-
1
-
-
84905405893
-
Getting ready for building: Signaling and autophagosome biogenesis
-
[CrossRef] [PubMed]
-
Abada, A.; Elazar, Z. Getting ready for building: Signaling and autophagosome biogenesis. EMBO Rep. 2014, 15, 839-852. [CrossRef] [PubMed]
-
(2014)
EMBO Rep
, vol.15
, pp. 839-852
-
-
Abada, A.1
Elazar, Z.2
-
2
-
-
84923562561
-
Metabolic control of autophagy
-
[CrossRef] [PubMed]
-
Galluzzi, L.; Pietrocola, F.; Levine, B.; Kroemer, G. Metabolic control of autophagy. Cell 2014, 159, 1263-1276. [CrossRef] [PubMed]
-
(2014)
Cell
, vol.159
, pp. 1263-1276
-
-
Galluzzi, L.1
Pietrocola, F.2
Levine, B.3
Kroemer, G.4
-
3
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
[CrossRef] [PubMed]
-
Nakatogawa, H.; Suzuki, K.; Kamada, Y.; Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009, 10, 458-467. [CrossRef] [PubMed]
-
(2009)
Nat. Rev. Mol Cell Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
4
-
-
77956404377
-
Eaten alive: A history of macroautophagy
-
[CrossRef] [PubMed]
-
Yang, Z.; Klionsky, D.J. Eaten alive: A history of macroautophagy. Nat. Cell Biol. 2010, 12, 814-822. [CrossRef] [PubMed]
-
(2010)
Nat Cell Biol
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
5
-
-
84922789990
-
Nutrient-sensing mechanisms and pathways
-
[CrossRef] [PubMed]
-
Efeyan, A.; Comb, W.C.; Sabatini, D.M. Nutrient-sensing mechanisms and pathways. Nature 2015, 517, 302-310. [CrossRef] [PubMed]
-
(2015)
Nature
, vol.517
, pp. 302-310
-
-
Efeyan, A.1
Comb, W.C.2
Sabatini, D.M.3
-
6
-
-
0017697151
-
Induction of autophagy by amino-acid deprivation in perfused rat liver
-
[CrossRef] [PubMed]
-
Mortimore, G.E.; Schworer, C.M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 1977, 270, 174-176. [CrossRef] [PubMed]
-
(1977)
Nature
, vol.270
, pp. 174-176
-
-
Mortimore, G.E.1
Schworer, C.M.2
-
7
-
-
84880893068
-
Autophagy in stem cells
-
[CrossRef] [PubMed]
-
Guan, J.L.; Simon, A.K.; Prescott, M.; Menendez, J.A.; Liu, F.; Wang, F.; Wang, C.; Wolvetang, E.; Vazquez-Martin, A.; Zhang, J. Autophagy in stem cells. Autophagy 2013, 9, 830-849. [CrossRef] [PubMed]
-
(2013)
Autophagy
, vol.9
, pp. 830-849
-
-
Guan, J.L.1
Simon, A.K.2
Prescott, M.3
Menendez, J.A.4
Liu, F.5
Wang, F.6
Wang, C.7
Wolvetang, E.8
Vazquez-Martin, A.9
Zhang, J.10
-
8
-
-
81055144784
-
Autophagy: Renovation of Cells and Tissues
-
[CrossRef] [PubMed]
-
Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728-741. [CrossRef] [PubMed]
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
9
-
-
84892875805
-
At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy
-
[CrossRef] [PubMed]
-
Shen, H.M.; Mizushima, N. At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 2014, 39, 61-71. [CrossRef] [PubMed]
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 61-71
-
-
Shen, H.M.1
Mizushima, N.2
-
10
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
[CrossRef] [PubMed]
-
Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H.; et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441, 885-889. [CrossRef] [PubMed]
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
-
11
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
[CrossRef] [PubMed]
-
Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E.; et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441, 880-884. [CrossRef] [PubMed]
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
-
12
-
-
78649338141
-
Autophagy and the integrated stress response
-
[CrossRef] [PubMed]
-
Kroemer, G.; Marino, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell 2010, 40, 280-293. [CrossRef] [PubMed]
-
(2010)
Mol Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
13
-
-
84877965001
-
Regulation of mTORC1 and its impact on gene expression at a glance
-
[CrossRef] [PubMed]
-
Laplante, M.; Sabatini, D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126, 1713-1719. [CrossRef] [PubMed]
-
(2013)
J Cell Sci
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
14
-
-
84901913999
-
Recent progress in the study of the Rheb family GTPases
-
[CrossRef] [PubMed]
-
Heard, J.J.; Fong, V.; Bathaie, S.Z.; Tamanoi, F. Recent progress in the study of the Rheb family GTPases. Cell Signal. 2014, 26, 1950-1957. [CrossRef] [PubMed]
-
(2014)
Cell Signal
, vol.26
, pp. 1950-1957
-
-
Heard, J.J.1
Fong, V.2
Bathaie, S.Z.3
Tamanoi, F.4
-
15
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
[CrossRef] [PubMed]
-
Dibble, C.C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J.M.; Finan, P.M.; Kwiatkowski, D.J.; Murphy, L.O.; Manning, B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47, 535-546. [CrossRef] [PubMed]
-
(2012)
Mol Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
Asara, J.M.6
Finan, P.M.7
Kwiatkowski, D.J.8
Murphy, L.O.9
Manning, B.D.10
-
16
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
[CrossRef] [PubMed]
-
Hara, T.; Takamura, A.; Kishi, C.; Iemura, S.; Natsume, T.; Guan, J.L.; Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008, 181, 497-510. [CrossRef] [PubMed]
-
(2008)
J Cell Biol
, vol.181
, pp. 497-510
-
-
Hara, T.1
Takamura, A.2
Kishi, C.3
Iemura, S.4
Natsume, T.5
Guan, J.L.6
Mizushima, N.7
-
17
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
[CrossRef] [PubMed]
-
Hosokawa, N.; Hara, T.; Kaizuka, T.; Kishi, C.; Takamura, A.; Miura, Y.; Iemura, S.; Natsume, T.; Takehana, K.; Yamada, N.; et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20, 1981-1991. [CrossRef] [PubMed]
-
(2009)
Mol. Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
18
-
-
84912528393
-
mTOR and autophagy: A dynamic relationship governed by nutrients and energy
-
[CrossRef] [PubMed]
-
Dunlop, E.A.; Tee, A.R. mTOR and autophagy: A dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 2014, 36, 121-129. [CrossRef] [PubMed]
-
(2014)
Semin. Cell Dev Biol
, vol.36
, pp. 121-129
-
-
Dunlop, E.A.1
Tee, A.R.2
-
19
-
-
66449083078
-
ULK1•ATG13• FIP200 complex mediates mTOR signaling and is essential for autophagy
-
[CrossRef] [PubMed]
-
Ganley, I.G.; Lam, D.H.;Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1•ATG13• FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284, 12297-12305. [CrossRef] [PubMed]
-
(2009)
J. Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
20
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
[CrossRef] [PubMed]
-
Jung, C.H.; Jun, C.B.; Ro, S.H.; Kim, Y.M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20, 1992-2003. [CrossRef] [PubMed]
-
(2009)
Mol. Biol Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
21
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
[CrossRef] [PubMed]
-
Itakura, E.; Kishi, C.; Inoue, K.; Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 2008, 19, 5360-5372. [CrossRef] [PubMed]
-
(2008)
Mol. Biol Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
22
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
[CrossRef] [PubMed]
-
Russell, R.C.; Tian, Y.; Yuan, H.; Park, H.W.; Chang, Y.Y.; Kim, J.; Kim, H.; Neufeld, T.P.; Dillin, A.; Guan, K.L. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15, 741-750. [CrossRef] [PubMed]
