C.1
-
91
-
-
77955287381
-
Physiological functions of mitochondrial fusion
-
Chen H, Chan DC. Physiological functions of mitochondrial fusion. Ann NY Acad Sci 2010; 1201:21-25.
-
(2010)
Ann NY Acad Sci
, vol.1201
, pp. 21-25
-
-
Chen, H.1
Chan, D.C.2
-
92
-
-
31644443192
-
Ceramides in insulin resistance and lipotoxicity
-
Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006; 45:42-72.
-
(2006)
Prog Lipid Res
, vol.45
, pp. 42-72
-
-
Summers, S.A.1
-
93
-
-
80053408094
-
Fatty acids, obesity, and insulin resistance: Time for a reevaluation
-
Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 2011; 60:2441-2449.
-
(2011)
Diabetes
, vol.60
, pp. 2441-2449
-
-
Karpe, F.1
Dickmann, J.R.2
Frayn, K.N.3
-
94
-
-
14244256097
-
Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
-
Khamzina L, Veilleux A, Bergeron S, et al. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 2005; 146:1473-1481.
-
(2005)
Endocrinology
, vol.146
, pp. 1473-1481
-
-
Khamzina, L.1
Veilleux, A.2
Bergeron, S.3
-
95
-
-
77954251401
-
Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes
-
Ost A, Svensson K, Ruishalme I, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16:235-246.
-
(2010)
Mol Med
, vol.16
, pp. 235-246
-
-
Ost, A.1
Svensson, K.2
Ruishalme, I.3
-
96
-
-
0036217052
-
Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes
-
Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocrine reviews 2002; 23:201-229.
-
(2002)
Endocrine Reviews
, vol.23
, pp. 201-229
-
-
Lewis, G.F.1
Carpentier, A.2
Adeli, K.3
|