-
1
-
-
77349087078
-
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity
-
Yoshizaki T, Schenk S, Imamura T, et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 2010;298:E419-E428
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E419-E428
-
-
Yoshizaki, T.1
Schenk, S.2
Imamura, T.3
-
2
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
Wang R-H, Kim H-S, Xiao C, Xu X, Gavrilova O, Deng C-X. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011;121:4477-4490
-
(2011)
J Clin Invest
, vol.121
, pp. 4477-4490
-
-
Wang, R.-H.1
Kim, H.-S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.-X.6
-
3
-
-
77956677458
-
Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress
-
Schug TT, Xu Q, Gao H, et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol 2010;30:4712-4721
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4712-4721
-
-
Schug, T.T.1
Xu, Q.2
Gao, H.3
-
4
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks AS, Kon N, Knight C, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008;8:333-341
-
(2008)
Cell Metab
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
-
5
-
-
79955661493
-
Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
-
Li Y, Xu S, Giles A, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 2011;25:1664-1679
-
(2011)
FASEB J
, vol.25
, pp. 1664-1679
-
-
Li, Y.1
Xu, S.2
Giles, A.3
-
6
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570-2580
-
(1999)
Genes Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
7
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390-392
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
Miller, C.2
Bitterman, K.J.3
-
8
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004;101:15998-16003
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
9
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G, Seifert EL, Bevilacqua L, et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008;3:e1759.
-
(2008)
PLoS One
, vol.3
, pp. e1759
-
-
Boily, G.1
Seifert, E.L.2
Bevilacqua, L.3
-
10
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim E-J, Kho J-H, Kang M-R, Um S-J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;28:277-290
-
(2007)
Mol Cell
, vol.28
, pp. 277-290
-
-
Kim, E.-J.1
Kho, J.-H.2
Kang, M.-R.3
Um, S.-J.4
-
11
-
-
38749088678
-
DBC1 is a negative regulator of SIRT1
-
Kim J-E, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature 2008;451:583-586
-
(2008)
Nature
, vol.451
, pp. 583-586
-
-
Kim, J.-E.1
Chen, J.2
Lou, Z.3
-
12
-
-
38749132992
-
Negative regulation of the deacetylase SIRT1 by DBC1
-
Zhao W, Kruse J-P, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008;451:587-590
-
(2008)
Nature
, vol.451
, pp. 587-590
-
-
Zhao, W.1
Kruse, J.-P.2
Tang, Y.3
Jung, S.Y.4
Qin, J.5
Gu, W.6
-
13
-
-
84255198350
-
The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD (+)
-
Gerhart-Hines Z, Dominy JE Jr, Blättler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD (+). Mol Cell 2011;44:851-863
-
(2011)
Mol Cell
, vol.44
, pp. 851-863
-
-
Gerhart-Hines, Z.1
Dominy, J.E.2
Blättler, S.M.3
-
14
-
-
84874228973
-
The ways and means that fine tune Sirt1 activity
-
Revollo JR, Li X. The ways and means that fine tune Sirt1 activity. Trends Biochem Sci 2013;38:160-167
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 160-167
-
-
Revollo, J.R.1
Li, X.2
-
15
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-α and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-α and SIRT1. Nature 2005;434:113-118
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
16
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000;20:1868-1876
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
17
-
-
0032699670
-
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
-
Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999;103:1489-1498
-
(1999)
J Clin Invest
, vol.103
, pp. 1489-1498
-
-
Kersten, S.1
Seydoux, J.2
Peters, J.M.3
Gonzalez, F.J.4
Desvergne, B.5
Wahli, W.6
-
18
-
-
63449112017
-
Hepatocytespecific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocytespecific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9:327-338
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
19
-
-
78751496304
-
Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning
-
Ong KT, Mashek MT, Bu SY, Greenberg AS, Mashek DG. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 2011;53:116-126
-
(2011)
Hepatology
, vol.53
, pp. 116-126
-
-
Ong, K.T.1
Mashek, M.T.2
Bu, S.Y.3
Greenberg, A.S.4
Mashek, D.G.5
-
20
-
-
84872475275
-
Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARa signaling
-
Obrowsky S, Chandak PG, Patankar JV, et al. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARa signaling. J Lipid Res 2013;54:425-435
-
(2013)
J Lipid Res
, vol.54
, pp. 425-435
-
-
Obrowsky, S.1
Chandak, P.G.2
Patankar, J.V.3
-
21
-
-
80052454265
-
ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR- A and PGC-1
-
Haemmerle G, Moustafa T, Woelkart G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR- A and PGC-1. Nat Med 2011;17:1076-1085
-
(2011)
Nat Med
, vol.17
, pp. 1076-1085
-
-
Haemmerle, G.1
Moustafa, T.2
Woelkart, G.3
-
22
-
-
79958047295
-
Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype
-
Ahmadian M, Abbott MJ, Tang T, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 2011;13:739-748
-
(2011)
Cell Metab
, vol.13
, pp. 739-748
-
-
Ahmadian, M.1
Abbott, M.J.2
Tang, T.3
-
23
-
-
0030952937
-
Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors a and d
-
Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors a and d. Proc Natl Acad Sci U S A 1997;94:4312-4317
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 4312-4317
-
-
Forman, B.M.1
Chen, J.2
Evans, R.M.3
-
24
-
-
0028321529
-
Differential expression and activation of a family of murine peroxisome proliferator-activated receptors
-
Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994;91:7355-7359
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 7355-7359
-
-
Kliewer, S.A.1
Forman, B.M.2
Blumberg, B.3
-
25
-
-
84899573610
-
Hepatic ATGL mediates PPAR- A signaling and fatty acid channeling through an L-FABP independent mechanism
-
Ong KT, Mashek MT, Davidson NO, Mashek DG. Hepatic ATGL mediates PPAR- A signaling and fatty acid channeling through an L-FABP independent mechanism. J Lipid Res 2014;55:808-815
-
(2014)
J Lipid Res
, vol.55
, pp. 808-815
-
-
Ong, K.T.1
Mashek, M.T.2
Davidson, N.O.3
Mashek, D.G.4
-
26
-
-
33847714769
-
Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes
-
Miyoshi H, Perfield JW 2nd, Souza SC, et al. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem 2007;282:996-1002
-
(2007)
J Biol Chem
, vol.282
, pp. 996-1002
-
-
Miyoshi, H.1
Perfield, J.W.2
Souza, S.C.3
-
27
-
-
57349118544
-
Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes
-
Miyoshi H, Perfield JW 2nd, Obin MS, Greenberg AS. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 2008;105:1430-1436
-
(2008)
J Cell Biochem
, vol.105
, pp. 1430-1436
-
-
Miyoshi, H.1
Perfield, J.W.2
Obin, M.S.3
Greenberg, A.S.4
-
28
-
-
71049158067
-
Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity
-
Bu SY, Mashek MT, Mashek DG. Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J Biol Chem 2009;284:30474-30483
-
(2009)
J Biol Chem
, vol.284
, pp. 30474-30483
-
-
Bu, S.Y.1
Mashek, M.T.2
Mashek, D.G.3
-
29
-
-
84856092782
-
Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice
-
Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet 2012;21:526-535
-
(2012)
Hum Mol Genet
, vol.21
, pp. 526-535
-
-
Yatsuga, S.1
Suomalainen, A.2
-
30
-
-
34547125141
-
Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue
-
Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol 2007;293:G1-G4
-
(2007)
Am J Physiol Gastrointest Liver Physiol
, vol.293
, pp. G1-G4
-
-
Jaworski, K.1
Sarkadi-Nagy, E.2
Duncan, R.E.3
Ahmadian, M.4
Sul, H.S.5
-
31
-
-
84863622561
-
Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase
-
Nin V, Escande C, Chini CC, et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J Biol Chem 2012;287:23489-23501
-
(2012)
J Biol Chem
, vol.287
, pp. 23489-23501
-
-
Nin, V.1
Escande, C.2
Chini, C.C.3
-
32
-
-
0035859836
-
Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor
-
Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci U S A 2001;98:9713-9718
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 9713-9718
-
-
Knutti, D.1
Kressler, D.2
Kralli, A.3
-
33
-
-
45649083309
-
Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting
-
Palou M, Priego T, Sánchez J, et al. Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflugers Arch 2008;456:825-836
-
(2008)
Pflugers Arch
, vol.456
, pp. 825-836
-
-
Palou, M.1
Priego, T.2
Sánchez, J.3
-
34
-
-
84880653289
-
The protein level of PGC-1a, a key metabolic regulator, is controlled by NADH-NQO1
-
Adamovich Y, Shlomai A, Tsvetkov P, et al. The protein level of PGC-1a, a key metabolic regulator, is controlled by NADH-NQO1. Mol Cell Biol 2013;33:2603-2613
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2603-2613
-