-
(2013)
Nat Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
23
-
-
84904575441
-
WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
-
[CrossRef] [PubMed]
-
Dooley, H.C.; Razi, M.; Polson, H.E.; Girardin, S.E.; Wilson, M.I.; Tooze, S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 2014, 55, 238-252. [CrossRef] [PubMed]
-
(2014)
Mol Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
24
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
[CrossRef] [PubMed]
-
Itakura, E.; Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010, 6, 764-776. [CrossRef] [PubMed]
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
25
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
[CrossRef] [PubMed]
-
Polson, H.E.; de Lartigue, J.; Rigden, D.J.; Reedijk, M.; Urbe, S.; Clague, M.J.; Tooze, S.A. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010, 6, 506-522. [CrossRef] [PubMed]
-
(2010)
Autophagy
, vol.6
, pp. 506-522
-
-
Polson, H.E.1
de Lartigue, J.2
Rigden, D.J.3
Reedijk, M.4
Urbe, S.5
Clague, M.J.6
Tooze, S.A.7
-
26
-
-
34447276502
-
Human WIPI-1 punctaformation: A novel assay to assess mammalian autophagy
-
[CrossRef] [PubMed]
-
Proikas-Cezanne, T.; Ruckerbauer, S.; Stierhof, Y.D.; Berg, C.; Nordheim, A. Human WIPI-1 punctaformation: A novel assay to assess mammalian autophagy. FEBS Lett. 2007, 581, 3396-3404. [CrossRef] [PubMed]
-
(2007)
FEBS Lett
, vol.581
, pp. 3396-3404
-
-
Proikas-Cezanne, T.1
Ruckerbauer, S.2
Stierhof, Y.D.3
Berg, C.4
Nordheim, A.5
-
27
-
-
84873569898
-
Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy
-
[CrossRef] [PubMed]
-
Gammoh, N.; Florey, O.; Overholtzer, M.; Jiang, X. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat. Struct. Mol. Biol. 2013, 20, 144-149. [CrossRef] [PubMed]
-
(2013)
Nat. Struct. Mol Biol
, vol.20
, pp. 144-149
-
-
Gammoh, N.1
Florey, O.2
Overholtzer, M.3
Jiang, X.4
-
28
-
-
84874646724
-
FIP200 regulates targeting of Atg16L1 to the isolation membrane
-
[CrossRef] [PubMed]
-
Nishimura, T.; Kaizuka, T.; Cadwell, K.; Sahani, M.H.; Saitoh, T.; Akira, S.; Virgin, H.W.; Mizushima, N. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep. 2013, 14, 284-291. [CrossRef] [PubMed]
-
(2013)
EMBO Rep
, vol.14
, pp. 284-291
-
-
Nishimura, T.1
Kaizuka, T.2
Cadwell, K.3
Sahani, M.H.4
Saitoh, T.5
Akira, S.6
Virgin, H.W.7
Mizushima, N.8
-
29
-
-
43949143804
-
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
[CrossRef] [PubMed]
-
Fujita, N.; Itoh, T.; Omori, H.; Fukuda, M.; Noda, T.; Yoshimori, T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 2008, 19, 2092-2100. [CrossRef] [PubMed]
-
(2008)
Mol. Biol Cell
, vol.19
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
30
-
-
84891461247
-
The LC3 interactome at a glance
-
[CrossRef] [PubMed]
-
Wild, P.; McEwan, D.G.; Dikic, I. The LC3 interactome at a glance. J. Cell Sci. 2014, 127, 3-9. [CrossRef] [PubMed]
-
(2014)
J Cell Sci
, vol.127
, pp. 3-9
-
-
Wild, P.1
McEwan, D.G.2
Dikic, I.3
-
31
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
[CrossRef] [PubMed]
-
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19, 5720-5728. [CrossRef] [PubMed]
-
(2000)
EMBO J
, vol.19
, pp. 5720-5728
-
-
Kabeya, Y.1
Mizushima, N.2
Ueno, T.3
Yamamoto, A.4
Kirisako, T.5
Noda, T.6
Kominami, E.7
Ohsumi, Y.8
Yoshimori, T.9
-
32
-
-
3242888703
-
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
-
[CrossRef] [PubMed]
-
Kabeya, Y.; Mizushima, N.; Yamamoto, A.; Oshitani-Okamoto, S.; Ohsumi, Y.; Yoshimori, T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 2004, 117, 2805-2812. [CrossRef] [PubMed]
-
(2004)
J Cell Sci
, vol.117
, pp. 2805-2812
-
-
Kabeya, Y.1
Mizushima, N.2
Yamamoto, A.3
Oshitani-Okamoto, S.4
Ohsumi, Y.5
Yoshimori, T.6
-
33
-
-
0037449938
-
GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3
-
[CrossRef]
-
Tanida, I.; Komatsu, M.; Ueno, T.; Kominami, E. GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem. Biophys. Res. Commun. 2003, 300, 637-644. [CrossRef]
-
(2003)
Biochem. Biophys. Res Commun
, vol.300
, pp. 637-644
-
-
Tanida, I.1
Komatsu, M.2
Ueno, T.3
Kominami, E.4
-
34
-
-
0035874881
-
Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein
-
[CrossRef] [PubMed]
-
Xin, Y.; Yu, L.; Chen, Z.; Zheng, L.; Fu, Q.; Jiang, J.; Zhang, P.; Gong, R.; Zhao, S. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 2001, 74, 408-413. [CrossRef] [PubMed]
-
(2001)
Genomics
, vol.74
, pp. 408-413
-
-
Xin, Y.1
Yu, L.2
Chen, Z.3
Zheng, L.4
Fu, Q.5
Jiang, J.6
Zhang, P.7
Gong, R.8
Zhao, S.9
-
35
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
[CrossRef] [PubMed]
-
Axe, E.L.; Walker, S.A.; Manifava, M.; Chandra, P.; Roderick, H.L.; Habermann, A.; Griffiths, G.; Ktistakis, N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182, 685-701. [CrossRef] [PubMed]
-
(2008)
J Cell Biol
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
36
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
[CrossRef] [PubMed]
-
Hayashi-Nishino, M.; Fujita, N.; Noda, T.; Yamaguchi, A.; Yoshimori, T.; Yamamoto, A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009, 11, 1433-1437. [CrossRef] [PubMed]
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
37
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
[CrossRef] [PubMed]
-
Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141, 656-667. [CrossRef] [PubMed]
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
38
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
[CrossRef] [PubMed]
-
Ravikumar, B.; Moreau, K.; Jahreiss, L.; Puri, C.; Rubinsztein, D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 2010, 12, 747-757. [CrossRef] [PubMed]
-
(2010)
Nat Cell Biol
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
39
-
-
84855645313
-
Mechanisms of autophagosome biogenesis
-
[CrossRef] [PubMed]
-
Rubinsztein, D.C.; Shpilka, T.; Elazar, Z. Mechanisms of autophagosome biogenesis. Curr. Biol. 2012, 22, 29-34. [CrossRef] [PubMed]
-
(2012)
Curr Biol
, vol.22
, pp. 29-34
-
-
Rubinsztein, D.C.1
Shpilka, T.2
Elazar, Z.3
-
40
-
-
84884220705
-
Diverse autophagosome membrane sources coalesce in recycling endosomes
-
[CrossRef] [PubMed]
-
Puri, C.; Renna, M.; Bento, C.F.; Moreau, K.; Rubinsztein, D.C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 2013, 154, 1285-1299. [CrossRef] [PubMed]
-
(2013)
Cell
, vol.154
, pp. 1285-1299
-
-
Puri, C.1
Renna, M.2
Bento, C.F.3
Moreau, K.4
Rubinsztein, D.C.5
-
41
-
-
84900843110
-
Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)
-
[CrossRef] [PubMed]
-
Duke, E.M.; Razi, M.; Weston, A.; Guttmann, P.; Werner, S.; Henzler, K.; Schneider, G.; Tooze, S.A.; Collinson, L.M. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 2014, 143, 77-87. [CrossRef] [PubMed]
-
(2014)
Ultramicroscopy
, vol.143
, pp. 77-87
-
-
Duke, E.M.1
Razi, M.2
Weston, A.3
Guttmann, P.4
Werner, S.5
Henzler, K.6
Schneider, G.7
Tooze, S.A.8
Collinson, L.M.9
-
42
-
-
84897557665
-
A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane
-
[CrossRef] [PubMed]
-
Uemura, T.; Yamamoto, M.; Kametaka, A.; Sou, Y.S.; Yabashi, A.; Yamada, A.; Annoh, H.; Kametaka, S.; Komatsu, M.; Waguri, S. A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol. Cell. Biol. 2014, 34, 1695-1706. [CrossRef] [PubMed]
-
(2014)
Mol. Cell Biol
, vol.34
, pp. 1695-1706
-
-
Uemura, T.1
Yamamoto, M.2
Kametaka, A.3
Sou, Y.S.4
Yabashi, A.5
Yamada, A.6
Annoh, H.7
Kametaka, S.8
Komatsu, M.9
Waguri, S.10
-
43
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
[CrossRef] [PubMed]
-
Yla-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5, 1180-1185. [CrossRef] [PubMed]
-
(2009)
Autophagy
, vol.5
, pp. 1180-1185
-
-
Yla-Anttila, P.1
Vihinen, H.2
Jokitalo, E.3
Eskelinen, E.L.4
-
44
-
-
0042592913
-
Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8
-
[CrossRef] [PubMed]
-
Atlashkin, V.; Kreykenbohm, V.; Eskelinen, E.L.; Wenzel, D.; Fayyazi, A.; Fischer von Mollard, G. Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Mol. Cell. Biol. 2003, 23, 5198-5207. [CrossRef] [PubMed]
-
(2003)
Mol. Cell Biol
, vol.23
, pp. 5198-5207
-
-
Atlashkin, V.1
Kreykenbohm, V.2
Eskelinen, E.L.3
Wenzel, D.4
Fayyazi, A.5
Fischer von Mollard, G.6
-
45
-
-
78149282263
-
Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders
-
[CrossRef] [PubMed]
-
Fraldi, A.; Annunziata, F.; Lombardi, A.; Kaiser, H.J.; Medina, D.L.; Spampanato, C.; Fedele, A.O.; Polishchuk, R.; Sorrentino, N.C.; Simons, K.; et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 2010, 29, 3607-3620. [CrossRef] [PubMed]
-
(2010)
EMBO J
, vol.29
, pp. 3607-3620
-
-
Fraldi, A.1
Annunziata, F.2
Lombardi, A.3
Kaiser, H.J.4
Medina, D.L.5
Spampanato, C.6
Fedele, A.O.7
Polishchuk, R.8
Sorrentino, N.C.9
Simons, K.10
-
46
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
[CrossRef] [PubMed]
-
Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151, 1256-1269. [CrossRef] [PubMed]
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
47
-
-
3242877218
-
Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
-
[CrossRef] [PubMed]
-
Gutierrez, M.G.; Munafo, D.B.; Beron, W.; Colombo, M.I. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 2004, 117, 2687-2697. [CrossRef] [PubMed]
-
(2004)
J Cell Sci
, vol.117
, pp. 2687-2697
-
-
Gutierrez, M.G.1
Munafo, D.B.2
Beron, W.3
Colombo, M.I.4
-
48
-
-
7244255989
-
Role for Rab7 in maturation of late autophagic vacuoles
-
[CrossRef] [PubMed]
-
Jager, S.; Bucci, C.; Tanida, I.; Ueno, T.; Kominami, E.; Saftig, P.; Eskelinen, E.L. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 2004, 117, 4837-4848. [CrossRef] [PubMed]
-
(2004)
J Cell Sci
, vol.117
, pp. 4837-4848
-
-
Jager, S.1
Bucci, C.2
Tanida, I.3
Ueno, T.4
Kominami, E.5
Saftig, P.6
Eskelinen, E.L.7
-
49
-
-
46449120732
-
Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking
-
[CrossRef] [PubMed]
-
Liang, C.; Lee, J.S.; Inn, K.S.; Gack, M.U.; Li, Q.; Roberts, E.A.; Vergne, I.; Deretic, V.; Feng, P.; Akazawa, C.; et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 2008, 10, 776-787. [CrossRef] [PubMed]
-
(2008)
Nat Cell Biol
, vol.10
, pp. 776-787
-
-
Liang, C.1
Lee, J.S.2
Inn, K.S.3
Gack, M.U.4
Li, Q.5
Roberts, E.A.6
Vergne, I.7
Deretic, V.8
Feng, P.9
Akazawa, C.10
-
50
-
-
84901381389
-
The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
-
[CrossRef] [PubMed]
-
Jiang, P.; Nishimura, T.; Sakamaki, Y.; Itakura, E.; Hatta, T.; Natsume, T.; Mizushima, N. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 2014, 25, 1327-1337. [CrossRef] [PubMed]
-
(2014)
Mol. Biol Cell
, vol.25
, pp. 1327-1337
-
-
Jiang, P.1
Nishimura, T.2
Sakamaki, Y.3
Itakura, E.4
Hatta, T.5
Natsume, T.6
Mizushima, N.7
-
51
-
-
84920418471
-
Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 is Essential for Autophagy
-
[CrossRef] [PubMed]
-
Wilkinson, D.S.; Jariwala, J.S.; Anderson, E.; Mitra, K.; Meisenhelder, J.; Chang, J.T.; Ideker, T.; Hunter, T.; Nizet, V.; Dillin, A.; et al. Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 is Essential for Autophagy. Mol. Cell 2015, 57, 55-68. [CrossRef] [PubMed]
-
(2015)
Mol Cell
, vol.57
, pp. 55-68
-
-
Wilkinson, D.S.1
Jariwala, J.S.2
Anderson, E.3
Mitra, K.4
Meisenhelder, J.5
Chang, J.T.6
Ideker, T.7
Hunter, T.8
Nizet, V.9
Dillin, A.10
-
52
-
-
84930643015
-
GABARAPs regulate PI4P-dependent autophagosome:Lysosome fusion
-
[CrossRef] [PubMed]
-
Wang, H.; Sun, H.Q.; Zhu, X.; Zhang, L.; Albanesi, J.; Levine, B.; Yin, H. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl. Acad. Sci. USA 2015, 112, 7015-7020. [CrossRef] [PubMed]
-
(2015)
Proc. Natl. Acad. Sci USA
, vol.112
, pp. 7015-7020
-
-
Wang, H.1
Sun, H.Q.2
Zhu, X.3
Zhang, L.4
Albanesi, J.5
Levine, B.6
Yin, H.7
-
53
-
-
84921443304
-
mTORC1 Phosphorylates UVRAG to Negatively Regulate Autophagosome and Endosome Maturation
-
[CrossRef] [PubMed]
-
Kim, Y.M.; Jung, C.H.; Seo, M.; Kim, E.K.; Park, J.M.; Bae, S.S.; Kim, D.H. mTORC1 Phosphorylates UVRAG to Negatively Regulate Autophagosome and Endosome Maturation. Mol. Cell 2015, 57, 207-218. [CrossRef] [PubMed]
-
(2015)
Mol Cell
, vol.57
, pp. 207-218
-
-
Kim, Y.M.1
Jung, C.H.2
Seo, M.3
Kim, E.K.4
Park, J.M.5
Bae, S.S.6
Kim, D.H.7
-
54
-
-
84455169931
-
Regulation of autophagy by neuropathological protein TDP-43
-
[CrossRef] [PubMed]
-
Bose, J.K.; Huang, C.C.; Shen, C.K. Regulation of autophagy by neuropathological protein TDP-43. J. Biol. Chem. 2011, 286, 44441-44448. [CrossRef] [PubMed]
-
(2011)
J. Biol Chem
, vol.286
, pp. 44441-44448
-
-
Bose, J.K.1
Huang, C.C.2
Shen, C.K.3
-
55
-
-
84946614863
-
ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1
-
[CrossRef]
-
Soo, K.Y.; Sultana, J.; King, A.E.; Atkinson, R.A.K.; Warraich, S.T.; Sundaramoorthy, V.; Blair, I.; Farg, M.A.; Atkin, J.D. ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov. 2015, 1. [CrossRef]
-
(2015)
Cell Death Discov
, pp. 1
-
-
Soo, K.Y.1
Sultana, J.2
King, A.E.3
Atkinson, R.A.K.4
Warraich, S.T.5
Sundaramoorthy, V.6
Blair, I.7
Farg, M.A.8
Atkin, J.D.9
-
56
-
-
84889595981
-
Amyotrophic lateral sclerosis: An update on recent genetic insights
-
[CrossRef] [PubMed]
-
Iguchi, Y.; Katsuno, M.; Ikenaka, K.; Ishigaki, S.; Sobue, G. Amyotrophic lateral sclerosis: An update on recent genetic insights. J. Neurol. 2013, 260, 2917-2927. [CrossRef] [PubMed]
-
(2013)
J Neurol
, vol.260
, pp. 2917-2927
-
-
Iguchi, Y.1
Katsuno, M.2
Ikenaka, K.3
Ishigaki, S.4
Sobue, G.5
-
57
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
[CrossRef] [PubMed]
-
Kenific, C.M.; Debnath, J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol. 2015, 25, 37-45. [CrossRef] [PubMed]
-
(2015)
Trends Cell Biol
, vol.25
, pp. 37-45
-
-
Kenific, C.M.1
Debnath, J.2
-
58
-
-
84894243088
-
Autophagic cell death and cancer
-
[CrossRef] [PubMed]
-
Shimizu, S.; Yoshida, T.; Tsujioka, M.; Arakawa, S. Autophagic cell death and cancer. Int. J. Mol. Sci. 2014, 15, 3145-3153. [CrossRef] [PubMed]
-
(2014)
Int. J. Mol Sci
, vol.15
, pp. 3145-3153
-
-
Shimizu, S.1
Yoshida, T.2
Tsujioka, M.3
Arakawa, S.4
-
59
-
-
84893823338
-
Regulation of autophagy by the Rab GTPase network
-
[CrossRef] [PubMed]
-
Ao, X.; Zou, L.; Wu, Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014, 21, 348-358. [CrossRef] [PubMed]
-
(2014)
Cell Death Differ
, vol.21
, pp. 348-358
-
-
Ao, X.1
Zou, L.2
Wu, Y.3
-
60
-
-
84860863883
-
TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells
-
[CrossRef] [PubMed]
-
Colombrita, C.; Onesto, E.; Megiorni, F.; Pizzuti, A.; Baralle, F.E.; Buratti, E.; Silani, V.; Ratti, A. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J. Biol. Chem. 2012, 287, 15635-15647. [CrossRef] [PubMed]
-
(2012)
J. Biol Chem
, vol.287
, pp. 15635-15647
-
-
Colombrita, C.1
Onesto, E.2
Megiorni, F.3
Pizzuti, A.4
Baralle, F.E.5
Buratti, E.6
Silani, V.7
Ratti, A.8
-
61
-
-
33745866310
-
Autophagic stress in neuronal injury and disease
-
[CrossRef] [PubMed]
-
Chu, C.T. Autophagic stress in neuronal injury and disease. J. Neuropathol. Exp. Neurol. 2006, 65, 423-432. [CrossRef] [PubMed]
-
(2006)
J. Neuropathol. Exp Neurol
, vol.65
, pp. 423-432
-
-
Chu, C.T.1
-
62
-
-
84877620530
-
Why should autophagic flux be assessed? Acta Pharmacol
-
[CrossRef] [PubMed]
-
Zhang, X.J.; Chen, S.; Huang, K.X.; Le, W.D. Why should autophagic flux be assessed? Acta Pharmacol. Sin. 2013, 34, 595-599. [CrossRef] [PubMed]
-
(2013)
Sin
, vol.34
, pp. 595-599
-
-
Zhang, X.J.1
Chen, S.2
Huang, K.X.3
Le, W.D.4
-
63
-
-
14844303381
-
Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study
-
[PubMed]
-
Nixon, R.A.;Wegiel, J.; Kumar, A.; Yu, W.H.; Peterhoff, C.; Cataldo, A.; Cuervo, A.M. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 2005, 64, 113-122. [PubMed]
-
(2005)
J. Neuropathol. Exp Neurol
, vol.64
, pp. 113-122
-
-
Nixon, R.A.1
Wegiel, J.2
Kumar, A.3
Yu, W.H.4
Peterhoff, C.5
Cataldo, A.6
Cuervo, A.M.7
-
64
-
-
26444587508
-
Macroautophagy-A novel β-amyloid peptide-generating pathway activated in Alzheimer's disease
-
[CrossRef] [PubMed]
-
Yu, W.H.; Cuervo, A.M.; Kumar, A.; Peterhoff, C.M.; Schmidt, S.D.; Lee, J.H.; Mohan, P.S.; Mercken, M.; Farmery, M.R.; Tjernberg, L.O.; et al. Macroautophagy-A novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 2005, 171, 87-98. [CrossRef] [PubMed]
-
(2005)
J Cell Biol
, vol.171
, pp. 87-98
-
-
Yu, W.H.1
Cuervo, A.M.2
Kumar, A.3
Peterhoff, C.M.4
Schmidt, S.D.5
Lee, J.H.6
Mohan, P.S.7
Mercken, M.8
Farmery, M.R.9
Tjernberg, L.O.10
-
65
-
-
0035894855
-
Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death
-
[PubMed]
-
Stefanis, L.; Larsen, K.E.; Rideout, H.J.; Sulzer, D.; Greene, L.A. Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 2001, 21, 9549-9560. [PubMed]
-
(2001)
J Neurosci
, vol.21
, pp. 9549-9560
-
-
Stefanis, L.1
Larsen, K.E.2
Rideout, H.J.3
Sulzer, D.4
Greene, L.A.5
-
66
-
-
33744916798
-
Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1
-
[CrossRef] [PubMed]
-
Shibata, M.; Lu, T.; Furuya, T.; Degterev, A.; Mizushima, N.; Yoshimori, T.; MacDonald, M.; Yankner, B.; Yuan, J. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 2006, 281, 14474-14485. [CrossRef] [PubMed]
-
(2006)
J. Biol Chem
, vol.281
, pp. 14474-14485
-
-
Shibata, M.1
Lu, T.2
Furuya, T.3
Degterev, A.4
Mizushima, N.5
Yoshimori, T.6
MacDonald, M.7
Yankner, B.8
Yuan, J.9
-
67
-
-
84938980730
-
Autophagic activity in neuronal cell death
-
[CrossRef] [PubMed]
-
Button, R.W.; Luo, S.; Rubinsztein, D.C. Autophagic activity in neuronal cell death. Neurosci. Bull. 2015, 31, 382-394. [CrossRef] [PubMed]
-
(2015)
Neurosci Bull
, vol.31
, pp. 382-394
-
-
Button, R.W.1
Luo, S.2
Rubinsztein, D.C.3
-
68
-
-
56749170677
-
Autophagic cell death: The story of a misnomer
-
[CrossRef] [PubMed]
-
Kroemer, G.; Levine, B. Autophagic cell death: The story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008, 9, 1004-1010. [CrossRef] [PubMed]
-
(2008)
Nat. Rev. Mol Cell Biol
, vol.9
, pp. 1004-1010
-
-
Kroemer, G.1
Levine, B.2
-
69
-
-
67649996222
-
Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia
-
[CrossRef] [PubMed]
-
Lee, J.A.; Gao, F.B. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J. Neurosci. 2009, 29, 8506-8511. [CrossRef] [PubMed]
-
(2009)
J Neurosci
, vol.29
, pp. 8506-8511
-
-
Lee, J.A.1
Gao, F.B.2
-
70
-
-
49049096562
-
Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
-
[CrossRef] [PubMed]
-
Boland, B.; Kumar, A.; Lee, S.; Platt, F.M.; Wegiel, J.; Yu, W.H.; Nixon, R.A. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 2008, 28, 6926-6937. [CrossRef] [PubMed]
-
(2008)
J Neurosci
, vol.28
, pp. 6926-6937
-
-
Boland, B.1
Kumar, A.2
Lee, S.3
Platt, F.M.4
Wegiel, J.5
Yu, W.H.6
Nixon, R.A.7
-
71
-
-
28844475400
-
HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin
-
[CrossRef] [PubMed]
-
Iwata, A.; Riley, B.E.; Johnston, J.A.; Kopito, R.R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 2005, 280, 40282-40292. [CrossRef] [PubMed]
-
(2005)
J. Biol Chem
, vol.280
, pp. 40282-40292
-
-
Iwata, A.1
Riley, B.E.2
Johnston, J.A.3
Kopito, R.R.4
-
72
-
-
2942566227
-
Microtubule disruption inhibits autophagosome-lysosome fusion: Implications for studying the roles of aggresomes in polyglutamine diseases
-
[CrossRef] [PubMed]
-
Webb, J.L.; Ravikumar, B.; Rubinsztein, D.C. Microtubule disruption inhibits autophagosome-lysosome fusion: Implications for studying the roles of aggresomes in polyglutamine diseases. Int. J. Biochem. Cell. Biol. 2004, 36, 2541-2550. [CrossRef] [PubMed]
-
(2004)
Int. J. Biochem. Cell Biol
, vol.36
, pp. 2541-2550
-
-
Webb, J.L.1
Ravikumar, B.2
Rubinsztein, D.C.3
-
73
-
-
11444267601
-
Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases
-
[CrossRef] [PubMed]
-
Nixon, R.A. Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol. Aging 2005, 26, 373-382. [CrossRef] [PubMed]
-
(2005)
Neurobiol Aging
, vol.26
, pp. 373-382
-
-
Nixon, R.A.1
-
74
-
-
84857309195
-
The ESCRT machinery
-
[CrossRef] [PubMed]
-
Schmidt, O.; Teis, D. The ESCRT machinery. Curr. Biol. 2012, 22, 116-120. [CrossRef] [PubMed]
-
(2012)
Curr Biol
, vol.22
, pp. 116-120
-
-
Schmidt, O.1
Teis, D.2
-
75
-
-
34548492271
-
ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration
-
[CrossRef] [PubMed]
-
Lee, J.A.; Beigneux, A.; Ahmad, S.T.; Young, S.G.; Gao, F.B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 2007, 17, 1561-1567. [CrossRef] [PubMed]
-
(2007)
Curr Biol
, vol.17
, pp. 1561-1567
-
-
Lee, J.A.1
Beigneux, A.2
Ahmad, S.T.3
Young, S.G.4
Gao, F.B.5
-
76
-
-
79953854897
-
Alzheimer's disease: The challenge of the second century
-
[CrossRef] [PubMed]
-
Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer's disease: The challenge of the second century. Sci. Transl. Med. 2011, 3. [CrossRef] [PubMed]
-
(2011)
Sci. Transl. Med
, pp. 3
-
-
Holtzman, D.M.1
Morris, J.C.2
Goate, A.M.3
-
77
-
-
41549107577
-
The Basic Biology of BACE1: A Key Therapeutic Target for Alzheimer's Disease
-
Cole, S.L.; Vassar, R. The Basic Biology of BACE1: A Key Therapeutic Target for Alzheimer's Disease. Curr. Genom. 2007, 8, 509-530.