-
Adamovich, Y.1
Shlomai, A.2
Tsvetkov, P.3
-
35
-
-
69449087522
-
Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity
-
Sapiro JM, Mashek MT, Greenberg AS, Mashek DG. Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity. J Lipid Res 2009;50:1621-1629
-
(2009)
J Lipid Res
, vol.50
, pp. 1621-1629
-
-
Sapiro, J.M.1
Mashek, M.T.2
Greenberg, A.S.3
Mashek, D.G.4
-
36
-
-
84864098852
-
Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) a and d in brown adipocytes to match fatty acid oxidation with supply
-
Mottillo EP, Bloch AE, Leff T, Granneman JG. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) a and d in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 2012;287:25038-25048
-
(2012)
J Biol Chem
, vol.287
, pp. 25038-25048
-
-
Mottillo, E.P.1
Bloch, A.E.2
Leff, T.3
Granneman, J.G.4
-
37
-
-
80054057662
-
Mammalian triacylglycerol metabolism: Synthesis, lipolysis, and signaling
-
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011;111:6359-6386
-
(2011)
Chem Rev
, vol.111
, pp. 6359-6386
-
-
Coleman, R.A.1
Mashek, D.G.2
-
38
-
-
79957889560
-
The role of lipid droplets in metabolic disease in rodents and humans
-
Greenberg AS, Coleman RA, Kraemer FB, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 2011;121:2102-2110
-
(2011)
J Clin Invest
, vol.121
, pp. 2102-2110
-
-
Greenberg, A.S.1
Coleman, R.A.2
Kraemer, F.B.3
-
39
-
-
79959601726
-
Intracellular fatty acids suppress b-adrenergic induction of PKA-targeted gene expression in white adipocytes
-
Mottillo EP, Granneman JG. Intracellular fatty acids suppress b-adrenergic induction of PKA-targeted gene expression in white adipocytes. Am J Physiol Endocrinol Metab 2011;301:E122-E131
-
(2011)
Am J Physiol Endocrinol Metab
, vol.301
, pp. E122-E131
-
-
Mottillo, E.P.1
Granneman, J.G.2
-
40
-
-
33646778517
-
Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome
-
Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 2006;53:482-491
-
(2006)
Pharmacol Res
, vol.53
, pp. 482-491
-
-
Langin, D.1
-
41
-
-
64649096897
-
Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity
-
Ahmadian M, Duncan RE, Varady KA, et al. Adipose overexpression of desnutrin promotes fatty acid use and attenuates diet-induced obesity. Diabetes 2009;58:855-866
-
(2009)
Diabetes
, vol.58
, pp. 855-866
-
-
Ahmadian, M.1
Duncan, R.E.2
Varady, K.A.3
-
42
-
-
79953787445
-
Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice
-
Turpin SM, Hoy AJ, Brown RD, et al. Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia 2011;54:146-156
-
(2011)
Diabetologia
, vol.54
, pp. 146-156
-
-
Turpin, S.M.1
Hoy, A.J.2
Brown, R.D.3
-
43
-
-
84876557451
-
Myocardial adipose triglyceride lipase overexpression protects diabetic mice from the development of lipotoxic cardiomyopathy
-
Pulinilkunnil T, Kienesberger PC, Nagendran J, et al. Myocardial adipose triglyceride lipase overexpression protects diabetic mice from the development of lipotoxic cardiomyopathy. Diabetes 2013;62:1464-1477
-
(2013)
Diabetes
, vol.62
, pp. 1464-1477
-
-
Pulinilkunnil, T.1
Kienesberger, P.C.2
Nagendran, J.3
-
44
-
-
84888130465
-
Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity
-
Sitnick MT, Basantani MK, Cai L, et al. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabetes 2013;62:3350-3361
-
(2013)
Diabetes
, vol.62
, pp. 3350-3361
-
-
Sitnick, M.T.1
Basantani, M.K.2
Cai, L.3
-
45
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan?
-
Baur JA, Ungvari Z, Minor RK, Le Couteur DG, De Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012;11:443-461
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
Le Couteur, D.G.4
De Cabo, R.5
-
46
-
-
26944489689
-
Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila
-
Grönke S, Mildner A, Fellert S, et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 2005;1:323-330
-
(2005)
Cell Metab
, vol.1
, pp. 323-330
-
-
Grönke, S.1
Mildner, A.2
Fellert, S.3
-
47
-
-
55849101681
-
Fat metabolism links germline stem cells and longevity in C. Elegans
-
Wang MC, O'Rourke EJ, Ruvkun G. Fat metabolism links germline stem cells and longevity in C. Elegans. Science 2008;322:957-960
-
(2008)
Science
, vol.322
, pp. 957-960
-
-
Wang, M.C.1
O'Rourke, E.J.2
Ruvkun, G.3
-
48
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C. Elegans
-
Lapierre LR, Gelino S, Meléndez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. Elegans. Curr Biol 2011;21:1507-1514
-
(2011)
Curr Biol
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
Gelino, S.2
Meléndez, A.3
Hansen, M.4
|