-
(2007)
Curr Genom
, vol.8
, pp. 509-530
-
-
Cole, S.L.1
Vassar, R.2
-
78
-
-
84921754352
-
Molecular mechanism of intramembrane proteolysis by gamma-secretase
-
[CrossRef] [PubMed]
-
Tomita, T. Molecular mechanism of intramembrane proteolysis by gamma-secretase. J. Biochem. 2014, 156, 195-201. [CrossRef] [PubMed]
-
(2014)
J Biochem
, vol.156
, pp. 195-201
-
-
Tomita, T.1
-
79
-
-
84937047446
-
Fasting activates macroautophagy in neurons of Alzheimer's disease mouse model but is insufficient to degrade amyloid-beta
-
[CrossRef] [PubMed]
-
Chen, X.; Kondo, K.; Motoki, K.; Homma, H.; Okazawa, H. Fasting activates macroautophagy in neurons of Alzheimer's disease mouse model but is insufficient to degrade amyloid-beta. Sci. Rep. 2015, 5. [CrossRef] [PubMed]
-
(2015)
Sci. Rep
, pp. 5
-
-
Chen, X.1
Kondo, K.2
Motoki, K.3
Homma, H.4
Okazawa, H.5
-
80
-
-
4344689871
-
Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: Implications for β-amyloid peptide over-production and localization in Alzheimer's disease
-
[CrossRef] [PubMed]
-
Yu, W.H.; Kumar, A.; Peterhoff, C.; Shapiro Kulnane, L.; Uchiyama, Y.; Lamb, B.T.; Cuervo, A.M.; Nixon, R.A. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: Implications for β-amyloid peptide over-production and localization in Alzheimer's disease. Int. J. Biochem. Cell Biol. 2004, 36, 2531-2540. [CrossRef] [PubMed]
-
(2004)
Int. J. Biochem Cell Biol
, vol.36
, pp. 2531-2540
-
-
Yu, W.H.1
Kumar, A.2
Peterhoff, C.3
Shapiro Kulnane, L.4
Uchiyama, Y.5
Lamb, B.T.6
Cuervo, A.M.7
Nixon, R.A.8
-
81
-
-
84929206964
-
Structural basis of human gamma-secretase assembly
-
[CrossRef] [PubMed]
-
Sun, L.; Zhao, L.; Yang, G.; Yan, C.; Zhou, R.; Zhou, X.; Xie, T.; Zhao, Y.; Wu, S.; Li, X.; et al. Structural basis of human gamma-secretase assembly. Proc. Natl. Acad. Sci. USA 2015, 112, 6003-6008. [CrossRef] [PubMed]
-
(2015)
Proc. Natl. Acad. Sci USA
, vol.112
, pp. 6003-6008
-
-
Sun, L.1
Zhao, L.2
Yang, G.3
Yan, C.4
Zhou, R.5
Zhou, X.6
Xie, T.7
Zhao, Y.8
Wu, S.9
Li, X.10
-
82
-
-
77953913051
-
Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations
-
[CrossRef] [PubMed]
-
Lee, J.-H.; Yu, W.H.; Kumar, A.; Lee, S.; Mohan, P.S.; Peterhoff, C.M.; Wolfe, D.M.; Martinez-Vicente, M.; Massey, A.C.; Sovak, G.; et al. Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations. Cell 2010, 141, 1146-1158. [CrossRef] [PubMed]
-
(2010)
Cell
, vol.141
, pp. 1146-1158
-
-
Lee, J.-H.1
Yu, W.H.2
Kumar, A.3
Lee, S.4
Mohan, P.S.5
Peterhoff, C.M.6
Wolfe, D.M.7
Martinez-Vicente, M.8
Massey, A.C.9
Sovak, G.10
-
83
-
-
77956215864
-
Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex
-
[CrossRef] [PubMed]
-
Jaeger, P.A.; Pickford, F.; Sun, C.-H.; Lucin, K.M.; Masliah, E.; Wyss-Coray, T. Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex. PLoS ONE 2010, 5, 11102. [CrossRef] [PubMed]
-
(2010)
PLoS ONE
, vol.5
, pp. 11102
-
-
Jaeger, P.A.1
Pickford, F.2
Sun, C.-H.3
Lucin, K.M.4
Masliah, E.5
Wyss-Coray, T.6
-
84
-
-
45749114895
-
The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice
-
[CrossRef] [PubMed]
-
Pickford, F.; Masliah, E.; Britschgi, M.; Lucin, K.; Narasimhan, R.; Jaeger, P.A.; Small, S.; Spencer, B.; Rockenstein, E.; Levine, B.; et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Investig. 2008, 118, 2190-2199. [CrossRef] [PubMed]
-
(2008)
J. Clin Investig
, vol.118
, pp. 2190-2199
-
-
Pickford, F.1
Masliah, E.2
Britschgi, M.3
Lucin, K.4
Narasimhan, R.5
Jaeger, P.A.6
Small, S.7
Spencer, B.8
Rockenstein, E.9
Levine, B.10
-
85
-
-
77951227122
-
Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: Effects on cognitive impairments
-
[CrossRef] [PubMed]
-
Caccamo, A.; Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: Effects on cognitive impairments. J. Biol. Chem. 2010, 285, 13107-13120. [CrossRef] [PubMed]
-
(2010)
J. Biol Chem
, vol.285
, pp. 13107-13120
-
-
Caccamo, A.1
Majumder, S.2
Richardson, A.3
Strong, R.4
Oddo, S.5
-
86
-
-
80053243942
-
Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits
-
[CrossRef] [PubMed]
-
Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 2011, 6, 25416. [CrossRef] [PubMed]
-
(2011)
PLoS ONE
, vol.6
, pp. 25416
-
-
Majumder, S.1
Richardson, A.2
Strong, R.3
Oddo, S.4
-
87
-
-
77956305343
-
Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease
-
[CrossRef] [PubMed]
-
Spilman, P.; Podlutskaya, N.; Hart, M.J.; Debnath, J.; Gorostiza, O.; Bredesen, D.; Richardson, A.; Strong, R.; Galvan, V. Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease. PLoS ONE 2010, 5, 9979. [CrossRef] [PubMed]
-
(2010)
PLoS ONE
, vol.5
, pp. 9979
-
-
Spilman, P.1
Podlutskaya, N.2
Hart, M.J.3
Debnath, J.4
Gorostiza, O.5
Bredesen, D.6
Richardson, A.7
Strong, R.8
Galvan, V.9
-
88
-
-
41149163183
-
Parkinson's disease: Clinical features and diagnosis
-
[CrossRef] [PubMed]
-
Jankovic, J. Parkinson's disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368-376. [CrossRef] [PubMed]
-
(2008)
J. Neurol. Neurosurg Psychiatry
, vol.79
, pp. 368-376
-
-
Jankovic, J.1
-
89
-
-
84883828888
-
Advances in the pharmacological treatment of Parkinson's disease: Targeting neurotransmitter systems
-
[CrossRef] [PubMed]
-
Brichta, L.; Greengard, P.; Flajolet, M. Advances in the pharmacological treatment of Parkinson's disease: Targeting neurotransmitter systems. Trends Neurosci. 2013, 36, 543-554. [CrossRef] [PubMed]
-
(2013)
Trends Neurosci
, vol.36
, pp. 543-554
-
-
Brichta, L.1
Greengard, P.2
Flajolet, M.3
-
90
-
-
67649806929
-
The cybrid model of sporadic Parkinson's disease
-
[CrossRef] [PubMed]
-
Trimmer, P.A.; Bennett, J.P., Jr. The cybrid model of sporadic Parkinson's disease. Exp. Neurol. 2009, 218, 320-325. [CrossRef] [PubMed]
-
(2009)
Exp Neurol
, vol.218
, pp. 320-325
-
-
Trimmer, P.A.1
Bennett, J.P.2
-
91
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
[CrossRef] [PubMed]
-
Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.; Harvey, K.; Gispert, S.; Ali, Z.; del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004, 304, 1158-1160. [CrossRef] [PubMed]
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
Muqit, M.M.4
Harvey, K.5
Gispert, S.6
Ali, Z.7
del Turco, D.8
Bentivoglio, A.R.9
Healy, D.G.10
-
92
-
-
18744380014
-
PARK6 is a common cause of familial parkinsonism
-
[CrossRef] [PubMed]
-
Valente, E.M.; Brancati, F.; Caputo, V.; Graham, E.A.; Davis, M.B.; Ferraris, A.; Breteler, M.M.; Gasser, T.; Bonifati, V.; Bentivoglio, A.R.; et al. PARK6 is a common cause of familial parkinsonism. Neurol. Sci. 2002, 23, 117-118. [CrossRef] [PubMed]
-
(2002)
Neurol Sci
, vol.23
, pp. 117-118
-
-
Valente, E.M.1
Brancati, F.2
Caputo, V.3
Graham, E.A.4
Davis, M.B.5
Ferraris, A.6
Breteler, M.M.7
Gasser, T.8
Bonifati, V.9
Bentivoglio, A.R.10
-
93
-
-
18244412384
-
Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals
-
[CrossRef] [PubMed]
-
Hattori, N.; Kitada, T.; Matsumine, H.; Asakawa, S.; Yamamura, Y.; Yoshino, H.; Kobayashi, T.; Yokochi, M.; Wang, M.; Yoritaka, A.; et al. Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann. Neurol. 1998, 44, 935-941. [CrossRef] [PubMed]
-
(1998)
Ann Neurol
, vol.44
, pp. 935-941
-
-
Hattori, N.1
Kitada, T.2
Matsumine, H.3
Asakawa, S.4
Yamamura, Y.5
Yoshino, H.6
Kobayashi, T.7
Yokochi, M.8
Wang, M.9
Yoritaka, A.10
-
94
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
[PubMed]
-
Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605-608. [PubMed]
-
(1998)
Nature
, vol.392
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
Matsumine, H.4
Yamamura, Y.5
Minoshima, S.6
Yokochi, M.7
Mizuno, Y.8
Shimizu, N.9
-
95
-
-
0032564235
-
Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism
-
[CrossRef]
-
Lucking, C.B.; Abbas, N.; Durr, A.; Bonifati, V.; Bonnet, A.M.; de Broucker, T.; De Michele, G.; Wood, N.W.; Agid, Y.; Brice, A. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. Lancet 1998, 352, 1355-1356. [CrossRef]
-
(1998)
Lancet
, vol.352
, pp. 1355-1356
-
-
Lucking, C.B.1
Abbas, N.2
Durr, A.3
Bonifati, V.4
Bonnet, A.M.5
de Broucker, T.6
De Michele, G.7
Wood, N.W.8
Agid, Y.9
Brice, A.10
-
96
-
-
77957905690
-
Genetic Analysis of Pathways to Parkinson Disease
-
[CrossRef] [PubMed]
-
Hardy, J. Genetic Analysis of Pathways to Parkinson Disease. Neuron 2010, 68, 201-206. [CrossRef] [PubMed]
-
(2010)
Neuron
, vol.68
, pp. 201-206
-
-
Hardy, J.1
-
97
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
[CrossRef] [PubMed]
-
Jin, S.M.; Lazarou, M.;Wang, C.; Kane, L.A.; Narendra, D.P.; Youle, R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191, 933-942. [CrossRef] [PubMed]
-
(2010)
J Cell Biol
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
98
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
[CrossRef] [PubMed]
-
Meissner, C.; Lorenz, H.; Weihofen, A.; Selkoe, D.J.; Lemberg, M.K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117, 856-867. [CrossRef] [PubMed]
-
(2011)
J Neurochem
, vol.117
, pp. 856-867
-
-
Meissner, C.1
Lorenz, H.2
Weihofen, A.3
Selkoe, D.J.4
Lemberg, M.K.5
-
99
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
[CrossRef] [PubMed]
-
Yamano, K.; Youle, R.J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9, 1758-1769. [CrossRef] [PubMed]
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
100
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
[CrossRef] [PubMed]
-
Okatsu, K.; Oka, T.; Iguchi, M.; Imamura, K.; Kosako, H.; Tani, N.; Kimura, M.; Go, E.; Koyano, F.; Funayama, M.; et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 2012, 3, 1016. [CrossRef] [PubMed]
-
(2012)
Nat Commun
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
Imamura, K.4
Kosako, H.5
Tani, N.6
Kimura, M.7
Go, E.8
Koyano, F.9
Funayama, M.10
-
101
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
[CrossRef] [PubMed]
-
Kazlauskaite, A.; Kondapalli, C.; Gourlay, R.; Campbell, D.G.; Ritorto, M.S.; Hofmann, K.; Alessi, D.R.; Knebel, A.; Trost, M.; Muqit, M.M. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 2014, 460, 127-139. [CrossRef] [PubMed]
-
(2014)
Biochem J
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
Hofmann, K.6
Alessi, D.R.7
Knebel, A.8
Trost, M.9
Muqit, M.M.10
-
102
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
[CrossRef] [PubMed]
-
Koyano, F.; Okatsu, K.; Kosako, H.; Tamura, Y.; Go, E.; Kimura, M.; Kimura, Y.; Tsuchiya, H.; Yoshihara, H.; Hirokawa, T.; et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014, 510, 162-166. [CrossRef] [PubMed]
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
-
103
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
[CrossRef] [PubMed]
-
Wauer, T.; Simicek, M.; Schubert, A.; Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 2015, 524, 370-374. [CrossRef] [PubMed]
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
Simicek, M.2
Schubert, A.3
Komander, D.4
-
104
-
-
84876296881
-
Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
-
[CrossRef] [PubMed]
-
Sarraf, S.A.; Raman, M.; Guarani-Pereira, V.; Sowa, M.E.; Huttlin, E.L.; Gygi, S.P.; Harper, J.W. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013, 496, 372-376. [CrossRef] [PubMed]
-
(2013)
Nature
, vol.496
, pp. 372-376
-
-
Sarraf, S.A.1
Raman, M.2
Guarani-Pereira, V.3
Sowa, M.E.4
Huttlin, E.L.5
Gygi, S.P.6
Harper, J.W.7
-
105
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
[CrossRef] [PubMed]
-
Geisler, S.; Holmstrom, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12, 119-131. [CrossRef] [PubMed]
-
(2010)
Nat Cell Biol
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
106
-
-
75949104449
-
Mitochondria get a Parkin' ticket
-
[CrossRef] [PubMed]
-
Wild, P.; Dikic, I. Mitochondria get a Parkin' ticket. Nat. Cell Biol. 2010, 12, 104-106. [CrossRef] [PubMed]
-
(2010)
Nat Cell Biol
, vol.12
, pp. 104-106
-
-
Wild, P.1
Dikic, I.2
-
107
-
-
78649300971
-
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
[CrossRef] [PubMed]
-
Narendra, D.; Kane, L.A.; Hauser, D.N.; Fearnley, I.M.; Youle, R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010, 6, 1090-1106. [CrossRef] [PubMed]
-
(2010)
Autophagy
, vol.6
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
108
-
-
77954695260
-
p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria
-
[CrossRef] [PubMed]
-
Okatsu, K.; Saisho, K.; Shimanuki, M.; Nakada, K.; Shitara, H.; Sou, Y.S.; Kimura, M.; Sato, S.; Hattori, N.; Komatsu, M.; et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 2010, 15, 887-900. [CrossRef] [PubMed]
-
(2010)
Genes Cells
, vol.15
, pp. 887-900
-
-
Okatsu, K.1
Saisho, K.2
Shimanuki, M.3
Nakada, K.4
Shitara, H.5
Sou, Y.S.6
Kimura, M.7
Sato, S.8
Hattori, N.9
Komatsu, M.10
-
109
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
[CrossRef] [PubMed]
-
Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.;Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524, 309-314. [CrossRef] [PubMed]
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
110
-
-
84940776745
-
(Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation
-
[CrossRef] [PubMed]
-
Fiesel, F.C.; Ando, M.; Hudec, R.; Hill, A.R.; Castanedes-Casey, M.; Caulfield, T.R.; Moussaud-Lamodière, E.L.; Stankowski, J.N.; Bauer, P.O.; Lorenzo-Betancor, O.; et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep. 2015, 16, 1114-1130. [CrossRef] [PubMed]
-
(2015)
EMBO Rep
, vol.16
, pp. 1114-1130
-
-
Fiesel, F.C.1
Ando, M.2
Hudec, R.3
Hill, A.R.4
Castanedes-Casey, M.5
Caulfield, T.R.6
Moussaud-Lamodière, E.L.7
Stankowski, J.N.8
Bauer, P.O.9
Lorenzo-Betancor, O.10
-
111
-
-
84951930787
-
The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
-
[CrossRef] [PubMed]
-
Heo, J.-M.; Ordureau, A.; Paulo, J.A.; Rinehart, J.; Harper, J.W. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol. Cell 2015, 60, 7-20. [CrossRef] [PubMed]
-
(2015)
Mol Cell
, vol.60
, pp. 7-20
-
-
Heo, J.-M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
112
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
[CrossRef] [PubMed]
-
Wild, P.; Farhan, H.; McEwan, D.G.; Wagner, S.; Rogov, V.V.; Brady, N.R.; Richter, B.; Korac, J.; Waidmann, O.; Choudhary, C.; et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333, 228-233. [CrossRef] [PubMed]
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
Brady, N.R.6
Richter, B.7
Korac, J.8
Waidmann, O.9
Choudhary, C.10
-
113
-
-
84918574081
-
Huntington Disease: Pathogenesis and Treatment
-
[CrossRef] [PubMed]
-
Dayalu, P.; Albin, R.L. Huntington Disease: Pathogenesis and Treatment. Neurol. Clin. 2015, 33, 101-114. [CrossRef] [PubMed]
-
(2015)
Neurol Clin
, vol.33
, pp. 101-114
-
-
Dayalu, P.1
Albin, R.L.2
-
114
-
-
0027480960
-
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
-
Group, T.H.D.C.R. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993, 72, 971-983.
-
(1993)
Cell
, vol.72
, pp. 971-983
-
-
Group, T.H.D.C.R.1
-
115
-
-
0033757718
-
Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice
-
[PubMed]
-
Dragatsis, I.; Levine, M.S.; Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 2000, 26, 300-306. [PubMed]
-
(2000)
Nat Genet
, vol.26
, pp. 300-306
-
-
Dragatsis, I.1
Levine, M.S.2
Zeitlin, S.3
-
116
-
-
0029055717
-
Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes
-
[CrossRef]
-
Nasir, J.; Floresco, S.B.; O'Kusky, J.R.; Diewert, V.M.; Richman, J.M.; Zeisler, J.; Borowski, A.; Marth, J.D.; Phillips, A.G.; Hayden, M.R. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995, 81, 811-823. [CrossRef]
-
(1995)
Cell
, vol.81
, pp. 811-823
-
-
Nasir, J.1
Floresco, S.B.2
O'Kusky, J.R.3
Diewert, V.M.4
Richman, J.M.5
Zeisler, J.6
Borowski, A.7
Marth, J.D.8
Phillips, A.G.9
Hayden, M.R.10
-
117
-
-
0041656292
-
The hunt for huntingtin function: Interaction partners tell many different stories
-
[CrossRef]
-
Harjes, P.; Wanker, E.E. The hunt for huntingtin function: Interaction partners tell many different stories. Trends Biochem. Sci. 2003, 28, 425-433. [CrossRef]
-
(2003)
Trends Biochem Sci
, vol.28
, pp. 425-433
-
-
Harjes, P.1
Wanker, E.E.2
-
118
-
-
28644433087
-
Normal huntingtin function: An alternative approach to Huntington's disease
-
[CrossRef] [PubMed]
-
Cattaneo, E.; Zuccato, C.; Tartari, M. Normal huntingtin function: An alternative approach to Huntington's disease. Nat. Rev. Neurosci. 2005, 6, 919-930. [CrossRef] [PubMed]
-
(2005)
Nat. Rev Neurosci
, vol.6
, pp. 919-930
-
-
Cattaneo, E.1
Zuccato, C.2
Tartari, M.3
-
119
-
-
1242338856
-
Huntingtin-protein interactions and the pathogenesis of Huntington's disease
-
[CrossRef] [PubMed]
-
Li, S.H.; Li, X.J. Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet. 2004, 20, 146-154. [CrossRef] [PubMed]
-
(2004)
Trends Genet
, vol.20
, pp. 146-154
-
-
Li, S.H.1
Li, X.J.2
-
120
-
-
84912100068
-
Potential function for the Huntingtin protein as a scaffold for selective autophagy
-
[CrossRef] [PubMed]
-
Ochaba, J.; Lukacsovich, T.; Csikos, G.; Zheng, S.; Margulis, J.; Salazar, L.; Mao, K.; Lau, A.L.; Yeung, S.Y.; Humbert, S.; et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. USA 2014, 111, 16889-16894. [CrossRef] [PubMed]
-
(2014)
Proc. Natl. Acad. Sci USA
, vol.111
, pp. 16889-16894
-
-
Ochaba, J.1
Lukacsovich, T.2
Csikos, G.3
Zheng, S.4
Margulis, J.5
Salazar, L.6
Mao, K.7
Lau, A.L.8
Yeung, S.Y.9
Humbert, S.10
-
121
-
-
77956408419
-
Does Huntingtin play a role in selective macroautophagy?
-
[CrossRef] [PubMed]
-
Steffan, J.S. Does Huntingtin play a role in selective macroautophagy? Cell Cycle 2010, 9, 3401-3413. [CrossRef] [PubMed]
-
(2010)
Cell Cycle
, vol.9
, pp. 3401-3413
-
-
Steffan, J.S.1
-
122
-
-
84923789937
-
Huntingtin functions as a scaffold for selective macroautophagy
-
[CrossRef] [PubMed]
-
Rui, Y.N.; Xu, Z.; Patel, B.; Chen, Z.; Chen, D.; Tito, A.; David, G.; Sun, Y.; Stimming, E.F.; Bellen, H.J.; et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 2015, 17, 262-275. [CrossRef] [PubMed]
-
(2015)
Nat Cell Biol
, vol.17
, pp. 262-275
-
-
Rui, Y.N.1
Xu, Z.2
Patel, B.3
Chen, Z.4
Chen, D.5
Tito, A.6
David, G.7
Sun, Y.8
Stimming, E.F.9
Bellen, H.J.10
-
123
-
-
77649219699
-
Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice
-
[CrossRef] [PubMed]
-
Zheng, S.; Clabough, E.B.; Sarkar, S.; Futter, M.; Rubinsztein, D.C.; Zeitlin, S.O. Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet. 2010, 6, 1000838. [CrossRef] [PubMed]
-
(2010)
PLoS Genet
, vol.6
, pp. 1000838
-
-
Zheng, S.1
Clabough, E.B.2
Sarkar, S.3
Futter, M.4
Rubinsztein, D.C.5
Zeitlin, S.O.6
-
124
-
-
84943662231
-
Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic
-
[CrossRef] [PubMed]
-
Mancuso, R.; Navarro, X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog. Neurobiol. 2015, 133, 1-26. [CrossRef] [PubMed]
-
(2015)
Prog Neurobiol
, vol.133
, pp. 1-26
-
-
Mancuso, R.1
Navarro, X.2
-
125
-
-
84881275424
-
Genetics of amyotrophic lateral sclerosis: An update
-
[CrossRef] [PubMed]
-
Chen, S.; Sayana, P.; Zhang, X.; Le, W. Genetics of amyotrophic lateral sclerosis: An update. Mol. Neurodegener. 2013, 8, 28. [CrossRef] [PubMed]
-
(2013)
Mol Neurodegener
, vol.8
, pp. 28
-
-
Chen, S.1
Sayana, P.2
Zhang, X.3
Le, W.4
-
126
-
-
84928769147
-
Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD)
-
[CrossRef] [PubMed]
-
Lattante, S.; Ciura, S.; Rouleau, G.A.; Kabashi, E. Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet. 2015, 31, 263-273. [CrossRef] [PubMed]
-
(2015)
Trends Genet
, vol.31
, pp. 263-273
-
-
Lattante, S.1
Ciura, S.2
Rouleau, G.A.3
Kabashi, E.4
-
127
-
-
84893649256
-
State of play in amyotrophic lateral sclerosis genetics
-
[CrossRef] [PubMed]
-
Renton, A.E.; Chio, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 2014, 17, 17-23. [CrossRef] [PubMed]
-
(2014)
Nat Neurosci
, vol.17
, pp. 17-23
-
-
Renton, A.E.1
Chio, A.2
Traynor, B.J.3
-
128
-
-
84876319986
-
Controversies and priorities in amyotrophic lateral sclerosis
-
[CrossRef]
-
Turner, M.R.; Hardiman, O.; Benatar, M.; Brooks, B.R.; Chio, A.; de Carvalho, M.; Ince, P.G.; Lin, C.; Miller, R.G.; Mitsumoto, H.; et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. 2013, 12, 310-322. [CrossRef]
-
(2013)
Lancet Neurol
, vol.12
, pp. 310-322
-
-
Turner, M.R.1
Hardiman, O.2
Benatar, M.3
Brooks, B.R.4
Chio, A.5
de Carvalho, M.6
Ince, P.G.7
Lin, C.8
Miller, R.G.9
Mitsumoto, H.10
-
129
-
-
84155163741
-
A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis
-
[CrossRef] [PubMed]
-
Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 2011, 70, 913-919. [CrossRef] [PubMed]
-
(2011)
Ann Neurol
, vol.70
, pp. 913-919
-
-
Al-Saif, A.1
Al-Mohanna, F.2
Bohlega, S.3
-
130
-
-
77950858460
-
The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons
-
[CrossRef] [PubMed]
-
Mavlyutov, T.A.; Epstein, M.L.; Andersen, K.A.; Ziskind-Conhaim, L.; Ruoho, A.E. The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 2010, 167, 247-255. [CrossRef] [PubMed]
-
(2010)
An anatomical and behavioral study Neuroscience
, vol.167
, pp. 247-255
-
-
Mavlyutov, T.A.1
Epstein, M.L.2
Andersen, K.A.3
Ziskind-Conhaim, L.4
Ruoho, A.E.5
-
131
-
-
84929069085
-
Dysfunction in endoplasmic reticulummitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration
-
[CrossRef] [PubMed]
-
Bernard-Marissal, N.; Medard, J.J.; Azzedine, H.; Chrast, R. Dysfunction in endoplasmic reticulummitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 2015, 138, 875-890. [CrossRef] [PubMed]
-
(2015)
Brain
, vol.138
, pp. 875-890
-
-
Bernard-Marissal, N.1
Medard, J.J.2
Azzedine, H.3
Chrast, R.4
-
132
-
-
78449290844
-
The sigma-1 receptor chaperone as an inter-organelle signaling modulator
-
[CrossRef] [PubMed]
-
Su, T.P.; Hayashi, T.; Maurice, T.; Buch, S.; Ruoho, A.E. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci. 2010, 31, 557-566. [CrossRef] [PubMed]
-
(2010)
Trends Pharmacol Sci
, vol.31
, pp. 557-566
-
-
Su, T.P.1
Hayashi, T.2
Maurice, T.3
Buch, S.4
Ruoho, A.E.5
-
133
-
-
35549006797
-
Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival
-
[CrossRef] [PubMed]
-
Hayashi, T.; Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 2007, 131, 596-610. [CrossRef] [PubMed]
-
(2007)
Cell
, vol.131
, pp. 596-610
-
-
Hayashi, T.1
Su, T.P.2
-
134
-
-
84875768176
-
Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis
-
[CrossRef] [PubMed]
-
Prause, J.; Goswami, A.; Katona, I.; Roos, A.; Schnizler, M.; Bushuven, E.; Dreier, A.; Buchkremer, S.; Johann, S.; Beyer, C.; et al. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2013, 22, 1581-1600. [CrossRef] [PubMed]
-
(2013)
Hum. Mol Genet
, vol.22
, pp. 1581-1600
-
-
Prause, J.1
Goswami, A.2
Katona, I.3
Roos, A.4
Schnizler, M.5
Bushuven, E.6
Dreier, A.7
Buchkremer, S.8
Johann, S.9
Beyer, C.10
-
135
-
-
84903774616
-
Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances
-
[CrossRef] [PubMed]
-
Vollrath, J.T.; Sechi, A.; Dreser, A.; Katona, I.; Wiemuth, D.; Vervoorts, J.; Dohmen, M.; Chandrasekar, A.; Prause, J.; Brauers, E.; et al. Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis. 2014, 5, 1290. [CrossRef] [PubMed]
-
(2014)
Cell Death Dis
, vol.5
, pp. 1290
-
-
Vollrath, J.T.1
Sechi, A.2
Dreser, A.3
Katona, I.4
Wiemuth, D.5
Vervoorts, J.6
Dohmen, M.7
Chandrasekar, A.8
Prause, J.9
Brauers, E.10
-
136
-
-
84945749129
-
Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
-
[CrossRef] [PubMed]
-
Cirulli, E.T.; Lasseigne, B.N.; Petrovski, S.; Sapp, P.C.; Dion, P.A.; Leblond, C.S.; Couthouis, J.; Lu, Y.F.; Wang, Q.; Krueger, B.J.; et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015, 347, 1436-1441. [CrossRef] [PubMed]
-
(2015)
Science
, vol.347
, pp. 1436-1441
-
-
Cirulli, E.T.1
Lasseigne, B.N.2
Petrovski, S.3
Sapp, P.C.4
Dion, P.A.5
Leblond, C.S.6
Couthouis, J.7
Lu, Y.F.8
Wang, Q.9
Krueger, B.J.10
-
137
-
-
84928695187
-
Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
-
[CrossRef] [PubMed]
-
Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Muller, K.; Marroquin, N.; Nordin, F.; Hubers, A.;Weydt, P.; et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 2015, 18, 631-636. [CrossRef] [PubMed]
-
(2015)
Nat Neurosci
, vol.18
, pp. 631-636
-
-
Freischmidt, A.1
Wieland, T.2
Richter, B.3
Ruf, W.4
Schaeffer, V.5
Muller, K.6
Marroquin, N.7
Nordin, F.8
Hubers, A.9
Weydt, P.10
-
138
-
-
84880037292
-
Optineurin and amyotrophic lateral sclerosis
-
[CrossRef] [PubMed]
-
Maruyama, H.; Kawakami, H. Optineurin and amyotrophic lateral sclerosis. Geriatr. Gerontol. Int. 2013, 13, 528-532. [CrossRef] [PubMed]
-
(2013)
Geriatr. Gerontol Int
, vol.13
, pp. 528-532
-
-
Maruyama, H.1
Kawakami, H.2
-
139
-
-
84860650335
-
Mitochondrial dysfunction in ALS
-
[CrossRef] [PubMed]
-
Cozzolino, M.; Carri, M.T. Mitochondrial dysfunction in ALS. Prog. Neurobiol. 2012, 97, 54-66. [CrossRef] [PubMed]
-
(2012)
Prog Neurobiol
, vol.97
, pp. 54-66
-
-
Cozzolino, M.1
Carri, M.T.2
-
140
-
-
84926019373
-
Exploring new pathways of neurodegeneration in ALS: The role of mitochondria quality control
-
[CrossRef] [PubMed]
-
Palomo, G.M.; Manfredi, G. Exploring new pathways of neurodegeneration in ALS: The role of mitochondria quality control. Brain Res. 2015, 1607, 36-46. [CrossRef] [PubMed]
-
(2015)
Brain Res
, vol.1607
, pp. 36-46
-
-
Palomo, G.M.1
Manfredi, G.2
-
141
-
-
84863337915
-
Neuroimaging features of neurodegeneration with brain iron accumulation
-
[CrossRef] [PubMed]
-
Kruer, M.C.; Boddaert, N.; Schneider, S.A.; Houlden, H.; Bhatia, K.P.; Gregory, A.; Anderson, J.C.; Rooney, W.D.; Hogarth, P.; Hayflick, S.J. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am. J. Neuroradiol. 2012, 33, 407-414. [CrossRef] [PubMed]
-
(2012)
AJNR Am. J Neuroradiol
, vol.33
, pp. 407-414
-
-
Kruer, M.C.1
Boddaert, N.2
Schneider, S.A.3
Houlden, H.4
Bhatia, K.P.5
Gregory, A.6
Anderson, J.C.7
Rooney, W.D.8
Hogarth, P.9
Hayflick, S.J.10
-
142
-
-
84870913730
-
Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA
-
[CrossRef] [PubMed]
-
Haack, T.B.; Hogarth, P.; Kruer, M.C.; Gregory, A.; Wieland, T.; Schwarzmayr, T.; Graf, E.; Sanford, L.; Meyer, E.; Kara, E.; et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 2012, 91, 1144-1149. [CrossRef] [PubMed]
-
(2012)
Am. J. Hum Genet
, vol.91
, pp. 1144-1149
-
-
Haack, T.B.1
Hogarth, P.2
Kruer, M.C.3
Gregory, A.4
Wieland, T.5
Schwarzmayr, T.6
Graf, E.7
Sanford, L.8
Meyer, E.9
Kara, E.10
-
143
-
-
84875757691
-
De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood
-
[CrossRef] [PubMed]
-
Saitsu, H.; Nishimura, T.; Muramatsu, K.; Kodera, H.; Kumada, S.; Sugai, K.; Kasai-Yoshida, E.; Sawaura, N.; Nishida, H.; Hoshino, A.; et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 2013, 45, 445-449. [CrossRef] [PubMed]
-
(2013)
Nat Genet
, vol.45
, pp. 445-449
-
-
Saitsu, H.1
Nishimura, T.2
Muramatsu, K.3
Kodera, H.4
Kumada, S.5
Sugai, K.6
Kasai-Yoshida, E.7
Sawaura, N.8
Nishida, H.9
Hoshino, A.10
-
144
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
-
[CrossRef] [PubMed]
-
Orsi, A.; Razi, M.; Dooley, H.C.; Robinson, D.; Weston, A.E.; Collinson, L.M.; Tooze, S.A. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 2012, 23, 1860-1873. [CrossRef] [PubMed]
-
(2012)
Mol. Biol Cell
, vol.23
, pp. 1860-1873
-
-
Orsi, A.1
Razi, M.2
Dooley, H.C.3
Robinson, D.4
Weston, A.E.5
Collinson, L.M.6
Tooze, S.A.7
|